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Definition of Harmonic Measure

X ∈ Ω ⊂ Rn. E ⊂ ∂Ω. ωX (E ) = Probability a B.M. exits Ω first in E .

Figure: Brownian Motion exiting a
domain (figure credit Matthew Badger)

(D) =

{
∆uf =0 x ∈ Ω

uf (Q) =f (Q) Q ∈ ∂Ω

uf (X ) =

ˆ
∂Ω

fdωX .
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Three Examples: ω vs Hn−1|∂Ω

A disk, Lipschitz domain and Snowflake (figure from Matthew Badger)

For the disk, ω0 = σ
2πr .

For a Lipschitz domain, ω0 << σ << ω0 (in a scale invariant way!)

For the snowflake ω0 ⊥ σ.
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Relationship between Geometry and H.M.

Two big questions (ω is H.M., σ = Hn−1|∂Ω):

Q1 (direct): Does smoothness of Ω imply smoothness of dω
dσ ?

Q2 (free boundary): Does smoothness of dω
dσ imply smoothness of Ω?

(some a priori topology)

Lots of work: Badger, Bortz, David, E., Feneuil, Hofmann, Kenig, Martell,
Mayboroda, Tolsa, Toro, Uriarte-Tuero, Zhao...and that’s just the people
here at PCMI! Many more also!

Connections to the Dirichlet problem, probability, potential theory...
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Two Important Theorems

Rn\E ≡ Ω, ω-harmonic measure of Ω, σ = Hn−1|E .
E is (n − 1)-Ahlfors regular: σ(B(Q, r)) ' rn−1 for all Q ∈ E , r > 0.

Theorem (Hofmann-Martell & Azzam-Mourgoglou-Tolsa)

E is (n − 1)-uniformly rectifiable (+ weak topological assumption) if and
only if ω is (quantitatively) absolutely continuous (weak-A∞) w.r.t σ.

Theorem (Kenig-Toro)

Some topological assumptions on Ω. Then osc(n̂) and oscdωdσ control each
other.
In particular, ω = σ iff Ω is a half-space.

A few seconds on quantitative regularity (Ahlfors regular, A∞, uniformly
rectifiable etc...)

Takeaway: Geometry is characterized by solutions of Laplacian in
complement!
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Higher Co-dimension

Would like to characterize geometry of higher-co-dimension sets!

Problem: Elliptic PDE don’t see sets of co-dim > 2! (removable!)

Need degenerate elliptic PDE. Could try p-Laplacian (but it’s non-linear!
Yuck!).

E ⊂ Rn a d-Ahlfors regular set. David-Feneuil-Mayboroda: solutions to

Lu = −div
(

A(x)

dist(x ,E )n−d−1
∇u
)

= 0,

satisfy all the usual elliptic estimates (A an elliptic matrix).

Question: Geometry of E characterized by ωL vs σ?
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Regularized Distance I: The Direct Result

Problem: x 7→ dist(x ,E ) is not a nice function. Hard to talk about ωL.

David-Feneuil-Mayboroda: family of smoothed out distances, Dα(x).
Dα(x) ' dist(x ,E ).

Lαu = −div
(

1

Dα(x)n−d−1
∇u
)
.

Theorem (David-Feneuil-Mayboroda (for Lipschitz graphs),
David-Mayboroda (in progress))

Let E be a d-uniformly rectifiable set, then ωα ∈ A∞(dσ).

This is great! We have that nice geometry implies nice behavior of the
(degenerate) elliptic measure (analogue of Hofmann-Martell for higher
co-dimension).

Note: no topological assumptions needed. That is because E is so thin!
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Regularized Distance II: Who is Dα?

E ⊂ Rn is d-Ahlfors regular. σ = Hd |E and α > 0. Define

Dα(x) ≡
(ˆ

E

1

|x − y |d+α
dσ

)−1/α

.

Why Dα?

• Ahlfors Regular ⇒ Dα <∞.

• α > 0 ensures Dα(x) 'α,AR dist(x ,E ).

• Dα sees whole geometry of E (non-local!) and is smooth in Rn\E .

• ∇Dα “sees” flatness of E (How....?)
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Oscillation of |∇Dα| and the flatness of E

David-E.-Mayboroda: “|∇Dα| doesn’t oscillate too much near E iff E is
regular.”

Let
Fα(x) = dist(x ,E )|∇|∇Dα|2|.

Let
Γη(Q) = {x ∈ Rn\E | dist(x ,E ) ≤ (1 + η)|x − Q|}.

Theorem (David-E.-Mayboroda, in preparation)

E is uniformly rectifiable if and only if F 2
α(x)δ(x)−n+d is a Carleson

measure on Rn\E.
E is rectifiable if and only if limQ←x∈Γη(Q) |∇Dα(x)| exists for σ-a.e.
Q ∈ E.

Carleson Measure:
´
B(Q,R) F

2δ−n+ddx ≤ CRd for all Q ∈ E .
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Connection with other work

Carleson Measure/Non-tangential limits, important concepts in Harmonic
Analysis.

Carleson Measure: Quantitative, scale-invariant measure of smallness.
Intimately connected to uniform rectifiability. E.g. David-Semmes, usual
square function estimates: closely related to our work.

Non-tangential limits ! principle values for SIOs. Work of Tolsa relating
principle values to rectifiability.

∇Dα = − 1

α
D1+α
α

(ˆ
E

x − y

|x − y |d+α+1
dσ

)
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Intuition/Proof: |∇D| = c ⇒ flat

Key Step: |∇Dα| is constant if and only if E is an affine space.

⇒ is interesting. Essentially two steps: if dist(x ,E ) is C 1 then E is
convex. If it is C 2 (and E is d-Ahlfors regular with d < n) then E is affine.

Proof Sketches:

• UR ⇒ Carleson Condition: compare |∇Dα| to |∇Dα| of best
approximation. Use α numbers.

• Carleson ⇒ UR: use a compactness argument. Limit to a plane, use
β numbers.

• NT limits ⇒ Rectifiability: blow-up! Get a plane at almost every
point.

• Rectifiability ⇒ NT Limits: blow-up! Get a constant at almost every
point.

11
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What about ωα?

We got distracted: we know E uniformly rectifiable implies ωα ∈ A∞(dσ).

If ωα ∈ A∞(dσ) then can we conclude regularity on E?

General Free Boundary Problem:

Does the oscillation of dωα
dσ control the regularity of E?

NO!!!!
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Magic α!

Let E ⊂ Rn be d-Ahlfors regular. And α = n − d − 2 > 0.

Theorem (David-E.-Mayboroda, in preparation)

For any E as above and α = n − d − 2, C−1σ ≤ ωα ≤ Cσ.

If E is rectifiable then ωα ≡ cσ.

NOTE: E could be a fractal! d could be a non-integer dimension!!!

Recall the work of Kenig-Toro:

Theorem (Kenig-Toro)

Ω ⊂ Rn with mild topological assumptions. ∂Ω is (n − 1)-Ahlfors regular.
Then ω = σ if and only if Ω is a half-space.
More generally, regularity of dω

dσ controls regularity of ∂Ω.

Takeaway: For magic α, dωα
dσ doesn’t control the regularity of E , and fails

to do so in the most spectacular way possible!
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What’s up with “magic α”?

Can compute: see that for α = n − d − 2 we have

LαDα = −div
(

1

Dn−d−1
α

∇Dα
)

= 0.

“The distance is a solution to the equation”

Dα is “Green function with pole at infinity”: |∇Dα| on E gives dωα
dσ .

Dα ' dist(x ,E )⇒ ωα ' σ

When α is magic Dα(x) =
(´

E
1

|x−y |n−2 dσ
)−1/α

. Note: 1
|x |n−2 is harmonic!
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Open Questions about the Magic α

1 Why is magic α magic?
• Dα satisfies an equation but what is really going on?

2 Is this emblematic or pathological?
• Is any other β magic?
• Can we prove the converse for ωβ with β not magic?

3 What does α 7→ Dα look like?
• The power − 1

α makes this question harder.
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Wild Speculation Part I: Energy

Minimizers to (nice) energies often self-improve regularity (flat implies
smooth). Ex: minimal surfaces, obstacle problems, etc etc.

No energy for harmonic measure in general. But underlying Kenig-Toro
type results: secret energy

ˆ
|∇u|2 + χ{u>0}.

Perhaps no (nice) energy in co-dim > 1 case (operator too dependent on
set). Or perhaps energy is not nice for magic α (loss of coercivity)?

Question: Does this phenomenon exist for other problems with energy?
E.g. given a set E , can you come up with an obstacle type problem such

that E is the contact set of the minimizer? Coefficients will be nasty.
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Wild Speculation Part II: co-dimension 1

Let E ⊂ Rn−1 be an (n − 1)-Ahlfors regular set.

Question: Under what conditions on E can you find an elliptic operator, L
such that ωL ' Hn−1|E?

“Opposite” question: “what operators, L, “detect” rectifiability in
co-dimension 1?” a matter of great interest.

Nothing known for either question except in the “perturbative” regime
(e.g. t-independent coefficients, operator close to identity in a Carleson
sense etc).

Explicit Question: Does there exist an operator in R2 on the exterior of
the four-corner Cantor set, C , such that ωL ' σ on C?
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Thanks!

Thank You For Listening!
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