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Overview

• Harmonic Measure: where does a random walk first exit a domain?

Figure: A random walk exiting a domain (figure credit Matthew Badger)

• Dirichlet problem: equilibrium after diffusion.

• Not surprising: a nasty domain can have “hidden” parts of the
boundary

• Surprising: if nothing is hidden, the domain is nice.

• Very surprising (and recent): higher co-dimension analogues.
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Random Walk and Hitting Measure

Walker goes to each neighbor with equal probability.

Figure: Each neighbor has probability 1/4
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Random Walk and Hitting Measure

Walker goes to each neighbor with equal probability.

Figure: We keep going until we hit the boundary
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Random Walk and Hitting Measure

Walker goes to each neighbor with equal probability.

Figure: Backtracking is allowed
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Random Walk and Hitting Measure

Walker goes to each neighbor with equal probability.
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Random Walk and Hitting Measure

Walker goes to each neighbor with equal probability.
Hitting Measure: probability RW hits that part of the boundary.

Figure: Hitting Measure of Green starting at Red ≡ ωPole(Target)
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Random Walk and Hitting Measure

Walker goes to each neighbor with equal probability.
Hitting Measure: probability RW hits that part of the boundary.

Figure: Hitting Measure Depends on the Pole!
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Random Walk and Hitting Measure

Walker goes to each neighbor with equal probability.
Hitting Measure: probability RW hits that part of the boundary.

Figure: Hitting Measure Depends on the Pole!

Hard to compute!!! (Solve 10 eqns with 10 unknowns)
Average of neighbors!
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Discrete Harmonic Functions

Mean Value Property

u(Point) =
1

#Neighbors

∑
Neighbors

u(Neighbor).

Example:

Figure: Each red value is the average of the neighboring values

Uniqueness: Maximum principle!
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Expectation and the Dirichlet Problem

Recall:

u(Point) =
1

#Neighbors

∑
Neighbors

u(Neighbor).

Figure: How do we fill in the boundary?

This is the Dirichlet problem.

u(Point) =
∑

BoundaryPoints

u(BoundaryPoint)ωPoint(BoundaryPoint).

Expected value!
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Harmonic Functions in the Continuum

Mean Value Property: for all X ∈ Rn and R > 0,

1

|B(X ,R)|

ˆ
B(X ,R)

u(Y )dY = u(X ).

u satisfies mean value property ⇔ ∆u = 0⇔
∑n

i=1 ∂
2
xixi

u = 0.

EX : u(x , y) ≡ x2 − y2

Figure: Harmonic functions don’t have local extrema credit: laussy.org

Represents Equilibrium after diffusion.
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Harmonic Measure in the Continuum

X ∈ Ω ⊂ Rn. E ⊂ ∂Ω. ωX (E ) = Probability a B.M. exits Ω first in E .

Figure: Brownian Motion exiting a
domain (figure credit Matthew Badger)

(D) =

{
∆uf =0 x ∈ Ω

uf (Q) =f (Q) Q ∈ ∂Ω

uf (X ) =

ˆ
∂Ω

fdωX .

What is the
temperature in the interior, given
the temperature on the edge?
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When does ωX not see large sets?

“Bad” geometry: ω doesn’t “see” sets of large length.

• Connectivity.

• Cusps

Figure: Brownian motion cannot get to the cusp
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“Bad” geometry: ω doesn’t “see” sets of large length.

• Connectivity.

Figure: ωPole cannot see the other component

• Cusps

Figure: Brownian motion cannot get to the cusp
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So what if ωX doesn’t see large sets?

(Quantitative) Well posedness of Dirichlet problem:

(D) =

{
∆uf =0 x ∈ Ω

uf (Q) =f (Q) Q ∈ ∂Ω

ωX = kXdσ (σ is “length” on ∂Ω).
kX small: big f can give small u . Vice versa if kX big.

Figure: Changing data on the cusp doesn’t change the solution

“Theorem”: D is (quantitatively) well posed iff kX is not “too large or
too small too often.” Call this A∞
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Three Examples: ω vs Length

σ is the length measure.

A disk, Lipschitz domain and Snowflake (figure from Matthew Badger)

For the disk, ω0 = σ
2πr .

For a Lipschitz domain, if ω0(E ) = kσ and k is not too small or too big
too often.

For the snowflake ω0 = kσ and k = +∞ or 0 at every point.

10



Three Examples: ω vs Length

σ is the length measure.

A disk, Lipschitz domain and Snowflake (figure from Matthew Badger)

For the disk, ω0 = σ
2πr .

For a Lipschitz domain, if ω0(E ) = kσ and k is not too small or too big
too often.

For the snowflake ω0 = kσ and k = +∞ or 0 at every point.

10



Three Examples: ω vs Length

σ is the length measure.

A disk, Lipschitz domain and Snowflake (figure from Matthew Badger)

For the disk, ω0 = σ
2πr .

For a Lipschitz domain, if ω0(E ) = kσ and k is not too small or too big
too often.

For the snowflake ω0 = kσ and k = +∞ or 0 at every point.

10



Three Examples: ω vs Length

σ is the length measure.

A disk, Lipschitz domain and Snowflake (figure from Matthew Badger)

For the disk, ω0 = σ
2πr .

For a Lipschitz domain, if ω0(E ) = kσ and k is not too small or too big
too often.

For the snowflake ω0 = kσ and k = +∞ or 0 at every point.

10



Three Examples: ω vs Length

σ is the length measure.

A disk, Lipschitz domain and Snowflake (figure from Matthew Badger)

For the disk, ω0 = σ
2πr .

For a Lipschitz domain, if ω0(E ) = kσ and k is not too small or too big
too often.

For the snowflake ω0 = kσ and k = +∞ or 0 at every point.
10



Relationship between Geometry and H.M.

Long Corridors, Cusps are problems.

They aren’t the only problem! Fractals!

Q1 (direct): If Ω is nice does that mean ωX = kXdσ for nice kX ?

Q2 (free boundary): If ωX = kXdσ for nice kX , does that mean Ω must
be nice?

Lots of work: Ahlfors, Bishop, Carleson, David, E., Fabes, Garnett,
Hofmann, Jerison, Kenig, Laurentiev, Mayboroda, Nyström, Øksendal,
Pipher, Riesz (x2), Salsa, Toro, Uriarte-Tuero, Volberg, Wolff,
Zhao...Many More.

When n = 2: connections to the complex analysis.
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Green Function

Associated with Harmonic measure ωX is Green function G (X ,−).

Figure: George
Green (figure credit
wikipedia)


G (X ,Y ) >0 X 6= Y ∈ Ω

G (X ,Q) =0 Q ∈ ∂Ω

∆YG (X ,Y ) =δX (Y ) Y ∈ Ω.

ˆ
Ω

∆ϕ(Y )G (X ,Y )dY = ϕ(Y ) +

ˆ
∂Ω
ϕ(Q)dωX (Q).

Probability: G (X ,Y ) = how likely does
B.M. go from X to Y without leaving Ω (tricky!)

Really hard to compute! Known only for a few domains (half plane,
disc, polygons...)
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Poisson Kernel

dωX (Q) = kX (Q)dσ(Q).

kX is Poisson kernel.

Figure: Siméon Denis Poisson (figure credit wikipedia)

• kX = ∂nG (X ,−).
• Green function hard to compute ⇔ Poisson kernel hard to compute.
• Q2 Above: If kX is nice does that mean Ω must be nice?
• Overdetermined: kX Neumann conditions, Q ∈ ∂Ω⇒ G (X ,Q) = 0,

Dirichlet conditions.
• Free Boundary Problem!

13
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Back to the Questions

Q1 (direct): If Ω is nice does that mean ω = kdσ for nice k?

Q2 (free boundary): If ω = kdσ for nice k , does that mean Ω is nice?

Yes! For essentially every value of nice!

• Exercise: k = constant “iff” Ω = B(X ,R).

• Harder: k ∈ C k,α iff ∂Ω ∈ C k+1,α (need α ∈ (0, 1), Jerison-Kenig!)

• Kenig-Toro 90s, 00s: osc k controls osc ∂Ω. Vice Versa!

• Hofmann-Martell & Azzam-Mourgoglou-Tolsa 2018: k isn’t too small
or too big too often (A∞-condition) iff ∂Ω looks flat at most points
and scales (uniformly rectifiable).

Takeaway: Geometry of a set is characterized by solutions of Laplacian in
complement of the set!

14
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Digression on Dimension

Famous Open Q: What is the (maximal) dimension of the support of ω?

Figure: Can harmonic measure live on the whole boundary? (figure credit
wikipedia)

• Makarov ’85 Jones-Wolff ’88: in n = 2, dimω = 1.

• Bourgain ’87: in Rn, dimω < n.

• Wolff ’95: in Rn, n ≥ 3 dimω > n − 1,

• Precise value completely open!
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Higher Co-dimension

Would like to characterize geometry of higher-co-dimension sets!

Think: curve in R3. More exotic: snowflake in R3!
Problem: Elliptic PDE don’t see sets of co-dim > 2! (removable!)

Why do this? It is fun! Applications to Biology?

Figure: DNA Straightens and Curls up to Attract/Avoid Enzymes
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Degenerate Elliptic PDE

Need degenerate elliptic PDE.

Degenerate coefficients “attract” Brownian
motion.

E = (x , φ(x)) ⊂ Rn. φ : Rd → Rn−d . David-Feneuil-Mayboroda: solutions
to

Question: Geometry of E characterized by ωL vs σ?
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Regularized Distance I: A Better Scent

E = (x , φ(x)), φ(x) : Rd → Rn−d .
Problem: x 7→ dist(x ,E ) is not a nice function. Hard to talk about ωL.

David-Feneuil-Mayboroda: family of smoothed out distances, Dα(x).
Dα(x) ' dist(x ,E ).
Define

Dα(x) ≡
(ˆ

E

1

|x − y |d+α
dσ

)−1/α

.

• α > 0 ensures Dα(x) ' dist(x ,E ).

• Dα sees whole geometry of E (non-local!) and is smooth in Rn\E .

• Oscillation of |∇Dα| sees oscillation of φ (David-E.-Mayboroda 18)

• Baby case! |∇Dα| = constant iff φ ≡ 0.

18
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Regularized Distance II: The Direct Result

E = (x , φ(x)), φ : Rd → Rn−d . σ = surface measure and α > 0. Define

Dα(x) ≡
(ˆ

E

1

|x − y |d+α
dσ(y)

)−1/α

.

Lαu ≡ −div
(

1

Dα(x)n−d−1
∇u
)
.

Theorem (David-Feneuil-Mayboroda 2017)

Let E be the graph of a Lipschitz φ : Rd → Rn−d with small Lip constant.
Then ωX

Lα
= kXdσ and kX is not too small or too big too often (A∞

weight).

Answers direct question in co-dimension > 1.

Note: applies to much more general scents (i.e. any suitably smooth
replacement for Dα(x)−(n−d−1)I works).
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What about the free boundary?

E = (x , φ(x)) ⊂ Rn. If ωLα = kdσ and k is nice does that mean that φ is
nice?

General Free Boundary Problem:

Does the oscillation of k control the oscillation of φ?

Baby Case: If k = constant must it be that φ = constant?

NO!!!!

20
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Magic α!

Let E = (x , φ(x)) ⊂ Rn, φ : Rd → Rn−d is Lipschitz. And
α = n − d − 2 > 0.

Theorem (David-E.-Mayboroda 18)

For any E , α as above, have ωLα = constant dσ.

NOTE: A version for when E is fractal! d non-integer (here ωLα ' σ).

Recall in co-dimension 1: ωX = kXdσ, kX = constant⇒ Ω = B(X ,R).

Takeaway: For magic α, dωα
dσ doesn’t control the regularity of φ, and fails

to do so in the most spectacular way possible!

Dα is too nice a scent!

21
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What’s up with “magic α”?

Can compute: see that for α = n − d − 2 we have

LαDα = −div
(

1

Dn−d−1
α

∇Dα
)

= 0.

“The distance is a solution to the equation”

Dα is “Green function with pole at infinity”: |∇Dα| on E gives dωα
dσ .

Note: In general computing the Green’s function is VERY HARD!

Dα ' dist(x ,E )⇒ ωα ' σ

When α is magic Dα(x) =
(´

E
1

|x−y |n−2 dσ
)−1/α

. Note: 1
|x |n−2 is harmonic!

22
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Dα ' dist(x ,E )⇒ ωα ' σ

When α is magic Dα(x) =
(´

E
1

|x−y |n−2 dσ
)−1/α

. Note: 1
|x |n−2 is harmonic!
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Open Questions about the Magic α

1 Why is magic α magic?
• Dα satisfies an equation but what is really going on?

• Physical/geometric/probabilistic interpretation?

2 Is this emblematic or pathological?
• Is any other β magic?
• Can we prove the converse for ωβ with β not magic?

3 What does α 7→ Dα look like?
• The power − 1

α makes this question harder.

4 Can we do this in co-dimension one? Two?
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Thanks!

Thank You For Listening!

The way of Laplace!
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