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Introduction: My research is focused on the study of free boundary problems (FBPs), a class of partial
differential equations in which an unknown function, u, satisfies a PDE on a domain, Ω, which itself depends
(often in a highly non-linear way) on u. Originally introduced by physicists to understand liquid-solid
phase transition (the classic Stefan problem), recently FBPs have been used to model a broad range of real-
world phenomena from option pricing [SP07] to tumor growth [QPV14]. Free boundary problems are also
ubiquitous in pure mathematics, e.g., in the study of geometric flows [Das14].

For an open, unbounded Ω ⊂ Rn and a Radon measure ω, consider the boundary value problem,

(1)

∆u(x) =0, x ∈ Ω

u(x) >0, x ∈ Ω

u(x) =0, x ∈ ∂Ωˆ
Ω

u∆ϕ dx =

ˆ
∂Ω
ϕdω, ∀ϕ ∈ C∞c (Rn).

The function, u, (uniquely determined up to a constant multiple for sufficiently regular Ω) is the Green
function of Ω with a pole at infinity and ω, is the corresponding harmonic measure. Harmonic measures
arise in many areas of math, e.g. in probability as the exit distribution of a Brownian motion in Ω.

Equation (1) is overdetermined and does not have a solution for every combination of Ω and ω (as we
are prescribing both its Neumann and Dirichlet data). Therefore, a priori assumptions on ω should impose
additional conditions on the “free boundary”, ∂Ω. In particular, we ask the question:

(2) If we know ω is “regular” what can we say about ∂Ω?

The converse question to (2) is a fundamental one in the study of analysis on rough domains; given the
regularity of ∂Ω what can we conclude about the regularity of the harmonic measure it supports? There
is a vast literature devoted to this question (see, e.g., [Dah77], [JKe82] and [HM14]) and its subsequent
applications (e.g. to the solvability of the Dirichlet problem, [Dah79]).

Question (2) has been studied under various assumptions; in particular, smoothness of dω
dσ has been shown

to imply smoothness of ∂Ω (see, e.g., [AC81], [Jer90], [KT03]). Other conditions, involving, e.g., the
integrability of dω

dσ , [HMU14], and the doubling rate of ω, [KT97], imply weaker notions of regularity on Ω.
One reason these problems are of interest is because they are non-variational, i.e. do not arise as the

minimizer of some energy functional. Thus many “geometric” tools and techniques, which were developed
to study minimal surfaces and now are being used by the FBP community (e.g. epiperimetric inequali-
ties, see [FS16] and [GSP16]), are not easily adapted to problems concerning harmonic measure. Instead,
researchers in this area use a blend of ideas from harmonic analysis and geometric measure theory.
The focus of my proposed project is to use harmonic analysis and geometric measure theory in combination

with tools from geometric analysis to study free boundary problems related to harmonic measure.
A Two-Phase Free Boundary Problem for Harmonic Measure In addition to being mathematically

natural, two-phase analogues of (2) are often used to model the separation of two different mediums (e.g.
plasma and a vacuum in [KNS78]). Given a domain Ω, let ω+ be the associated harmonic measure and ω−

the harmonic measure of Ω
c
. We can then ask,

(3) How is the structure of ∂Ω determined by the relationship between ω+ and ω−?

When Ω ⊂ R2 is simply connected and bounded by a Jordan curve, the combined work of Makarov,
McMillan and Pommerenke (see [GM05], Chapter 6) tells us that,

(4) ω+ << ω− << ω+
⇒ ω+ << H1

|G << ω
− << ω+,

for some 1-rectifiable set G ⊂ ∂Ω, with the additional property that ω±(∂Ω\G) = 0. That is, the free
boundary is comprised of a “good part” which is the union of Lipschitz curves on which harmonic measure
and Hausdorff measure are comparable, and a “bad part” which is not seen by harmonic measure.
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The analogous decomposition in n-dimensions follows from the work of Kenig, Preiss and Toro [KPT09]
and then Azzam, Mourgoglou and Tolsa [AMT16]. In essence, their combined work states that if Ω,Ω

c

are non-tangentially accessible domains, then ω+ << ω− << ω+ implies that the support of ω± is (n − 1)-
rectifiable. Furthermore, ∂Ω\sup ω± is purely (n − 1)-unrectifiable (i.e. its intersection with any (n − 1)-
dimensional Lipschitz graph has null Hausdorff measure). Recall that non-tangentially accessible (NTA)
domains (introduced in [JKe82]), are a generalization of Lipschitz domains in which the boundary behavior
of harmonic functions is well understood. These results are remarkable because they use powerful tools
from geometric measure theory and harmonic analysis ([Pre87] and [GT16], respectively).

In other words, the free boundary, ∂Ω, is split into two disjoint pieces, the regular set, Γr, where there is
a tangent at each point, and the singular set, Γs, which is not seen by the harmonic measures. From minimal
surfaces theory we expect to be able to conclude higher regularity on Γr (given smoothness of dω−

dω+ ) and to
be able to control the size and structure of the singular set, Γs. In this vein there was work by Kenig and
Toro [KT06] and Badger [Bad11], [Bad13], classifying the blowups (see below) of the free boundary.

Analysis of Γr, the regular points in ∂Ω: In [Eng16a], we addressed the issue of higher regularity on the
part of Γr, assuming that log( dω−

dω+ ) has additional smoothness. Our main theorem is the following;

Theorem 1. [Theorem 1.1 and Theorem 1.2 in [Eng16a]] Let Ω,Ω
c

be NTA domains such that h ≡ dω−
dω+

satisfies log(h) ∈ Ck,α(∂Ω) where k ≥ 0 and α ∈ (0, 1).
• When n = 2: ∂Ω is locally given by the graph of a Ck+1,α function.
• When n ≥ 3: there is some δn > 0 such that if Ω is a δ-Reifenberg flat domain and δ < δn, then ∂Ω

is locally given by the graph of a Ck+1,α function.
The same result is true if we assume that Ω is a Lipschitz domain and that log(h) ∈ Ck,α(∂Ω).

The δ-Reifenberg flat assumption above is included to ensure that the set of singular points, Γs, is empty.
If we omit the flatness assumption, then an analogous result holds true locally in Γr. The result is also sharp
in the sense that there are examples in R3 showing flatness is necessary.

The key step in the proof of Theorem 1, is to show quantitative non-degeneracy: that there exists a c > 0
such that for every subset F ⊂ ∂Ω, we have ω±(F)/Hn−1(F) ≥ c > 0 (this was unknown even assuming
that ∂Ω is a Lipschitz graph). Degeneracy is a fundamental obstacle in two phase free boundary problems;
imprecisely, if both phases vanish at a point of the free boundary, then there is no hope of recovering
any geometric information there. To prevent both phases from vanishing simultaneously, many two-phase
problems have non-degeneracy “baked in” to the free boundary condition (see, e.g., [Caf87], [DFS14]).
However, in this problem, ω+(F) = 0⇔ ω−(F) = 0, so a priori both phases could disappear simultaneously.

To show non-degeneracy we constructed a function, v, such that Almgren’s frequency formula (see
[Alm79]) applied to v is “almost monotonic” (i.e. its derivative is bounded from below by a function inte-
grable at zero). Monotonicity formulas, like Almgren’s frequency function, are a traditional tool to prove
non-degeneracy. However, these formulas usually arise in a variational context (where they come from
appropriate modifications of the energy). Since our problem is non-variational, we had to use estimates
from harmonic analysis and geometric measure theory to bound the growth of the function from below. In
particular, we played two estimates off one another: the first is that a harmonic function which vanishes
at a point to first order must grow at least as fast as |x|2 near that point. The second is that the quotient,
ω±(B(Q, r))/rn−1, cannot grow or decay faster than any power of r as long as ∂Ω is flat around Q ∈ ∂Ω.

Analysis of Γs, the singular points in ∂Ω: In [BET15], I, together with Matthew Badger and Tatiana Toro,
studied the structure of the singular set, Γs. To state our result, recall that a set, S, is a blowup of ∂Ω at Q if
there are ri ↓ 0 such that (∂Ω −Q)/ri → S. We proved:
Theorem 2. [see Theorem 7.4 in [BET15]] Assume that Ω,Ω

c
are NTA domains equipped with harmonic

measure ω+, ω− as above. Further assume that h ≡ dω−
dω+ satisfies log(h) ∈ VMO(dω+). Then we can write

the free boundary as ∂Ω = Γ1 ∪ Γ2 ∪ . . . ∪ Γd such that
• For Q ∈ Γk, every blowup of ∂Ω at Q is the zero set of a k-homogenous harmonic polynomial.
• The set Uk ≡ Γ1 ∪ . . . ∪ Γk is relatively open in ∂Ω for all k ≤ d.
• Γ1 = Γr. Equivalently, Γs ≡ Γ2 ∪ . . . ∪ Γd.
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• The singular set, Γs ≡ ∂Ω\Γ1 has upper Minkowski dimension at most n − 3.
• The “even” singular set Γ2 ∪ Γ4 ∪ . . . ∪ Γ2k has Hausdorff dimension at most n − 4.

Stratification and dimension estimates of this kind have been obtained for many problems such as min-
imal surfaces ([Sim93], [Sim95]) and, more recently, the singular set of an FBP (e.g. for the thin obstacle
problem in [GP09]). Generally, these arguments require three key ingredients; a monotonicity formula, the
knowledge that there is a unique blowup at every point and some uniformity in the rate of blowup.

To prove Theorem 2 we needed new tools as no monotonicity formula has been found or uniqueness of
blowups result proven, when log(h) ∈ VMO. However, Kenig and Toro [KT06], showed that at every point,
x0 ∈ ∂Ω, and every scale, r > 0, there exists a harmonic polynomial p, such that ∂Ω ∩ B(x0, r) is well
approximated by {p = 0} ∩ B(x0, r). This fact, combined with a framework developed by Badger and Lewis
[BL15] (which was inspired by the aforementioned paper of Preiss [Pre87]), meant that to prove Theorem 2
it sufficed to study the structure of zero sets of harmonic polynomials.

More precisely, we wanted to understand when a portion of the zero set of a degree, d, harmonic poly-
nomial can be well approximated by the zero set of a harmonic polynomial of lower degree. The central
step is an “improvement type” lemma which roughly states the following: if p, h are harmonic polynomials
with deg(h) = k ≤ n = deg(p) and {p = 0} is close to {h = 0} inside of B(x0, r0), then, as s ↓ 0, {p = 0}
is increasingly well approximated inside of B(x0, sr0) by the zero sets of other harmonic polynomials of
degree ≤ k. This is analogous to Alt and Caffarelli’s “flat at one scale implies smooth” result in [AC81].
The improvement lemma was obtained by proving Łojasiewicz-type inequalities for harmonic polynomials
of bounded degree. These inequalities then allowed us to control the geometry of {p = 0} at x0 by analyzing
the first k terms in the Taylor expansion of p around x0.

Future work related to the two-phase problem: In work in progress with Badger and Toro, we are com-
bining the methods of [Eng16a] and [BET15], to study the structure of the singular set, when log(h) ∈ C0,α.
Essentially, we want to emulate the work of Simon [Sim83], [Sim95] and prove rectifiability of the sin-
gular set and parametrization of the free boundary near isolated singular points. To do so, we first extend
the monotonicity formula of [Eng16a] to singular points by refining our estimates on ω±(B(Q, r))/rn−1.
Then we establish an epiperimetric inequality for this almost-monotone quantity. This result should be of
particular interest, as epiperimetric inequalities at singular points are often hard to prove.

In the long term, we hope that our work provides a blueprint for using monotonicity formulas and
Łojasiewicz-type inequalities in other non-variational FBPs. Łojasiewicz inequalities in particular have
been used with great success in the geometric analysis community (see, e.g., [Sim83], [CM15]), and we
believe that they should have important applications to free boundary theory as well.

Parabolic Free Boundary Problems: We now discuss a one-phase problem for caloric measure. Caloric
measure is the time dependent version of (2),

(5)

(∂t + ∆x)u(x, t) = 0, ∀(x, t) ∈ Ω ⊂ Rn+1

u(x, t) > 0, ∀(x, t) ∈ Ω

u(Q, τ) = 0, ∀(Q, τ) ∈ ∂Ωˆ
Ω

u(y, s)(∂s − ∆y)ϕ(y, s)dyds =

ˆ
∂Ω
ϕ(Q, τ)dω(Q, τ), ∀ϕ ∈ C∞c (Rn+1).

The Radon measure, ω, above is the caloric measure (with pole at infinity) associated to Ω and we ask, as
before, what the regularity of ω tells us about the regularity of ∂Ω. While the literature on the one-phase
problem for harmonic measure is quite extensive, many of the analogous results in the parabolic setting are
yet unproven. In fact, even under the additional hypothesis

(6) dω
dσ ≥ 1 dσ-almost everywhere and |∇u| ≤ 1 everywhere in Ω

(where σ is a parabolic analogue of surface measure on ∂Ω) there was no description of u or ∂Ω. The work
of Alt and Caffarelli [AC81] (see also [KT04]) implies that any “flat” (i.e. without cone points) solution
to (2) and (6) must be a half-plane solution (i.e. Ω = {xn > 0} and u = x+

n ). They also showed that
non-flat solutions exist (when n ≥ 3). This result was crucial to the development of regularity theory for
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free boundary problems for harmonic measure and whether it remained true in the parabolic setting was an
important open question for some time (see the discussion at the end of Section 5 in [HLN04] or [Nys06a],
[Nys12]). In [Eng15], this was answered in the affirmative; all “flat” solutions to (5) and (6) are half-planes.

My investigation here is inspired by work of Andersson and Weiss [AW09] who considered solutions in
the sense of “domain variations” to

(7) (∂t − ∆x)u(x, t) = 0, (x, t) ∈ {u > 0} and |∇u(x, t)| ≡ 1, (x, t) ∈ ∂{u > 0}.

The relationship between domain variation solutions to (7) and solutions to (5) and (6) remains unclear (see
the end of Section 1 in [Nys12]). Thus we needed to adapt the methods of [AW09] to our setting.

Hofmann, Lewis and Nyström, [HLN04], first considered (5) and introduced the concept of a parabolic
chord arc domain, which is an anisotropic version of the uniformly rectifiable domains in [DaS93]. More
precisely, they defined a measure ν, which averages, in a scale invariant manner, how well ∂Ω is approxi-
mated by hyperplanes in an L2 sense. A parabolic chord-arc domain is one in which the surface measure,
σ, is Ahlfors-regular (i.e. is comparable to Hausdorff measure supported on a plane) and in which ν satisfies
a Carleson measure condition. A parabolic chord arc domain is a parabolic vanishing chord arc domain
if ν satisfies a vanishing Carleson measure condition. Sets of this type are ubiquitous in the study of GMT.

In analogy to the elliptic setting, it is proven in [HLN04] that in a parabolic vanishing chord arc domain,
ω << σ and k ≡ dω

dσ satisfies log(k) ∈ VMO(∂Ω). Kenig and Toro [KT03] proved the converse result for
harmonic measure; that (under certain flatness conditions) log(k) ∈ VMO(∂Ω) implies that Ω is a vanishing
chord arc domain. In [HLN04] they proved a partial parabolic analogue of this result, but were unable to
prove the full result as they didn’t know whether all “flat” solutions to (6) are half-plane solutions. With this
classification of “flat” solutions, [Eng15] proved the full parabolic analogue of [KT03]:

Theorem 3. [Theorem 1.9, [Eng15]] Let Ω ⊂ Rn+1 be a δ-Reifenberg flat parabolic chord arc domain with
log(k) ∈ VMO(∂Ω). There ∃δn > 0 such that if δ < δn, then Ω is a parabolic vanishing chord arc domain.

To prove Theorem 3, we show, using a harmonic analysis and GMT argument, that any limit of rescaled
and translated copies of Ω converges to an Ω∞ (which will depend on the rescaling and translations) which
satisfies (5) and (6). Our aforementioned classification of “flat” solutions to (5) and (6) implies Ω∞ must
be a plane. To finish the proof of Theorem 3 we must control the Carleson measure, ν; we do so through a
GMT argument which may be of independent interest. Roughly, we approximate ∂Ω at each point and each
scale by Lipschitz graphs (adapting arguments of [HLN03]), observe that the Carleson norms associated to
these graphs locally bound the Carleson norm associated to ∂Ω and then use a compactness argument to
show that the Carleson norm of these graphs, and thus ∂Ω, vanishes.

Further Work on the Parabolic Problem: There are several interesting questions connected to the one-
phase problem for caloric measure. The first is what role the a priori Reifenberg flat assumption plays
in the proof. The elliptic theory implies that it is necessary in when n ≥ 3 (as a non-flat solution to the
harmonic measure problem is a stationary solution to the parabolic problem). In [Eng16b], we prove, under
the assumption that Ω is a parabolic NTA domain, that the only solution to (5) and (6) when n = 1 is
the half-plane solution. The key observation is that in one spatial dimension a parabolic NTA domain is
necessarily a graph domain. In general dimensions, whether there are non-stationary solutions to (5) and (6)
is unknown. We are currently investigating this problem when n = 2, where we believe “ancient” solutions
to curve shortening flow should help us find non-stationary solutions which are parabolic NTA domains.

We may also study solutions to (5) and (6) under the assumption that, for each t0, the slice Ω ∩ {t = t0}

is convex (or empty). Together with David Jerison and Svitlana Mayboroda, I am working on a related
question; under what conditions on the Poisson kernel, dω

dσ (X, t), is there a unique domain, Ω, with convex
time slices, such that the caloric Green function for Ω with pole at (0, 0) has the specified Poisson kernel.
In [Jer89], [Jer92], Jerison fully solved the analogous question for harmonic measure by relating it to the
Minkowski problem; we are interested in extending this relationship to the time dependent setting.

Regularity theory for Almost Minimizers: A function, u, is an almost minimizer to the Alt-Caffarelli
functional, J(u) =

´
|∇u|2 + q2

+(x)χ{u>0}(x) dx, inside a domain, Ω, if there exists a constant C > 0 and an
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exponent α ∈ (0, 1) such that for all B(x, r) ⊂ Ω and v with v|∂B(x,r) = u|∂B(x,r),

(8)
ˆ

B(x,r)
|∇u|2 + q2

+(x)χ{u>0}(x) dx ≤
ˆ

B(x,r)
|∇v|2 + q2

+(x)χ{v>0}(x) dx + Crα+n.

Note, if u is a minimizer, (8) holds without the “error” term, Crα+n. These almost-minimizers were first
studied by David and Toro in [DaT15], but have been considered before in others contexts (e.g. for the area
functional, see [Alm68] and [DSS15a]). Almost-minimizers model situations in which measurement error
or noise may be present. The key difficulty in proving regularity for any type of almost-minimizer is that the
function need not satisfy an equation (unlike minimizers), so different methods are needed. Nonetheless,
David and Toro prove C1,β-regularity for almost-minimizers away from the free boundary, ∂{u > 0}, and
Lipschitz regularity for almost-minimizers across the free boundary.

In work in progress, I, together with David and Toro, study the regularity of the free boundary, ∂{u > 0}.
Theorem 4. [[DET16]] Let u be an almost minimizer to J such that, q+ ∈ C0,α and q+ ≥ c > 0. Then
∂{u > 0} is locally given as the graph of a C1,β function near almost every point.

The proof requires a combination of ideas and estimates from [AC81] but also from the study of rectifiable
domains and harmonic measure. We first must show that {u > 0} is an NTA domain using a blowup argument
and the Weiss montonicity formula (see [Wei03]). To show Hölder regularity of the free boundary, we
introduce a function, hx0,r0 , which has the same boundary values as u on ∂(B(x0, r0) ∩ {u > 0}) but which
is harmonic in the interior of B(x0, r0) ∩ {u > 0}. The key estimate is to show that h is comparable to u in
B(x0, r0) ∩ {u > 0} (with error depending on r0). This allows us to conclude, at least at scales comparable
to r0 and near the point x0, that the function hx0,r0 satisfies a perturbation of the Alt-Caffarelli free boundary
problem. We then use the “improved flatness” lemma in [AC81] to say that, on an appropriately chosen
smaller scale, r1 < r0, the set {hx0,r0 = 0} (which agrees locally with ∂{u > 0} ∩ B(x0, r0)) gets flatter.
We repeat, creating hx0,r1 (which agrees with u on the boundary of {u > 0} ∩ B(x0, r1) but is harmonic
on the interior), and running the argument again. Of course, this requires careful management of the errors
involved. It is also interesting to note that proving {u > 0} is NTA is not just an auxiliary result, but necessary
in order to make the harmonic analysis estimates we need to bound hx0,r0 .

Career development, Choice of sponsor and Host Institution: David Jerison is a natural choice for my
sponsoring scientist. He is a leading expert in applying harmonic analysis to the study of regularity theory
for elliptic and parabolic PDE and working with him will deepen my investigations of FBPs.

Jerison is also a leading expert in the connections between geometric analysis and regularity theory for
FBPs. This analogy, first observed by Alt and Caffarelli in [AC81], has been deepened by Jerison’s recent
work joint with De Silva, Kamburov and Savin (see [DeJ09], [DeJ11], [JS15], [JKa14]). Especially inter-
esting is the possibility of extending this program to the parabolic setting. Along with Jerison, the presence
of two experts in mean curvature flow, Colding and Minicozzi, makes MIT the perfect place to pursue this.

Broader Impacts: Throughout graduate school I have been involved in mathematical education and out-
reach at all levels. As a mentor in the University of Chicago REU (which I also co-organized in 2012 and
2016) and the directed reading program, I supervised math majors as they wrote expository papers about
various advanced subjects. In the summer of 2014, I assisted professor Robert Fefferman in mentoring stu-
dents from underrepresented groups who were about to begin graduate school in mathematics and statistics.
During the summers of 2013 and 2015 I worked as an assistant instructor at MathILy; a summer program
for mathematically inclined high school students. I’ve also tutored disadvantaged area high school students
as part of the program “U Chicago Upward Bound”. Now that I am in Cambridge, I hope to continue these
activities as well as work closely with the undergraduate and graduate students at MIT. I’ve also strived to
become an active member of the mathematical research community. I’ve disseminated my results at confer-
ences in the UK and Argentina in addition to giving several contributed and invited talks around the United
States. Furthermore, my time with Tatiana Toro at the University of Washington Seattle, and my time at
MIT, has exposed me to many swaths of the research community (especially in GMT and geometric analy-
sis). I plan to use this wide range of exposure to deepen the connections between these areas and advance
collaboration (e.g. by organizing interdisciplinary meetings).



1

REFERENCES

[Alm68] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces
of varying topological type and singularity structure. Ann. Math. (2) 87, (1968) 321-391.

[Alm76] F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints.
Mem. Amer. Math. Soc. 165 (1976).

[Alm79] F.J. Almgren Jr., Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents.
in “Minimal Submanifolds and Geodesics” North-Holland, Amstrerdam, 1979, pp 1-6.

[AC81] H. Alt and L. Caffarelli, Existence and Regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325
(1981), pp 105-144.

[ACF84] H. Alt, L. Caffarelli and A. Friedman, Variational Problems with Two Phases and Their Free Boundaries. Trans. Amer.
Math. Soc. 282 (1984), pp 431-461.

[AW09] J. Andersson and G. S. Weiss, A Parabolic Free Boundary Problem with Bernoulli Type Condition on the Free Boundary.
J. Reine Angew. Math. 627 (2009), pp 213-235.

[AMT16] J. Azzam, M. Mourgoglou and X. Tolsa, Mutual Absolute Continuity of Interior and Exterior Harmonic Measure Implies
Rectifiability. C.P.A.M., to appear. arXiv: 1602.01397v2. (2016).

[Bad11] M. Badger, Harmonic polynomials and tangent measures of harmonic measure, Rev. Mat. Iberoamericana 27 (2011), pp
841-870.

[Bad13] M. Badger, Flat points in zero sets of harmonic polynomials and harmonic measure from two sides. J. London Math. Soc.
87 (2013), pp 111-137.

[BET15] M. Badger, M. Engelstein and T. Toro, Structure of Sets which are Well Approximated by Zero Sets of Harmonic Poly-
nomials. Preprint, arXiv:1509.03211. (2015).

[BL15] M. Badger and S. Lewis, Local set approximation: Mattila-Vuorinen type sets, Reifenberg type sets and tangent sets.
Forum Math. Sigma 3 (2015) 63 pp.

[Caf87] L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I, Lipschitz free boundaries are C1,α.
Rev. Math. Iberoamericana 3 (1987), pp 139-162.

[Caf98] L. Caffarelli, The Obstacle Problem Revisited. J. of Fourier Anal. and App. 4 (1998), 383-402.
[CJK04] L. Caffarelli, D. Jerison, and C.E. Kenig, Global energy minimizers for free boundary problems and full regularity in

three dimensions. In: Noncompact problems at the Intersection of Geometry, Analysis, and Topology. Contemp. Math., vol.
350 pp. 83?97. Am. Math. Soc., Providence (2004)

[CSaSi08] L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of then obstacle
problem for the fractional Laplacian. Invent. Math. 171 (2008), 425-461.

[CV95] L. Caffarelli and J.L. Vázquez, A free-boundary problem for the heat equation arising in flame propagation. Trans. Am.
Math. Soc. 347 (1995) 411-441.

[CNV15] J. Cheeger, A. Naber and D. Valtorta, Critical sets of elliptic equations. CPAM 68 (2015), pp 173-209.
[CM15] T. Colding and W.P. Minicozzi, Uniqueness of blowups and Łojasiewicz inequalities. Ann. Math. 182 (2015) pp 443-471.
[Dah77] B. Dahlberg, Estimates of harmonic measure. Arch. Rational Mech. Anal. 65 (1977), 275-288.
[Dah79] B. Dahlberg, On the Poisson integral for Lipschitz and C1-domains. Studia Math. 66 (1979), 13-24.
[Das14] P. Daskalopoulos, The regularity of solutions in degenerate geometric problems. Surveys in Diff. Geom. 19 (2014), 83-110.
[DH99] P. Daskalopoulos and R. Hamilton, The Free Boundary on the Gauss Curvature Flow with Flat Sides. J. Reine Angenw.

Math. 510 (1999), 187-227.
[DET16] G. David, M. Engelstein and T. Toro, Free boundary regularity for almost minimizers. Preprint (2016).
[DaJ90] G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Ind. Univ.

Math. J. 39 (1990), 831-845.
[DaS93] G. David and S. Semmes, “Analysis of and on Uniformly Rectifiable Sets.” Math. Surveys Monog. 38 Amer. Math. Soc.,

Providence, 1993.
[DaT15] G. David and T. Toro, Regularity of almost minimizers with free boundary. Calc. Var. P.D.E. 54 (2015), 455-524.
[DSS15a] C. De Lellis, E. Spadaro and L. Spolaor, Regularity theory for 2-dimensional almost minimal currents I: Lipschitz

approximation. Preprint arXiv: 1508.05507, (2015).
[DFS14] D. De Silva, F. Ferrari and S. Salsa, Two-Phase Problems with Distributed Source: Regularity of the Free Boundary. Anal.

& PDE 7 (2014), 267-310.
[DeJ09] D. De Silva and D. Jerison, A Singular Energy Minimizing Free Boundary. J. Reine Angew. Math. 635 (2009), 1-22.
[DeJ11] D. De Silva and D. Jerison, Gradient bound for energy minimizing free boundary graphs. Comm. Pure Appl. Math. 64

(2011) 538-555.
[Eng15] M. Engelstein, A Free Boundary Problem for the Parabolic Poisson Kernel. Preprint arXiv: 1510.05704, 2015.
[Eng16a] M. Engelstein, A Two-Phase Free Boundary Problem for Harmonic Measure. Ann. Sci. École Norm. Sup. 49 (2016),
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