
QUANTITATIVE STABILITY FOR MINIMIZING YAMABE METRICS

MAX ENGELSTEIN, ROBIN NEUMAYER, AND LUCA SPOLAOR

Abstract. On any closed Riemannian manifold of dimension n ≥ 3, we prove that

if a function nearly minimizes the Yamabe energy, then the corresponding conformal

metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal

class. Generically, this distance is controlled quadratically by the Yamabe energy deficit.

Finally, we produce an example for which this quadratic estimate is false.

1. Introduction

Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3. The Yamabe problem

consists of finding a metric g̃, conformal to g, such that the scalar curvature of g̃ is

constant. Given a metric g̃ conformal to g, i.e. g̃ = u4/(n−2)g for a smooth positive

function u on M , the scalar curvature, Rg̃, of g̃ is given in terms of u and the scalar

curvature, Rg, of g by

(1) Rg̃ = u1−2
∗

(−cn∆u+Rgu) ,

where 2∗ = 2n/(n − 2) and cn = 4(n − 1)/(n − 2). In particular, a metric g̃ = u4/(n−2)g

is a solution to the Yamabe problem if and only if u is a smooth positive critical point of

the associated energy functional

(2) Q(u) =

´
M
cn|∇u|2 +Rgu

2 dvolg(´
M
u2∗ dvolg

)2/2∗ =

´
M
Rg̃ dvolg̃

volg̃(M)2/2∗
.

The solution to the Yamabe problem was given by the combined works of Yamabe

[Yam60], Trudinger [Tru68], Aubin [Aub76a], and Schoen [Sch84] (see also the survey

paper [LP87]), which established the existence of a smooth positive minimizer of (2), i.e.

a positive function u ∈ C∞(M) with Q(u) = Y (M, [g]), where we define the Yamabe

constant of (M, g) by

Y (M, [g]) = inf{Q(u) : u ∈ W 1,2(M) , u ≥ 0}.

Here [g] denotes the conformal class of g. Sometimes, when it won’t cause confusion, we

will omit the dependence on M and [g].

The Yamabe constant, Y (Sn, [g0]), on the round sphere plays an important role in

the solution to the Yamabe problem on a general manifold, Mn. When Y (Mn, [g]) <

Y (Sn, [g0]), the existence of a minimizer can be established through analytic methods,
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either by approximating the Euler-Lagrange equation assiciated to (2) by subcritical

equations ([Tru68, LP87]), or via concentration compactness methods (see [Lio84] or

Uhlenbeck, c.f [LP87]). On the other hand, Aubin [Aub76a] and Schoen [Sch84] showed

that Y (Mn, [g]) < Y (Sn, [g0]) for any closed Riemannian manifold, (Mn, g), that is not

conformally equivalent to the round sphere.

In the case of the round sphere, the class of minimizers M(Sn,g0) of (2) were explicitly

characterized by Aubin [Aub76b] and Talenti [Tal76] (see also Obata [Oba72]): after com-

posing with a stereographic projection, which maps the problem to Euclidean space, the

set of minimizers is exactly the function v0 = (1 + |x|2)(2−n)/2, along with its translations,

dilations, and constant multiples on Rn.

In [BL85], Brezis and Lieb raised the question of quantitative stability for minimizers

of the Yamabe functional on the sphere, asking whether the energy deficit Q(Sn,g0)(u) −
Y (Sn, [g0]) of a given function u ∈ W 1,2(Sn) controls its distance to the family of minimiz-

ersM(Sn,g0). An optimal solution was given in [BE91], where Bianchi and Egnell showed

that there exists a dimensional constant c such that

(3) Q(Sn,g0)(u)− Y (Sn, [g0]) ≥ c

(
inf
{
‖u− v‖W 1,2(Sn) | v ∈M(Sn,g0)

}
‖u‖L2∗ (Sn)

)2

for any nonnegative u ∈ W 1,2(Sn).1 This result is sharp in the sense that the exponent 2

cannot be replaced by a smaller one and the W 1,2 norm measuring the distance of u to

the family of minimizers cannot be replaced by a stronger norm.

In this paper, we address this question of Brezis and Lieb in the setting of the Yamabe

functional on any smooth closed Riemannian n-manifold (Mn, g), with n ≥ 3. In contrast

to the case of the round sphere, the minimizers for a general manifold are not known in

any explicit form.

Fix a closed Riemannian manifold, (Mn, g), of dimension n ≥ 3, and letM⊂ W 1,2(M)

denote the set of all minimizers of Q(u). Define

(4) d(u,M) =
inf
{
‖u− v‖W 1,2(M) | v ∈M

}
‖u‖L2∗ (M)

.

Our first main result is a quantitative stability estimate for minimizers of the Yamabe

functional.

Theorem 1.1 (Quantitative stability for minimizers). Let (Mn, g) be a C∞ closed Rie-

mannian manifold of dimension n ≥ 3 that is not conformally equivalent to the round

sphere. There exist constants c > 0 and γ ≥ 0, depending on (M, g), such that

(5) Q(u)− Y (M, [g]) ≥ c d(u,M)2+γ ∀u ∈ W 1,2(M ;R+) .

1We note that question of Brezis and Lieb and the result in [BE91] are stated on Euclidean space, but

the form (3) follows after composition with stereographic projection and integration by parts.
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Moreover, there exists an open dense subset G in the C2 topology on the space of C∞-

conformal classes of metrics on M such that if [g] ∈ G, we may take γ = 0.

From a geometric point of view, one drawback of Theorem 1.1 is that the distance,

d(u,M), depends on the choice of background metric, g ∈ [g]. However, as a consequence

of Theorem 1.1, we obtain the following conformally invariant stability estimate. Define

the following conformally invariant distance between two metrics in a conformal class:

‖gu − gv‖ =

(ˆ
M

|u− v|2∗ dvolg

)1/2∗

,

where here and in the sequel we will freely make the identification of a conformal metric

gu = u4/(n−2)g and its conformal factor u. Although ‖ − ‖ is defined with respect to a

fixed conformal representative g ∈ [g], we will show that it is independent of this choice.

Similarly, in the case when Y = Y (M, [g]) ≥ 0, may define

‖gu − gv‖∗ =

(ˆ
M

cn|∇u−∇v|2 + Y (u− v)2 dvolg

)1/2

for any g ∈ M(M, g) with volg(M) = 1. Again, although ‖ − ‖∗ is defined with respect

to a fixed conformal representative, we show that the definition is independent of this

choice.

Corollary 1.2 (Conformal quantitative stability). Let (Mn, g) be a C∞ closed Riemann-

ian manifold of dimension n ≥ 3. There exist constants c > 0 and γ ≥ 0, depending on

M and [g], such that

(6) Rg − Y (M, [g]) ≥ c

(
inf{‖g − g̃‖ : g̃ ∈M}

volg(M)1/2∗

)2+γ

∀g ∈ [g] .

Here Rg = volg(M)−2/2
∗ ´

M
Rg dvolg is the volume-normalized total scalar curvature of g.

When Y = Y (M, [g]) ≥ 0, there exist constants c > 0 and γ ≥ 0 depending on M and [g]

such that

(7) Rg − Y (M, [g]) ≥ c

(
inf{‖g − g̃‖∗ : g̃ ∈M}

volg(M)1/2∗

)2+γ

∀g ∈ [g] .

Moreover, for an open dense subset in the C2 topology on the space of conformal classes

of C∞ metrics on M , we may take γ = 0.

Notice that in Theorem 1.1 and Corollary 1.2, we obtain a quadratic stability estimate

only for a generic set of metrics. This result is in fact sharp. Indeed, adapting an example

of Schoen [Sch91] (see also [CCR15]), we show that there exist manifolds for which γ > 0

in (5), thus proving the optimality of the result.

Theorem 1.3 (Super Quadratic Growth). Let n ≥ 3. There exist γ > 1, a closed

Riemannian manifold with analytic metric, (Mn, g), a unique minimizer of the Yamabe
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energy Q on (Mn, g), which we set equal to 1 (by a conformal change), and a sequence of

ui ∈ W 1,2(M) with ui → 1 in W 1,2 such that

(8) lim
i→∞

Q(ui)− Y (M, [g])

‖ui − 1‖2+γW 1,2(M)

= 0.

In fact, adapting the aforementioned examples from [Sch91, CCR15], we will produce

an example such that (8) holds for any γ < 2. It is an interesting question whether for

every γ > 0 one can find a metric gγ which satisfies (8), as in the case of the quantitative

isoperimetric inequality on a Riemannian manifold, [CES19].

1.1. Background on Quantitative Stability and the Yamabe Functional. The

problem of establishing quantitative stability estimates for functional and geometric in-

equalities has been a topic of extensive study in recent years. For instance, sharp quan-

titative estimates have been established for the isoperimetric inequality on Euclidean

space [FMP08, FMP10, CL12], the round sphere [BDF17], hyperbolic space [BDS15], and

on arbitrary Riemannian manifolds [CES19]. Closely related to the Yamabe problem,

quantitative stability estimates for Sobolev inequalities on Euclidean space have been

studied, in addition to the aforementioned result of [BE91], in [CFMP09, FMP13, FN19,

Neu20, FZ20, HS19]. In a slightly different direction, quantitative stability estimates for

critical points have been addressed for the isoperimetric inequality on Euclidean space

[CM17, KM17] and for the Sobolev inequality [CFM18, FG20]. Apart from [CES19], all

of these results make crucial use of the explicit form of minimizers and critical points or

of the symmetries of the ambient space. See [Fus15] for a survey of quantitative stability

results for functional and geometric inequalities.

Critical points of the volume-normalized Einstein-Hilbert action functional, R(g) =

volg(M)−2/2
∗ ´

M
Rg dvolg, are Einstein metrics, i.e. metrics g satisfying Ricg = λg for

some λ ∈ R where Ricg is the Ricci curvature tensor of g. The Yamabe functional Q

defined in (2) is the restriction of this functional (and thus the corresponding variational

problem) to a given conformal class [g]. If Y (M, [g]) ≤ 0, then the Euler-Lagrange equa-

tion corresponding to the Yamabe functional (2) (see (9) below) satisfies the maximum

principle and thus there is a unique critical Yamabe metric. Similarly, if the conformal

class [g] has a representative that is an Einstein metric and is not conformal to the round

sphere, then this metric is the unique critical Yamabe metric thanks to a theorem of

Obata [Oba72]. On the round sphere (Sn, g0), the family of minimizing Yamabe metrics

is noncompact, though for any closed Riemannian manifold that is not conformal to the

round sphere, the family of unit-volume minimizers is compact in the C2 topology (see

Lemma 4.1). In fact, Anderson [And05] showed that for an open dense set in the space

of conformal classes, [g] has a unique (unit volume) minimizing Yamabe metric. In gen-

eral, however, minimizing Yamabe metrics are non-unique; see [Sch91, Sch89]. Pollack

[Pol93, Pol91] showed that, for any N ∈ N, the set of conformal classes containing at

least N critical Yamabe metrics is dense in the C0 norm on the space of conformal classes
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with positive Yamabe constant. Suitably normalized families of critical points of Q are

compact in the C2 topology for n ≤ 24 [Sch91, LZ99, Dru04, KMS09], while compactness

may fail for n ≥ 25 [Bre08, BM09] or when the metrics are non-smooth [BM01]. Further

related areas of study include the Yamabe problem on compact manifolds with boundary

[Esc92b, Esc92a] and the Yamabe flow [Bre05, Bre07, CCR15]. For further literature

review on the Yamabe problem, we refer the reader to [DH05, BM11].

1.2. Description of the proof. The proof of Theorem 1.1 makes use of the so-called

 Lojasiewicz inequality, while the generic statement follows from the fact that for generic

conformal classes of metric on a given manifold critical points of the Yamabe functional are

non-degenerate. By non-degenerate, we mean that the second variation of the Yamabe

functional has trivial kernel. The connection between the  Lojasiewicz inequality and

quantitative stability inequalities was first introduced in [CES19] for the isoperimetric

problem.

We remark that, in contrast to [CES19], our main theorems do not require the analyt-

icity of the metric. This distinction arises from the difference between the area functional

considered in [CES19] and the Yamabe functional considered here, namely, that on any

closed Riemannian manifold (M, g), the Yamabe functional is an analytic map with re-

spect to u ∈ W 1,2(M) in the sense of [Zei86, Definition 8.8]; see [CCR15, Lemma 6]. This

analyticity allows us to apply the  Lojasiewicz inequality. While the “gradient- Lojasiewicz”

inequality has been used before to study Yamabe flows (c.f. [CCR15, Bre05]), our paper

is the first use of the “distance- Lojasiewicz” inequality in the Yamabe literature of which

we are aware.

The proof of Theorem 1.3 exploits ideas of Adam-Simon [AS88], where the notion of

Adam-Simon condition of order p was introduced, together with the examples constructed

in [CCR15].

1.3. Acknowledgments. M. Engelstein was partially supported by a NSF DMS 2000288.

R. Neumayer was partially supported by NSF DMS 1901427 and NSF RTG 1502632. L.

Spolaor was partially supported by NSF DMS 1951070. This project was begun while

M. Engelstein was visiting Chicago for the AY 2019-2020. He thanks the University of

Chicago and especially Carlos Kenig for their hospitality. We thank Otis Chodosh and

Dan Pollack for useful conversations about this work.

2. Properties of the Yamabe Energy and Lyapunov-Schmidt reduction

Throughout, we fix a background metric g ∈ [g]. This conformal representative g is

implicit in the definition of the Sobolev function spaces. However, as we saw in Sec-

tion 1, our end results in Corollary 1.2 will be independent of the choice of conformal

representative.
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Recall the Yamabe energy:

Q(u) =

´
M
cn|∇u|2 +Rgu

2 dvolg

‖u‖2
L2∗ (M)

.

A non-negative critical point u of Q is a non-negative smooth solution of the nonlinear

eigenvalue problem

(9) − cn∆u+Ru = λu2
∗−1,

where the value of λ is given by λ = Q(u)‖u‖2−2∗
L2∗ (M)

. We will denote by CSC([g]) ⊂
W 1,2(M) the set of all critical points in a given conformal class [g], i.e. solutions to (9)

for some λ ∈ R. As usual, we will omit the dependence on the conformal class when clear

from the context.

Although Q(cu) = Q(u) for any c > 0, it will often be easier to work with functions

that have L2∗ norm equal to 1. To that end we introduce the following Banach manifold:

(10) B =

{
u ∈ W 1,2(M ;R+) |

ˆ
M

u2
∗
dvolg = 1

}
.

Note that the collection of metrics represented by (10) is conformally invariant; this

can be seen in the equivalent condition that the metric gu = u4/(n−2)g has unit volume.

Lemma 2.1 (Banach manifold of metrics of volume 1). The set B ⊂ W 1,2(M) is a Banach

manifold, and for every v ∈ B the tangent space to B is given by

TvB =

{
u ∈ W 1,2(M) |

ˆ
M

v2
∗−1u dvolg = 0

}
.

We will denote by πTvB the L2-orthogonal projection onto TvB. In particular, for every

u ∈ B the second variation of Q on B is given by

(11)

1

2
∇2
BQ(u)[ϕ, η] =

ˆ
M

{cn∇πTuBϕ · ∇πTuBη +Rg (πTuBϕ) (πTuBη)} dvolg

−(2∗ − 1)Q(u)

ˆ
M

u2
∗−2 (πTuBϕ) (πTuBη) dvolg.

for all ϕ, η ∈ W 1,2(M). We will often omit the projection maps when we are doing

computations with ∇2
BQ.

In the special case that g is a metric of constant curvature with volume 1 and u = 1 we

have the formula (omitting the projection maps):

(12)
1

2
∇2
BQ(1)[ϕ, η] =

4

n− 2

ˆ
−(n− 1)(∆ϕ)η −Rgϕη dvolg.

Moreover, the following properties hold.
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(1) The function w 7→ ∇2
BQ(w)[η,−]
‖η‖C2,α

is a continuous function from C2,α ∩B → C0,α with

a modulus of continuity uniform over η ∈ C2,α.

(2) The function w 7→ ∇2
BQ(w)[η,ξ]

‖η‖W1,2‖ξ‖W1,2
is a continuous function from B → R with modulus

of continuity uniform over ξ, η ∈ W 1,2.

Proof. Since W 1,2(M) is separable, to check that B is a Banach submanifold of W 1,2(M),

it suffices to check that the function G : W 1,2(M)→ R defined by G(u) :=
´
M
u2
∗
dvolg−1

is a submersion in a neighborhood of every point v ∈ W 1,2(M). This is an easy exercise,

since we have

DG(v)[ϕ] :=

ˆ
M

v2
∗−1ϕdvolg ∀ϕ ∈ W 1,2(M) ,

so that choosing ϕ = v (or ϕ = 1 since v > 0 anyway) we get DG(v)[ϕ] = 1 6= 0. In

the sequel, given v ∈ B, we will denote by Lv the linear (continuous) operator on W 1,2

defined by Lv := DG(v) and by TvB the tangent space to B at v, which is a codimension

1 subspace of W 1,2 defined by

TvB =
{
u ∈ W 1,2(M) | Lvu = 0

}
.

Define the orthogonal projection πTvB : W 1,2(M)→ TvB ⊂ W 1,2(M) by

πTvBu = u−
(ˆ

v2
∗−1u

)
v .

Let us denote

E(u) :=

ˆ
M

cn|∇u|2 +Rgu
2 dvolg ,

and observe that if u ∈ B, then E(u) = Q(u). For u ∈ B and ϕ ∈ W 1,2(M), we can

compute the first variation of Q at points of B to be:

(13)

∇Q(u)[φ] :=
d

dt
(Q(u+ tφ))

∣∣∣
t=0

=

(
[vol(M, gu+tφ)]−2/2

∗
2

[ˆ
M

(cn(∇u · ∇φ+
t

2
|∇φ|2) +Rg(uφ+

t

2
φ2)) dvolg

]
−2 [vol(M, gu+tφ)]−(2+2∗)/2∗

[ˆ
M

(u+ tφ)2
∗−1 φ dvolg

]
E(u+ tφ)

) ∣∣∣
t=0

= 2

ˆ
M

(
−cn∆u+Rgu−Q(u)u2

∗−1)φ dvolg ,

so that in particular, when restricted to the tangent space of B, we have

∇BQ(u)[ϕ] = 2

ˆ
M

(−cn∆u+Rgu) πTuBϕdvolg .
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Differentiating (13) we obtain

(14)

∇2Q(u)[φ, φ] :=
d2

dt2
(Q(u+ tφ))

∣∣∣
t=0

= 2

ˆ
M

(
cn |∇φ|2 +Rg φ

2
)
dvolg − 2 (2∗ − 1)Q(u)

ˆ
M

u2
∗−2 φ2 dvolg

+

(ˆ
M

u2
∗−1 φ dvolg

)
· G(u, φ) ,

for some smooth function G. Restricting to TuB so that
´
M
u2
∗−1 φ dvolg = 0, we exactly

obtain (11). After observing that Q(1) = Rg (which is constant) when g is a metric of

constant curvature and volume equal to 1, (12) follows from some arithmetic.

To conclude the proof, let Luϕ = −cn∆ϕ + Rgϕ − (2∗ − 1)Q(u)u2
∗−2ϕ. Then we can

see that

‖Luϕ− Lvϕ‖X ≤ C
(
‖u2∗−2ϕ‖X |Q(u)−Q(v)|+ ‖ϕ|u2∗−2 − v2∗−2|‖X

)
,

where X is either the C0,α or H−1 norm. If X = C0,α, then we recall the continuity of

Q(−) in C2,α and note that x 7→ x2
∗−2 is continuous to get that

‖Luϕ− Lvϕ‖C0,α ≤ ω(‖u− v‖C2,α)‖ϕ‖C2,α ,

for some modulus of continuity ω.

Similarly if X = H−1 we observe that Q(−) is continuous with respect to u ∈ W 1,2.

Furthermore ‖u2∗−2ϕ‖H−1 ≤ ‖u2∗−2‖Ln/2‖ϕ‖L2∗ ≤ C(‖u‖L2∗ )‖ϕ‖W 1,2 and similarly

‖|u2∗−2 − v2∗−2|ϕ‖H−1 ≤ ‖u2∗−2 − v2∗−2‖Ln/2‖ϕ‖L2∗ ≤ ω(‖u− v‖W 1,2)‖ϕ‖W 1,2 ,

for some modulus of continuity ω.

Thus to finish the proof of the result, it suffices to show that the map w 7→ πTwB is a

continuous function from C2,α ∩ B → B(C2,α, C2,α) (or that it is a continuous function

from B → B(W 1,2,W 1,2)).

The triangle inequality shows that∣∣∣∣ˆ
M

u2
∗−1η dvolg −

ˆ
M

w2∗−1η dvolg

∣∣∣∣ ≤ C‖η‖C2,α‖w − u‖C0,α(M).

Thus the projection has the desired continuity in the Hölder setting.

Similarly, Hölder’s inequality and the Sobolev embedding W 1,2 ↪→ L2∗ imply that

u 7→ Lu is a continuous function from W 1,2 → (W 1,2)∗, which implies that the projection

has the desired continuity in the Sobolev setting. �

It will be useful to have two additional definitions. First, given a function v ∈ B, we

let B(v, δ) denote the W 1,2(M) ball of radius δ centered at v inside of B, i.e.

(15) B(v, δ) = {u ∈ B | ‖u− v‖W 1,2(M) ≤ δ}.
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Second, we letM1 :=M∩B and CSC1 := CSC ∩B, that is respectively the minimizers

and critical points to the Yamabe functional with 2∗-norm equal to one.

2.1. Lyapunov-Schmidt Reduction. The following technical result will be key to prov-

ing Proposition 3.1. Briefly, Lemma 2.2, called a Lyapunov-Schmidt reduction, see e.g.

[Sim83], splits any perturbation of a critical point into a portion that quantitatively

changes the energy to second order and a portion that lies inside of a finite dimensional

subspace (which can be dealt with using the  Lojasiewicz inequalities [ Loj65]).

Given v ∈ M1, we let K = ker∇2
BQ(v)[−,−] ⊂ TvB, thinking of the latter as a an

operator from TvB ⊂ W 1,2(M)→ H−1(M). Since ∇2
B is generated by an elliptic operator

on a compact manifold we know dimK := l < ∞. We let K⊥ denote the orthogonal

complement of K in W 1,2(M) with respect to the L2 inner product.

Lemma 2.2 (Lyapunov-Schmidt Reduction). Let (M, g) be a closed Riemannian manifold

with g ∈ C3 and fix v ∈M1. There is a open neighborhood U ⊂ K of 0 in K and a map

F : U → K⊥

with F (0) = 0 and ∇F (0) = 0 satisfying the following properties.

(1) Let q : U → R be the function defined by q(ϕ) = Q(v + ϕ+ F (ϕ)). Then we have

(16) L := {v + ϕ+ F (ϕ) | ϕ ∈ U} ⊂ B

and

∇BQ(v + ϕ+ F (ϕ)) = πK∇BQ(v + ϕ+ F (ϕ))

= ∇q(ϕ).
(17)

Furthermore, ϕ 7→ q(ϕ) is real analytic.

(2) There exists δ > 0 depending on v such that for any u ∈ B(v, δ), we have πK(u−
v) ∈ U . Furthermore, if u ∈ CSC1 ∩ B(v, δ), then

(18) u = v + πK(u− v) + F (πK(u− v)).

(3) There exists C such that for all ϕ ∈ U and η ∈ K, we have

‖∇F (ϕ)[η]‖C2,α ≤ C‖η‖C0,α .(19)

Lyapunov-Schmidt reductions have been already performed for the Yamabe functional

in a variety of contexts (see, e.g. [CCR15, Proposition 7]). However, since our audience

may be less familiar with the construction (which is a consequence of the inverse function

theorem), we include the proof in Appendix A.

Associated to the Lyapunov-Schmidt reduction is the notion of integrability (see for

instance [AS88, CCR15]), which roughly states that all the elements in the kernel corre-

spond to one-parameter families of critical points.
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Definition 2.3 (Integrability). A function v ∈ CSC1 is said to be integrable if for all

ϕ ∈ ker∇2
BQ(v) there exists a one-parameter family of functions (vt)t∈(−δ,δ), with v0 = v,

∂
∂t

∣∣
t=0
vt = ϕ and vt ∈ CSC1 for all t sufficiently small.

Lemma 2.4 (Q in the integrable setting). Let (M, g) be a closed Riemannian manifold

and let v ∈ M. Then v is integrable if and only if q is constant in a neighborhood of

0 ∈ K. In particular, if v is an integrable minimizer, then

(20) CSC1 ∩ B(v, δ) = L ,

where L is as in Lemma 2.2, Condition 1.

Proof. Suppose that v is integrable. We claim that q is constant in a neighborhood of

0 ∈ K. We abuse notation and let ϕ refer to a point in K ∼= R`. Suppose to the contrary

that q is non-constant. Considering a Taylor expansion of this analytic function, we

express q as

q(ϕ) = q(0) + qk0(ϕ) + qR(ϕ),

where qk0 is a degree k0 homogeneous polynomial, the first non-vanishing term in the

Taylor expansion, and qR is the sum of homogenous polynomials of degree k > k0. Since

qk0 is non-constant, we may find some ϕ ∈ K such that

(21) ∇qk0(ϕ) 6= 0.

For this choice of ϕ, we let us = v+ψs ∈ B be the one parameter family of critical points

generated by ϕ, whose existence is guaranteed by the integrability of v, satisfying ψs = 0,
d
ds
|s=0ψs = ϕ, and

(22) ∇BQ(v + ψs) = 0.

By (18), all critical points of Q in a W 1,2 neighborhood of v are contained in L, and so

for each s we may express ψs as

ψs = ϕs + F (ϕs)

where ϕs ∈ K and ϕs
s
→ ϕ as s → 0. (This latter fact follows because ψs/s → ϕ as

s→ 0 and ∇F (0) = 0 by Lemma 2.2). Note that by (17) of Lemma 2.2 and (22) we have

∇q(ϕs) = 0. So, we have

0 = ∇BQ(v + ψs) = ∇q(ϕs)
= ∇qk0(ϕs) +∇qR(ϕs)

= |ϕs|k0−1∇qk0
(
ϕs
|ϕs|

)
+ o(|ϕs|k0−1).

Dividing through by |ϕs|k0−1 and letting s tend to zero, we reach a contradiction to (21)

and conclude that q is constant.

Now we establish the opposite implication. Suppose that q ≡ q(0) in a neighborhood

of 0, and thus ∇q ≡ 0 in a neighborhood of 0. Choose any ϕ ∈ K. We claim that ϕ
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generates a one parameter family of critical points, which will show that v is integrable.

Indeed, set

ψs = sϕ+ F (sϕ).

We can see directly from Lemma 2.2 that

∇BQ(v + ψs) = ∇q(sϕ) = 0,

and so ψs is a family of critical points and v is integrable.

Finally, we show (20). One containment in (20) is precisely (18). The opposite con-

tainment holds in the case that v is integrable, as we have just shown that q is constant

on all of L , and thus all these points are critical points. �

3. Local Quantitative Stability of Minimizers

In this section, we establish the local version of Theorem 1.1, that is Proposition 3.1

below. For this we need a localized measure of how far u is from being a minimizer that

is close to some given minimizer v.

Given δ > 0 and v ∈M1, we let

dδ(u,M1) =
inf
{
‖u− ṽ‖W 1,2(M) | ṽ ∈M1 ∩ B(v, δ)

}
‖u‖L2∗ (M)

.

Proposition 3.1 (Local Stability Estimate). Let (M, g) be a closed Riemannian manifold,

and let v ∈M1. Then there exist constants c, γ and δ depending on v such that

(23) Q(u)− Y (M) ≥ c dδ(u,M1)
2+γ for all u ∈ B(v, δ).

If v is integrable or non-degenerate, then we may take γ = 0.

Proof of Proposition 3.1. Given v ∈M1, let F be the Lyapunov-Schmidt reduction adapted

to v as in Lemma 2.2, and let K be the kernel of∇2
BQ(v) (see the discussion before Lemma

2.2). By Lemma 2.2(2), for any u ∈ B(v, δ), we may define the Lyanpunov-Schmidt “pro-

jection” uL of u by

(24) uL = v + πK(u− v) + F (πK(u− v)).

Note that, thanks to Lemma 2.2 (2) and (3), for any ε > 0, we may take δ > 0 small

enough in Lemma 2.2 such that

‖uL − v‖W 1,2(M) ≤ ε,(25)

‖uL − u‖W 1,2(M) ≤ ε.(26)

We can write

(27) Q(u)− Y = Q(u)−Q(uL)︸ ︷︷ ︸
I

+Q(uL)− Y︸ ︷︷ ︸
II

and estimate these two terms separately.
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Term I: It will be useful for us to write u = uL + u⊥. Using the notation introduction

before Lemma 2.2 we note that u⊥ ∈ K⊥. To estimate I, we use Taylor’s theorem and

see that

(28) Q(u)−Q(uL) = ∇BQ(uL)[u⊥] +
1

2
∇2
BQ(ζ)[u⊥, u⊥],

for some ζ on a geodesic in B between u and uL. Observe that ∇BQ(uL)[u⊥] = 0 by

Lemma 2.2 and the fact that u⊥ ∈ K⊥. Furthermore, using the continuity of ∇2
BQ(−)

established in Lemma 2.1 and (26), we can write

(29) Q(u)−Q(uL) =
1

2
∇2
BQ(v)[u⊥, u⊥] + o(1)‖u⊥‖2W 1,2 ,

where o(1) represents a term that goes to zero as ‖u − v‖W 1,2 → 0. Let λ1 > 0 be

the smallest non-zero eigenvalue of ∇2
BQ(v). It then follows that, picking δ > 0 in the

statement small enough,

(30) Q(u)−Q(uL) ≥ 1

2
λ1‖u⊥‖2W 1,2 + o(1)‖u⊥‖2W 1,2 ≥

1

4
λ1‖u⊥‖2W 1,2 .

The Term II: It will be useful to separate out three cases for estimating term II.

v is non-degenerate. This is the easiest case, since then uL = v and then (30) concludes

the proof.

v is integrable. By Lemma 2.4 we have that Q(uL) = q(πK(u− v)) = q(0) = Q(v). So

the proposition follows from (30).

v is non-integrable. Let ϕ = πK(u − v) and recall that Q(uL) = q(ϕ). We know that

ϕ 7→ q(ϕ) is an analytic function R` → R where ` = dimK. Thus we can apply the

 Lojasiewicz inequality [ Loj65]:

Lemma 3.2 ( Lojasiewicz “distance” inequality). Let q : R` → R be a real analytic

function and assume that ∇q(0) = 0. Then there exist δ̃ > 0, c > 0 and γ > 0 (all of

which depend on q and on the critical point 0) such that

(31) |q(ϕ)− q(0)| ≥ c inf{|ϕ− ϕ̄| : ϕ̄ ∈ B(0, δ̃),∇q(ϕ̄) = 0}2+γ.

Appealing to the definition of q in Lemma 2.2 and the  Lojasiewicz inequality in Lemma 3.2,

we see that

Q(uL)− Y = q(ϕ)− q(0)

≥ c inf{|ϕ− ϕ̂| : ϕ̂ ∈ K ∩B(0, δ),∇q(ϕ) = 0}2+γ.
(32)

Notice further that

inf{|ϕ− ϕ̄| : ϕ̄ ∈ K ∩B(0, δ),∇q(ϕ) = 0}
≥ c inf{‖uL − v̂‖W 1,2(M) : v̂ ∈M1 ∩ B(v, δ)}
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because for any v̂ ∈M∩B(v, δ), we may write v̂ = v+ ϕ̂+F (ϕ̂) for some ϕ̂ ∈ K∩B(0, δ)

with ∇q(ϕ) = 0, and

‖uL − v̂‖W 1,2(M) = ‖πK(u− v) + F (πK(u− v))− ϕ̂− F (ϕ̂)‖W 1,2(M)

≤ ‖πK(u− v)− ϕ̂‖W 1,2(M) + ‖F (πK(u− v))− F (ϕ̂)‖W 1,2(M)

≤ ‖πK(u− v)− ϕ̂‖W 1,2(M) + C‖πK(u− v)− ϕ̂‖C0,α(M)

≤ C‖πK(u− v)− ϕ̂‖W 1,2(M),

where in the penultimate inequality we have used Lemma 2.2(3). Together with (32), this

implies that

(33) Q(uL)− Y ≥ c inf{‖uL − v̂‖W 1,2(M) : v̂ ∈M1 ∩ B(v, δ)}2+γ.

Combining (33) with (30) yields the result in this third and final setting. �

4. Proofs of Theorems 1.1 and 1.3 and Corollary 1.2

In this section we conclude the proofs of the main results, that is, Theorems 1.1 and 1.3

and Corollary 1.2. Theorem 1.1 will be a consequence of the local quantitative stability

in Proposition 3.1 and a compactness argument, while Theorem 1.3 will follow from an

example of [CCR15].

4.1. Proof of Theorem 1.1. In the proof of Theorem 1.1, we will make use of the

following compactness result for minimizing sequences, which is proven, for instance, in

[Lio84, Theorem 4.1].

Lemma 4.1. Let (M, g) be a smooth Riemannian manifold of dimension n ≥ 3 and let

(ui) ⊂ B be a sequence such that Q(ui) → Y . Then, up to a subsequence, ui converges

strongly in W 1,2(M) to some v ∈M1.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Since both sides of (5) are zero-homogeneous in u and because

inf{‖u− v‖W 1,2(M) : v ∈M1} ≥ d(u,M), we may work in B without loss of generality.

Given v ∈M1, let δ(v), γ(v), and c(v) be the constants given in Proposition 3.1. Since

the set M1 = {v ∈M : ‖v‖L2∗ (M) = 1} is compact in W 1,2 by Lemma 4.1, we may cover

M1 by balls B(v, δ(v)/2) and take a finite subcover {B(vi, δ(vi)/2)}i∈I. Then we define

δ0 = min
i∈I

δ(vi)/2 > 0,

γ0 = max
i∈I

γ(vi) <∞,

c0 = min
i∈I

c(vi) > 0.
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Let u ∈ B be such that d(u,M1) < δ0/4. There exists a i ∈ I such that ‖u −
vi‖W 1,2 < δi/2. If ṽ is the closest element of M1 to u the triangle inequality implies that

‖ṽ − vi‖W 1,2 < δi. Thus we may apply Proposition 3.1 to see that

Q(u)− Y (M, [g]) ≥ c(vi)dδi(u,M1)
2+γi ≥ c0d(u,M1)

2+γ0 ,

which is the desired result.

We are left with the case that d(u,M1) > δ0/4. Note since ‖u‖L2∗ = 1 we have

d(u,M) > δ0/16 by the triangle inequality. Thanks to Lemma 4.1 and the triangle

inequality, there exists a ε > 0 such that

Q(u)− Y (M, [g]) < ε⇒ d(u,M) < δ0/16.

Thus, when d(u,M1) > δ0/4 we have that

Q(u)− Y (M, [g]) > ε =
ε

δ2+γ00

δ2+γ00 ≥ ε

δ2+γ00

d(u,M)2+γ0 .

Letting c = min
{
c0,

ε

δ
2+γ0
0

}
we have proven the stability estimate (5) for all u ∈ B.

Finally, we show the generic statement. By work of Schoen [Sch91] (see also Anderson

[And05]), generically (that is for an open and dense subset of the set of equivalence

classes of C∞ metrics on a given compact manifold M in the C2 topology), there are

finitely many critical points of Q and each one is non-degenerate. Therefore the proof

follows straightforwardly from the local version of Proposition 3.1 in the non-degenerate

case, that is with γ = 0. �

4.2. Proof of Corollary 1.2. Corollary 1.2 is a direct consequence of Theorem 1.1, up

to showing that the distances defined there are conformally invariant.

Proof of Corollary 1.2. Let g = φ4/(n−2)ĝ. Note that Qĝ(u) = Q(φu) and Mg = {v ∈
W 1,2(M) : Qg(v) = Y } = {v ∈ W 1,2(M) : φv ∈ Mĝ}. So, consider the metric g̃ given by

g̃ = u4/(n−2)g = (uφ)4/(n−2)ĝ. We directly compute that

inf
v∈Mg

ˆ
M

|u− v|2∗dvolg = inf
v∈Mg

ˆ
M

|φ(u− v)|2∗dvolĝ = inf
w∈Mĝ

ˆ
M

|φu− w|2∗dvolĝ,

which proves that ‖·‖ is conformally invariant. So, applying Theorem 1.1 and the Sobolev

inequality on (M, g), with g̃ = u
4

n−2 g, we have

Rg̃ − Y = Qg(u)− Y ≥ c

(
infv∈M ‖u− v‖W 1,2(M)

‖u‖L2∗ (M)

)2+γ

≥ c

(
infv∈M ‖u− v‖L2∗ (M)

‖u‖L2∗ (M)

)2+γ

= c

(
infg∈M ‖g̃ − g‖

volg̃(M)1/2∗

)2+γ

.
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The establishes (6). Next, suppose that Y > 0 and g ∈M1, and recall that

‖gu − gv‖∗ =

(ˆ
M

cn|∇(u− v)|2 +Rg(u− v)2 dvolg

)1/2

.

Again as a consequence of Theorem 1.1 we obtain

Rg − Y ≥ c

(
inf g̃∈M ‖g − g̃‖∗

volg(M)1/2∗

)2+γ

.

where we used that g ∈ M, Y > 0 and, consequently, that Rg > 0 is constant. To

conclude, it suffices to prove that ‖gu− gv‖∗ does not depend on the choice of g. Suppose

that g, ĝ ∈ M1 with g = φ4/(n−2)ĝ. Then if gu = u4/(n−2)g = (φu)4/(n−2)ĝ = ĝφu and

gv = v4/(n−2)g = (φv)4/(n−2)ĝ = ĝφv, we have

‖gu − gv‖∗ =

ˆ
M

cn|∇g(u− v)|2 +Rg(u− v)2 dvolg

=

ˆ
M

(u− v) (−cn∆g(u− v) +Rg(u− v)) dvolg.

Recall that −cn∆g +Rg ≡ Lg is the conformal Laplacian and we have

Lgψ =φ1−2∗Lĝ(φψ)

Lgψ dvolg =φLĝ(φψ) dvolĝ.

Plugging this into the above we get that

‖gu − gv‖∗ =

ˆ
M

(u− v)Lg(u− v) dvolg

=

ˆ
M

(φu− φv)Lĝ(φu− φv) dvolĝ = ‖ĝφu − ĝφv‖∗.

This concludes the proof of (7). �

4.3. Proof of Theorem 1.3. Suppose that u0 ∈ M is nonintegrable. Let q : U → R
where U ⊂ ker∇2

BQ(v) ∼= R` be the function defined in Lemma 2.2; since q is analytic we

can expand it in a power series

q(x) = q(0) +
∑
j≥p

qj(x)

where each qj is a degree j homogeneous polynomial and p is chosen so that qp(0) 6= 0.

As in [CCR15], we will call p the order of integrability of u0. Next we recall the notion of

Adams-Simon positivity condition:

Definition 4.2 (ASp condition). We say that u0 satisfies the Adams–Simon positivity

condition of order p, ASp for short, if p is the order of integrability of u0 and qp|S`−1 attains

a positive maximum for some v ∈ S`−1.

The following Proposition is immediate from the definitions.
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Proposition 4.3 (ASp implies γ > 0). Fix a closed Riemannainan manifold of dimension

n ≥ 3 and fix p ≥ 3. Let u0 be a non integrable critical point of the Yamabe energy and

suppose that it satisfies the Adams–Simon positivity condition of order p. Then there

exists a sequence of ui ∈ W 1,2(M) with ui → u0 in W 1,2 but

(34) lim
i→∞

Q(ui)− Y (M, g)

‖ui − u0‖p−αW 1,2

= 0 , ∀α > 0.

Proof. Let v ∈ S`−1 be the maximum of qp as in Definition 4.2. For t ∈ [0, 1] let ût := tv,

and consider the family of functions (ut)t ⊂ W 1,2(M) defined by

ut := u0 + ût + F (ût) t ∈ (0, 1) ,

where F is the function defined in Lemma 2.2. By definition of ut and the properties of

F , we have

‖ut − u0‖W 1,2 ∼ t ,

and moreover, by definition of q, we have

Q(ut)−Q(u0) = q(ût)− q(0) =
∑
j≥p

qj(ût) .

Since u0 satisfies ASp, we conclude

|Q(ut)−Q(u0)| ≤ Ctpqp(v)

for t sufficiently small, which implies the desired conclusion. �

We are now ready to conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. By Proposition 4.3, it is enough to prove the existence of compact

manifolds (M, g), with g a minimizer of the Yamabe energy, satisfying the ASp condition

for p ≥ 3. This has been done in [CCR15] (see also [Sch91]), and we recall them here for

completeness.

(i) Fix integers n,m > 1 and a closed m-dimensional Riemannian manifold (Mm, gM)

with constant scalar curvature RgM = 4(n + 1)(m + n − 1). Let (Pn, gFS) be

the complex projective space equipped with the Fubini-Study metric, where the

normalization of gFS is fixed so that S2n+1(1) → (Pn, gFS) is a Riemannian sub-

mersion. Then the product metric Mm × Pn, gM
⊕

gFS) is a degenerate critical

point satisfying ASp, p = 3.

(ii) The product metric on S1(1/
√
n− 2) × Sn−1(1) is a nonintegrable minimizer of

the Yamabe energy satisfying ASp for some p ≥ 4 (cf. [CCR15, Proposition 4]).

In particular (ii) provides the desired example, being a minimizer. �
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Appendix

Appendix A. Proof of the Lyaponuv-Schmidt Reduction (Lemma 2.2)

Proof of Lemma 2.2. Fix v ∈ M1 and let K,K⊥ be as in the discussion preceding the

statement of Lemma 2.2. We proceed in several steps.

Step 1: Defining the map F . We obtain the map F using the inverse function theorem

in the following way. Let us consider the map N : C2,α ∩ B → C0,α(M) ∩ TvB defined by

N (w) = πK(w − v) + πK⊥∇BQ(w).

This map satisfies N (v) = 0 and, if wt is smooth curve in C2,α ∩ B with w0 = v and

∂t|t=0wt = ζ, then

∇BN (v)[ζ] =
d

dt
|t=0N (wt) = πKζ + πK⊥∇2

BQ(v)[ζ,−]

= πKζ +∇2
BQ(v)[ζ,−].

(35)

Note that this is well defined for any ζ ∈ C2,α(M)∩TvB The last identity follows because

∇2
BQ(v)[ζ] ∈ K⊥ for any ζ ∈ W 1,2(M) ∩ TvB; indeed, for any ϕ ∈ K we have 0 =

〈∇2
BQ(v)[ϕ], ζ〉L2 = 〈ϕ,∇2

BQ(v)[ζ]〉L2 .

In particular, (35) shows that the kernel of ∇BN (v) is trivial, because for any ζ 6= 0,

either πKζ 6= 0 or ζ ∈ K⊥, and thus ∇2
BQ(v)[ζ,−] is non-vanishing by definition.

Furthermore, because the operator ζ 7→ Lζ := ∇2
BQ(v)[ζ,−] is uniformly elliptic,

Schauder estimates ensure that ∇BN (v) is an isomorphism from C2,α(M) ∩ TvB to

C0,α(M)∩TvB. Thus, we may apply the inverse function theorem to obtain an inverseN−1
defined on an open neighborhood Û ⊂ C0,α(M)∩ TvB containing 0. Set U = K ∩ Û ⊂ K

and define the map F : U → K⊥ by

F (ϕ) = πK⊥(N−1(ϕ)− v).

Step 2: Basic observations about the map F . Let us make some initial observations

that will be useful for proving the claimed properties of F . For any ϕ ∈ U , from the

definition of N we have

ϕ = N (N−1(ϕ))

= πK(N−1(ϕ)− v) + πK⊥∇BQ(N−1(ϕ)).
(36)

(Recall that the image of N−1 is contained in C2,α(M) ∩ B so (36) makes sense).

Taking πK of both sides of (36), we see that ϕ = πK(N−1(ϕ)− v). So, along with the

definition of F , this implies that

(37) N−1(ϕ) = ϕ+ F (ϕ) + v for all ϕ ∈ U.
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Differentiating (37), we find that for any ϕ ∈ U and η ∈ K, we have

πK⊥∇N−1(ϕ)[η] = ∇F (ϕ)[η],

πK∇N−1(ϕ)[η] = η.
(38)

Notice that in (38) we can write ∇ instead of ∇B, since ϕ ∈ C2,α(M) ∩ TvB. We will do

this several time in what follows.

Step 3: Verifying properties of F . We now check that this map F satisfies the desired

properties in the statement of Lemma 2.2. It is clear that F (0) = 0 since N (0) = 0. To

see that ∇F (0) = 0, we appeal to (38) with ϕ = 0 and see that it suffices to show that

πK⊥∇N−1(0)[η] = 0 for any η ∈ K. And indeed, by (35), we see that ∇BN (v) maps K

to K and that ∇BN (v)|K = (∇N−1(0))−1|K = Id. Thus ∇F (0) = 0.

Next, we prove property (1). First note that N is analytic in w ∈ B as long as

w 7→ Q(w) is analytic in w ∈ B First note that N is analytic in w ∈ B in the sense of

[Zei86, Definition 8.8] because πK , πK⊥ are linear and w 7→ Q(w) is analytic in w ∈ B; see

[CCR15, Lemma 6]. It then follows by the inverse function theorem that F , and therefore

q, are analytic functions over K ∼= R` (see [Zei86, Theorem 4.H]).

To see (16), recall (37), that N−1(ϕ) = v + ϕ + F (ϕ). But we know that the domain

of N is B ∩ C2,α(M) so it must be that the range of N−1 is contained in B.

The first equality in (17) follows directly from taking πK⊥ of both sides of (36) and

recalling (37). To see the second equality in (17), by the chain rule for any ϕ ∈ U and

η ∈ K we have

d

dt
q(ϕ+ tη)|t=0 = 〈∇q(ϕ), η〉 = ∇BQ(v + ϕ+ F (ϕ))[η +∇F (ϕ)[η]]

= ∇BQ (v + ϕ+ F (ϕ)) [η],

with the latter term vanishing in the second equality because ∇F (ϕ)[η] ∈ K⊥ by (38).

To see property (2), note that U contains a C0,α ball of radius ε in K for ε sufficiently

small. Since all norms are equivalent in the finite dimensional space K, we see that U

contains an L2 ball of radius ε′ in K for some ε′ depending on ε. Now, since the L2 norm

is nonincreasing under the L2 projection πK , we have

‖πK(u− v)‖L2(M) ≤ ‖u− v‖L2(M) ≤ ‖u− v‖W 1,2(M).

So, provided δ ≤ ε′, we have that the first claim of property (2) holds. Next, basic elliptic

regularity estimates show that if u ∈ CSC1 ∩B(v, δ), we may take ‖u− v‖C2,α(M) as small

as desired by choosing δ to be sufficiently small; in particular, for δ sufficiently small, u−v
is contained in the neighborhood in which the map N is invertible. So, letting w = u− v.
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we have

u = N−1(Nu) = N−1(πKw + πK⊥∇BQ(u))

= N−1(πKw)

= v + πKw + F (πKw),

where we have used (37) in the final equality. This proves (18).

Now we show property (3). To verify the estimate (19), we first apply Schauder esti-

mates to find

(39) ‖∇F (ϕ)[η]‖C2,α(M) ≤ C
∥∥∇2
BQ(v) [∇F (ϕ)[η]]

∥∥
C0,α(M)

.

From the second identity in (38), we find that

∇2
BQ(v) [∇F (ϕ)[η]] = ∇2

BQ(v)
[
πK⊥∇N−1(ϕ)[η]

]
= πK⊥∇2

BQ(v)
[
∇N−1(ϕ)[η]

]
.

(40)

The second equality follows because ∇2
BQ(v) commutes with πK⊥ . The reason for this is,

as we’ve seen above, that ∇2
BQ(v)[w] ∈ K⊥ for any w ∈ W 1,2(M).

So, from (39) and (40), we find that

(41) ‖∇F (ϕ)[η]‖C2,α(M) ≤
∥∥πK⊥∇2Q(v)

[
∇N−1(ϕ)[η]

]∥∥
C0,α(M)

Next, we claim that

(42)
∥∥πK⊥∇2Q(v)

[
∇N−1(ϕ)[η]

]∥∥
C0,α(M)

≤ ε‖∇N−1(ϕ)[η]‖C2,α ,

To this end, we first note that differentiating (36) in the direction η ∈ K, we have

η = πK∇N−1(ϕ)[η] + πK⊥∇2Q(N−1(ϕ))[∇N−1(ϕ)[η]].

So, by taking πK⊥ of both sides, we determine that

(43) πK⊥∇2Q(N−1(ϕ))[∇N−1(ϕ)[η]] = 0.

So, we can write∥∥πK⊥∇2Q(v)[∇N−1(ϕ)[η]]
∥∥
C0,α

=
∥∥πK⊥ ((∇2Q(v)−∇2Q(N−1(ϕ))

)
[∇N−1(ϕ)[η]]

) ∥∥
C0,α

≤ ε‖∇N−1(ϕ)[η]‖C2,α .

The final inequality follows because Lemma 2.1 implies that, for a modulus of continuity,

ω (which may change from line to line):

‖
(
∇2Q(v)−∇2Q(N−1(ϕ))

)
‖C2,α→C0,α ≤ ω

(
‖v −N−1ϕ‖C2,α

)
≤ ω(‖ϕ‖C0,α) ≤ ω̃(‖ϕ‖W 1,2).

(44)

The penultimate inequality follows by the continuity of N−1 from C0,α → C2,α. The last

inequality follows provided that ‖ϕ‖W 1,2 is sufficiently small (recall that ϕ ∈ K and all

the norms are equivalent on K). This establishes (42).
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Thus far, from (41) and (42), we have shown that

‖∇F (ϕ)[η]‖C2,α(M) ≤ ε‖∇N−1(ϕ)[η]‖C2,α

Now, writing ∇N−1(ϕ)[η] = η +∇F (ϕ)[η] by (37), we see that

‖∇F (ϕ)[η]‖C2,α(M) ≤ ε (‖η‖C2,α + ‖∇F (ϕ)[η]‖C2,α) .

Absorbing the second term into the left-hand side, and recalling that all norms are equiv-

alent on K, we establish (19). This concludes the proof of the lemma. �
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