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Abstract

We consider the “thin one-phase” free boundary problem, associated to min-
imizing a weighted Dirichlet energy of the function in Rn+1

+ plus the area of
the positivity set of that function in Rn. We establish full regularity of the free
boundary for dimensions n ≤ 2, prove almost everywhere regularity of the free
boundary in arbitrary dimension and provide content and structure estimates on
the singular set of the free boundary when it exists. All of these results hold for
the full range of the relevant weight.

While our results are typical for the calculus of variations, our approach does
not follow the standard one first introduced in [AC81]. Instead, the nonlocal
nature of the distributional measure associated to a minimizer necessitates argu-
ments which are less reliant on the underlying PDE. © 2000 Wiley Periodicals,
Inc.

1 Introduction

This article is devoted to the study of the regularity properties of a weighted ver-
sion of the thin one-phase problem. More precisely we investigate even, nonnega-
tive minimizers of the following functionals: denote x ∈Rn+1 by x = (x′,y) ∈Rn×R,
and for β ∈ (−1,1) we define

(1.1) J (v,Ω) ∶=
ˆ

Ω

∣y∣β ∣∇v∣2 dx+m({v > 0}∩Rn∩Ω),

where m stands for the n-dimensional Lebesgue measure. Here, and throughout
the paper, the integration is done with respect to the (n+1)-dimensional Lebesgue
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measure unless stated otherwise. This functional is finite for open sets, Ω, and
functions in the weighted Hilbert space,

H1(β ,Ω) ∶= {v ∈ L2(Ω; ∣y∣β ) ∶ ∇v ∈ L2(Ω; ∣y∣β )},

equipped with the usual weighted norm.
Our main concern is to investigate fine regularity properties of the free boundary

of minimizers v of (1.1), that is the set,

F(v) ∶= ∂Rn {v(x,0) > 0}∩Ω.

Since the free boundary lies on a codimension 1 subspace of the ambient space
Rn+1, such a problem is called a thin one-phase free boundary problem. This type
of free boundary problem has been investigated for the first time by Caffarelli,
Roquejoffre and the last author in [CRS10b] in relation with the theory of semi-
permeable membranes (see, e.g., [DL76]). As we will describe later this is an
analogue of the classical one-phase problem (also called the Bernoulli problem)
but for the fractional Laplacian.

The Bernoulli problem was first treated in a rigorous mathematical way by Alt
and Caffarelli in the seminal paper [AC81]: in the Bernoulli problem we consider
minimizers of (1.1) where β = 0 and the second term is replaced by Ln+1({v >
0}∩Ω) (where Ln+1 stands for the Lebesgue measure in Rn+1). In particular, for
the Bernoulli problem, the free boundary fully sits in the ambient space, Rn+1. In
[AC81], the authors provided a general strategy to attack this type of problem. Out
of necessity we needed to modify this blueprint in several substantial ways (see
below for a more detailed comparison). For more information on the one-phase
problem (and some of its variants) we refer to the book of Caffarelli and Salsa (and
references therein) [CS05], and to the more recent survey of De Silva, Ferrari and
Salsa [DSFS19].

As noticed in [CRS10b], problem (1.1) is related in a tight way to the standard
one-phase free boundary problem but with the Dirichlet energy replaced by the
Gagliardo semi-norm [u]Ḣα , for α = 1−β

2 ∈ (0,1). This connection suggests that the
thin one-phase problem is actually intrinsically a nonlocal problem, though the
energy in (1.1) is clearly local.

Connection with the fractional one-phase problem
As previously mentioned, the functional J introduced by Caffarelli, Roquejof-

fre and the last author in [CRS10b] is a local version of the following nonlocal free
boundary problem: given a function f ∈ L1

loc(Rn) with suitable decay at infinity, we
can define its fractional Laplacian at x ∈Rn by

(−∆)α f (x) = cn,α p.v.
ˆ
Rn

f (x)− f (ξ)
∣x−ξ ∣n+2α

dξ .
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At the formal level, we are interested in solutions of the free boundary problem

(1.2)
⎧⎪⎪⎨⎪⎪⎩

(−∆)α f = 0 in Ω∩{ f > 0},
∂

α
ν f = A on Ω∩F( f ),

where ∂
α
ν f (x) ∶= limΩ∩{ f>0}∋ξ→x

f (ξ)− f (x)
((ξ−x)⋅ν(x))α and where f satisfies a given “Dirich-

let boundary condition” on the complement of Ω.
As in the case of the classical Laplacian (see [AC81]), we are interested in

obtaining equation (1.2) as the Euler-Lagrange equation of a certain functional.
Given a locally integrable function f , consider its fractional Sobolev energy

[ f ]Ḣα(Rn) ∶=
¨

R2n

∣ f (x)− f (ξ)∣2
∣x−ξ ∣n+2α

dξ dx.

Since we want to study competitors which vary only in a certain domain Ω, it is
natural to consider only the integration region which may suffer variations when
changing candidates. Thus, we define the energy

(1.3) J( f ,Ω) ∶= cn,α

¨
R2n∖(Ωc)2

∣ f (x)− f (ξ)∣2
∣x−ξ ∣n+2α

dξ dx+m({ f > 0}∩Ω).

We say that f ∈L1
loc is a minimizer of J in Ω if J( f ,Ω) is finite and J( f ,Ω)≤ J(g,Ω)

for every g satisfying that f −g ∈ Ḣα(Rn) and such that f (x) = g(x) for almost every
x ∈ Ω

c. We say that f is a global minimizer if it is a minimizer for every open set
Ω ⊂ Rn. Note that both terms in (1.3) are in competition, since a minimizer of
the fractional Sobolev energy in Ω is α-harmonic and, thus, if it is non-negative
outside of Ω it is strictly positive inside of Ω, maximizing the second term.

Consider now the Poisson kernel for fixed n ∈N and 0 < α < 1

(1.4) Py(ξ) ∶= Pn,α(ξ ,y) = cn,α
∣y∣2α

∣(ξ ,y)∣n+2α
for every (ξ ,y) ∈Rn×R.

The Poisson extension of f ∈ L1
loc(Rn) is given by

(1.5)

u(x′,y) ∶= f ∗Py(x′) =
ˆ
Rn

Pn,α(ξ ,y) f (x′−ξ)dξ for every (x′,y) ∈Rn×R.

By [CS07], with a convenient choice of the constant one gets

lim
y↘0

y1−2αuy(x′,y) = −(−∆)α f (x′)

in every point where f is regular enough. Moreover, the extension satisfies the
localized equation ∇⋅(∣y∣β∇u) = 0 weakly, away from Rn×{0}. The whole point
is that local minimizers of (1.3) can be extended via the previous Poisson kernel Py
to (even) minimizers of (1.1) (see the Appendix for a precise statement). Therefore,
the thin one-phase problem appears as a “localization” of the one-phase problem
for the fractional Laplacian. Notice that, and this is of major importance for us,
this localization technique does not carry over to other types of nonlocal operators
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besides pure powers of second-order elliptic operators. This is a major drawback of
the theory, in the sense that, at the moment, it seems to be impossible to tackle one-
phase problems involving more general operators than the fractional Laplacian.
The main point is we do not know how to prove any kind of monotonicity for
general integral operators.

This connection between the nonlocal analogue of the Bernoulli problem and
our thin one-phase problem allows us to simplify several arguments by working in
the purely nonlocal setting. However, this underlying nonlocality is also the reason
why several results, which came more easily in the setting of [AC81], are non-
trivial or substantially harder for us. For example, perturbations of solutions need
to take into account long range effects which makes classical, local, perturbation
arguments much more difficult.

In the paper [CRS10b], the authors proved basic properties of the minimiz-
ers for the functional J such as optimal regularity, non-degeneracy near the free
boundary, and positive densities of phases. Also they provided an argument for
n = 2 showing that Lipschitz free boundaries are C1. A feature of the functional J
is that the weight ∣y∣β is either degenerate or singular at {y = 0} (except in the case
β = 0). Such weights belong to the Muckenhoupt class A2 and the seminal paper
of Fabes, Kenig and Serapioni [FKS82] investigated regularity issues for elliptic
PDEs involving such weights (among other things). After that, [DSSS14] proved
an ε-regularity result and [All12] showed the existence of a monotonicity formula
for this setting.

In the case β = 0, the problem is still degenerate in the sense that derivatives
near the free boundary blow up. The case β = 0 has been thoroughly investigated
in the series of papers by De Silva, Savin and Roquejoffre [DR12, DS12, DS15].

The main goal of our paper is to provide a full picture of the regularity of the
free boundary for any power β ∈ (−1,1), both in terms of measure-theoretic state-
ments and partial (or full) regularity results. From this point of view our contribu-
tion is a complement of the paper by De Silva and Savin [DS15] for β = 0. It has
to be noticed that the standard approach to regularity of Lipschitz free boundaries
as developed by Caffarelli (see the monograph [CS05]) does not seem to work in
our setting.

Our approach to regularity

In [AC81] (and many subsequent works), the minimizing property of the solu-
tion is used to prove that the distributional Laplacian of that solution is an Ahlfors-
regular measure supported on the free boundary. This implies (amongst other
things) that the free boundary is a set of (locally) finite perimeter, and thus al-
most every point on the free boundary has a measure theoretic tangent. One can
then work purely with the weak formula (i.e. the analogue of (1.2)) to prove a “flat
implies smooth” result which, together with the existence almost everywhere of a
measure theoretic tangent, has as a consequence that the free boundary is almost
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everywhere a smooth graph and the free boundary condition in (1.2) holds in a
classical sense at the smooth points.

A similar “flat implies smooth” result exists in our context (this is essentially
due to De Silva, Savin and the last author, [DSSS14], see Theorem 2.4 below).
However, showing that the free boundary is the boundary of a set of finite perime-
ter proves to be much more difficult. Due to the nonlocal nature of the problem,
−div(∣y∣β∇u) (considered as a distribution) is not supported on the free boundary.
Furthermore, the scaling of this measure does not allow us to conclude that the free
boundary has the correct dimension (much less that it is Ahlfors regular).

To prove finite perimeter, we take the following approach inspired by the work
of de Silva and Savin: after establishing some preliminaries we prove crucial com-
pactness results. This, along with a monotonicity formula originally due to Allen
[All12] allows us to run a dimension reduction argument in the vein of Federer or
(in the context of free boundary problems) Weiss [Wei99]. With this tool in hand,
we show that the set of points at which no blow-up is flat is a set of lower dimen-
sion. Locally finite perimeter and regularity for the reduced boundary then follow
from a covering argument and some standard techniques.

Here and throughout the paper, we will denote the ball of radius r in Rn+1

centered at the origin by Br, and B′r ∶=Br∩Rn×{0}. Moreover, for the definition of
Hβ , see Section 2. We may then summarize our regularity results in the following
theorem.

Theorem 1.1. [Main Regularity Theorem] Let u ∈ Hβ (B1) be a (non-negative,
even) local minimizer of J in B1 ⊂Rn+1. Let B′1,+(u) ∶= {x = (x′,0) ∈B1 ∶ u(x) > 0},
let F(u) be the boundary of B′1,+(u) inside of B′1 and assume that 0 ∈ F(u). Then,

(1) B′1,+(u) (as a subset of Rn×{0}) is a set of locally finite perimeter in B′1.
(2) We can write the free boundary as a disjoint union F(u) = R(u)∪Σ(u),

where R(u) is open inside F(u), and for x ∈ R(u) there exists an rx > 0
such that B(x,rx)∩F(u) can be written as the graph of a C1,s-continuous
function.

(3) Furthermore, the set Σ(u) is of Hausdorff dimension ≤ n−3 (and, there-
fore, of Hn−1-measure zero). In particular, for n ≤ 2, Σ(u) is empty, and
moreover, if n = 3 then Σ(u) is discrete.

The constants (implicit in the set of finite perimeter, and the Hölder continuity of
the functions whose graph gives the free boundary) depend on n and β but not on
∥u∥Hβ (B1).

As usual Σ(u) ⊂ F(u) is called the singular set of the free boundary: the set of
points around which F(u) cannot be parameterized as a smooth graph and all the
blow-ups will be non-trivial minimal cones, see Theorem 2.4.

Our second contribution concerns the structure and size of the singular set. It
builds on recent major works on quantitative stratification [NV17], extended to free
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boundary problems (in particular the one-phase problem) by Edelen and the first
author [EE19].

Theorem 1.2. Let u ∈Hβ (B1) be a (non-negative, even) local minimizer of J in B1
and 0 ∈F(u). Let B′1,+(u) ∶= {x=(x′,0) ∈B1 ∶u(x)>0} and F(u) be the boundary of
B′1,+(u) inside B′1. Then, there exists a k∗α ≥ 3 such that Σ(u) is (n−k∗α)-rectifiable
and

Hn−k∗α (Σ(u)∩D) ≤Cn,α,dist(D,∂B1) for every D ⊂⊂ B1.

In [DJ09], De Silva and Jerison constructed a singular minimizer for the Alt-
Caffarelli one-phase problem in dimension 7, giving the dimension bound k∗ ≤ 8 in
the previous theorem in this case (see [EE19]). This result is not known for the thin
one-phase problem. The reason is that the one-phase problem, seen from the nonlo-
cal point of view involving the fractional Laplacian, is related to the so-called non-
local minimal surfaces introduced by Caffarelli, Roquejoffre and Savin [CRS10a].
Indeed, in [SV12], the authors proved that a fractional version of Allen-Cahn equa-
tion converges variationally to the standard perimeter functional for α ≥ 1/2 and to
the so-called nonlocal minimal surfaces for α < 1/2. We can then conjecture the
bound k∗α ≤ 8 for α ≥ 1/2 by analogy with the result for the standard one-phase
problem but the bound for α < 1/2 is not clear at all. However, one knows that
there is no singular cone in dimension 2 for nonlocal minimal surfaces [SV13] and
that the Bernstein problem is known for those in dimensions 2 and 3 [FV17].

We would like also to make a last remark about a result which is of purely
nonlocal nature. In the case of the one-phase problem, one can show that the distri-
butional Laplacian is a Radon measure along the free boundary. In the case of the
thin one-phase free boundary problem, due to the nonlocality of the problem, such
a behavior does not happen in the sense that we will show that the fractional Lapla-
cian is an absolutely continuous measure with respect to n-dimensional Lebesgue
measure with a precise behavior. This phenomenon is of purely nonlocal nature
and similar to the fact that the fractional harmonic measure is of trivial nature.
More precisely, every minimizer u satisfies ∇ ⋅ (∣y∣β∇u) = 0 weakly, away from
Rn∩{u ≤ 0}. Thus, equation (1.2) above can be understood as an Euler-Lagrange
equation for the functional J in the sense that the restriction to Rn of a given min-
imizer u in Ω ⊂Rn+1, harmonic away from Rn×{0} and with asymptotic behavior
u(x,y) = O(∣(x,y)∣α) is always a solution to (1.2) for A = A(α) at “nice” points of
the free boundary.

A brief summary of this paper follows. In Sections 3 and 4 we discuss com-
pactness of minimizers and we recall Allen’s monotonicity formula to derive some
immediate consequences. In Section 5 we show that the positive phase is a set of
locally finite perimeter, establishing the first part of Theorem 1.1 (modulo energy
bounds), and we show that the singular set can be identified using the Allen-Weiss
density. Section 6 is devoted to deducing full regularity of minimizers in R2+1

concluding the proof of Theorem 1.1.
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Once we have established the finite perimeter, in Section 7 we remove the de-
pendence of the estimates on the energy of the minimizer in the previous theo-
rems, using a rather subtle argument which combines results from all the previous
sections. A crucial step is to analyze some basic properties of the distributional
fractional Laplacian of our minimizer. As stated above this analysis will not be
enough to establish that the positivity set of the minimizer is a set of locally finite
perimeter. We believe that many of these results may be of independent interest.
For example, corresponding results for the classical Bernoulli problem have been
used to understand free boundary problems for harmonic measure (see [KT03]).

Finally, Section 8 is devoted to the proof of Theorem 1.2.

Notation
We denote the constants that depend on the dimension n, α and perhaps some

other fixed parameters which are clear from the context by C. Their value may
change from an occurrence to another. On the other hand, constants with subscripts
as C0 retain their values along the text. For a,b ≥ 0, we write a ≲ b if there is C > 0
such that a ≤Cb. We write a ≈ b to mean a ≲ b ≲ a.

Let u be a continuous function in Rn+1. Then we write Ω+(u) ∶= Ω∩{u > 0},
and we denote the zero phase, the positive phase and the free boundary by

Ω0(u) ∶= {x ∈Rn×{0} ∶ u(x) = 0}○,
Ω
′
+(u) ∶=Ω+∩(Rn×{0}) = {x ∈Rn×{0} ∶ u(x) > 0}, and

F(u) ∶= FΩ(u) = ∂(Ω+(u)∩Rn×{0})∩Ω,

respectively. Here both the boundary and the interior are taken with respect to the
standard topology in Rn. Note that Rn×{0} is the disjoint union of Ω0(u), Ω

′
+(u)

and F(u) whenever u is non-negative. We also call Fred(u) = Fred,Ω(u) the points
of FΩ(u) where the free boundary is expressed locally as a C1 surface. Finally, let
Σ(u) = ΣΩ(u) = FΩ(u)∖Fred,Ω(u). In general we will write Ω

′ ∶=Ω∩(Rn×{0}).
Throughout the paper we will often fix β ∈ (−1,1) but then refer to α ∈ (0,1) or

vice versa. These two numbers are always connected by the relationship α = 1−β

2 .

2 Preliminaries

In this section, we provide the known results concerning the problem under
consideration. We say that a function u is even if it is symmetric with respect to the
hyperplane Rn×{0}, that is, u(x′,y) = u(x′,−y). The function spaces that we will
consider are the following

Hβ (Ω) ∶= {u ∈H1(β ,Ω) ∶ u is even and non-negative}
and

Hβ

loc(Ω) ∶= {u ∈ L2
loc(Ω) ∶ u ∈Hβ (B) for every ball B ⊂⊂Ω}.

We will omit Ω in the notation when it is clear from the context.
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Definition 2.1. We say that a function u ∈Hβ

loc(Ω) is a (local) minimizer of J in a
domain Ω if for every ball B ⊂⊂ Ω and for every function v ∈ Hβ (B) such that the
traces v∣∂B ≡ u∣∂B, the inequality

J (u,B) ≤ J (v,B)
holds.

As usual for several free boundary problems, it is a natural question to exhibit a
particular (global) solution so that one gets an idea of the qualitative properties of
general solutions. Let us consider the following function: for every x ∈Rn let

fn,α(x) ∶= cn,α(xn)α

+ ,

where a+ = max{0,a}. If n = 1, f1,α is a solution to (1.2) for a convenient choice
of c1,α (see [BV16, Theorem 3.1.4]). In fact one can see that the same is true for
n ≥ 1 using Fubini’s Theorem conveniently, with

(2.1) −(−∆)α fn,α(x) = cn,α(xn)−α

− ,

where a− =max{0,−a}.
As a toy question we wonder whether the trivial solutions are minimizers. In-

deed, this is the case, as we will see later in Section 4.1.

Proposition 2.2. Let n ∈N and 0 < α < 1. Then the trivial solution un,α ∶= fn,α ∗Py

is a minimizer of J in every ball B ⊂Rn+1.

Next we collect the main properties of minimizers in the unit ball proven in
[CRS10b, Theorems 1.1-1.4, Proposition 3.3 and Corollary 3.4].

Theorem 2.3. If u ∈ Hβ (B1) is a minimizer of J in Ω = B1 with ∥u∥Ḣβ (B1) ∶=
∥∇u∥L2(B1,∣y∣β ) ≤ E0 and x0 ∈ F(u)∩B 1

2
, then it satisfies

P1: Optimal regularity (see [CRS10b, Theorem 1.1]): ∥u∥Ċα(B1/2) ≤C(1+E0).
P2: Nondegeneracy (see [CRS10b, Theorem 1.2]): u(x) ≥Cdist(x,F(u))α for x ∈

B′1
2 ,+

.

P3: Interior corkscrew condition (see [CRS10b, Proposition 3.3]): there exists
x+ ∈ B′r(x0) so that B′(x+,C0r) ⊂Ω

′
+(u).

P4: Positive density (see [CRS10b, Theorem 1.3]): ∣Ω0∩B′r(x0)∣ ≳ rn.
P5: Blow-ups are minimizers (see [CRS10b, Corollary 3.4]): The limit of a blow-

up sequence uk(x) ∶= u(x0+ρkx)
ρα

k
converging weakly in H1(β ,B1) and uniformly

is a global minimizer.
P6: Normal behavior at the free boundary (see [CRS10b, Theorem 1.4]): the

boundary condition in (1.2) is satisfied at every point on the free boundary
with a measure theoretic normal (see [EG15]) for a prescribed value of A.

All the constants depend on n and α; and also on E0 except for the ones in P1 and
P2.
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A major tool in the present paper is an ε−regularity result, i.e. in the lan-
guage of free boundaries a statement of the type “flatness implies smoothness”. In
[DSSS14], the authors proved such an ε-regularity result for viscosity solutions to
the overdetermined system associated to minimizers of J . Here we establish that
all local minimizers are in fact viscosity solutions. While this verification may be
standard for experts in the field, we include it here for the sake of completeness.

Theorem 2.4 (ε-regularity). There exists ε > 0 depending only on n, α and E0 such
that for every non-negative, even minimizer u of the energy (1.1) on a ball B ⊂Rn+1

with ∥u∥Hβ (B) ≤ E0r(B) n
2 and

(2.2) {(x,0) ∈ B ∶ xn ≤ −ε} ⊂ B0(u) ⊂ {(x,0) ∈ B ∶ xn ≤ ε},

we have that F(u) ∈C1,γ
loc(

1
2 B), with 0 < γ < 1.

Note that the dependence on E0 will be removed in Section 7.

Proof. We say that u is a viscosity solution to

(2.3)
⎧⎪⎪⎨⎪⎪⎩

∇⋅(∣y∣β∇u) = 0 in B+1 (u),
limt→0+

u(x0+tν(x0),0)
tα = 1, for (x0,0) ∈ F(u),

if

i) u ∈C(B1), u ≥ 0,
ii) u ∈C1,1

loc(B1,+(u)), u is even and it solves ∇⋅(∣y∣β∇u) = 0 in the viscosity sense,
and

iii) any strict comparison subsolution (resp. supersolution) cannot touch from
below (resp. from above) at a point (x0,0) ∈ F(u).

We claim that

(2.4) every non-negative even minimizer is a viscosity solution.

Conditions (i) and (ii) have been verified in [DSSS14, Vit18]. To verify our
claim it suffices to prove condition (iii) above: that any strict comparison subsolu-
tion cannot touch u from below at a point (x0,0) ∈ F(u). The analogous claim for
strict comparison supersolutions will follow in the same way.

Let us recall (see, e.g. Definition 2.2 in [DSSS14]), that w ∈C(B1) is a strict
comparison subsolution (resp. supersolution) to (2.3) if

a) w ≥ 0,
b) w is even with respect to {y = 0},
c) w ∈C2({w > 0}),
d) div(∣z∣β∇w) ≥ 0 in B1/{y = 0},
e) F(w) is locally given by the graph of a C2 function and for any x0 ∈ F(w) we

may write

(2.5) w(x,y) = aU((x−x0) ⋅ν(x0),y)+o(∥(x−x0,y)∥α), (x,y) → (x0,0).
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Here U is the extension of the trivial solution (see [DSSS14]), ν(x0) is the unit
normal to F(w) considered as a subset of Rn pointing into {w > 0} and a ≥ 1.

f) Furthermore, either the inequality is strict in d), or a > 1 in e).

So assume that w ≥ u where w is a strict comparison subsolution and u is some
minimizer and that w = u at (x0,0) ∈F(u). Since u(x0,0) = 0 it follows that (x0,0) ∈
F(w) and with a harmless rotation we can guarantee that ν((x0,0)) = en. We want
to show that en is also the measure theoretic unit normal to F(u). Indeed, since
F(w) is C2 there must exist a ball B ⊂ {w > 0} which is tangent to F(w) at (x0,0).
It must then be that case that B ⊂ {u > 0} as well. Thus (x0,0) ∈ F(u) has a tangent
ball from the inside which, by [CRS10b] Proposition 4.5 implies that u has the
asymptotic expansion

u(x,y) =U((x−x0) ⋅ν(x0),y)+o(∥(x−x0,y)∥α), (x,y) → (x0,0).
If u ≥ w this implies that w must satisfy the expansion in (2.5) with a = 1 at the

point x0. This, in turn, implies that div(∣z∣β∇w) > 0 in B1/{y = 0} (by the definition
of a strict subsolution). Furthermore, since w ∈C2 where {w > 0} we can guarantee
that div(∣z∣β∇w) ≥ 0 in all of B1∩{w > 0}.

Let us return to the ball B which is a subset of {u > 0} and {w > 0} and for
which (x0,0) ∈ B. We know that w−u ≠ 0 in B∖{y = 0} (this is because w strictly
satisfies the differential inequality in B away from {y = 0}) and we know that w−u
is a subsolution in B. Furthermore (x0,0) ∈ B is a strict maximum, so by the Hopf
lemma in [CS14, Proposition 4.11] it must be that

lim
t↓0+

(w−u)(x0+ tν(x0),0)
tα

> 0.

This contradicts the fact u and w both satisfy (2.5) at (x0,0) with a = 1. Therefore,
(x0,0) must not have been a touching point and u is indeed a viscosity solution.

Since, u is a viscosity solution, [DSSS14, Theorem 1.1] applies and we get the
desired ε-regularity. �

3 Compactness of minimizers

In this section we prove important results on the compactness of minimizers. As
we mentioned above, our contribution is that convergent sequences of minimizers
also converge in the relevant weighted Sobolev spaces strongly rather than just
weakly. This will prove essential to the compactness arguments used in the later
sections of this paper.

3.1 Caccioppoli Inequality
First we want to show that the distribution λ ∶= ∇ ⋅ (∣y∣β∇u) is in fact a Radon

measure with support in the complement of the positive phase as long as u is a min-
imizer. In Section 7 we will come back to this measure to understand its behavior
around the free boundary.



THE THIN ONE-PHASE PROBLEM 11

Lemma 3.1. Let Ω ⊂ Rn+1 be an open set, and let u ∈W 1,2
loc (Ω, ∣y∣β ) be such that

∇⋅(∣y∣β∇u) = 0 weakly in Ω+(u), i.e., for every η ∈C∞
c (Ω+(u)),

(3.1) ⟨∇ ⋅(∣y∣β∇u),η⟩ ∶= −
ˆ

(∣y∣β∇u)∇η = 0.

Then λ ∶= ∇ ⋅ (∣y∣β∇u) is a positive Radon measure supported on {u = 0} and for
every v ∈W 1,2(Ω, ∣y∣β )∩Cc(Ω)

(3.2)
ˆ

vdλ = −
ˆ

∣y∣β∇u ⋅∇v.

Proof. Indeed, by (3.1) the quantity

−
ˆ

∣y∣β∇u ⋅∇ζ = −
ˆ

∣y∣β∇u ⋅∇(ζ max{min{2− u
ε
,1} ,0}) ≥

−
ˆ

Ω∩{0<u<2ε}
∣y∣β ∣∇u∣∣∇ζ ∣ ε→0ÐÐ→ 0

defines a positive functional on positive ζ ∈C0,1
c (Ω). Moreover, for compact K ⊂Ω,

consider a Lipschitz function fK such that χK ≤ fK ≤ χΩ. If ζ ∈C0,1
c (K), by the

positivity shown above we obtain

−
ˆ

∣y∣β∇u ⋅∇ζ ≤ −∥ζ∥L∞

ˆ
∣y∣β∇u ⋅∇ fK ≤CK,u∥ζ∥L∞

and, by Hahn-Banach’s theorem, we can extend the functional to a positive func-
tional in Cc(Ω), that is given by integration against a positive Radon measure by
the Riesz representation theorem.

The fact that (3.2) holds for all functions in W 1,2(Ω, ∣y∣β )∩Cc(Ω) follows by a
standard density argument. �

The Caccioppoli inequality is the first step to proving convergence in a Sobolev
sense. It will also be useful when we remove the a priori dependence of our results
on the Sobolev norm of the minimizer.

Lemma 3.2 (Caccioppoli Inequality). Let B⊂Rn+1 be a ball of radius r centered on
Rn×{0}, and let u ∈W 1,2(B, ∣y∣β ) be such that∇⋅(∣y∣β∇u) = 0 weakly in B∩{u> 0}.
Then ˆ

1
2 B

∣y∣β ∣∇u∣2 ≤ 4
r2

ˆ
B∖ 1

2 B
∣y∣β u2.

Proof. Let η be a Lipschitz function such that χ 1
2 B ≤ η ≤ χB and with ∣∇η ∣ ≤ 1

r . By
Lemma 3.1

0 =
ˆ

B
uη

2dλ =
ˆ

B
∣y∣β∇u ⋅∇(uη

2).

By the Leibniz rule ˆ
B
∣y∣β η

2∣∇u∣2 = −
ˆ

B
∣y∣β 2uη∇u ⋅∇η ,
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and using Hölder’s inequality we getˆ
1
2 B

∣y∣β ∣∇u∣2 ≤
ˆ

B
∣y∣β η

2∣∇u∣2 ≤
ˆ

B
∣y∣β 4u2∣∇η ∣2 ≤ 4

r2

ˆ
B∖ 1

2 B
∣y∣β u2.

�

Lemma 3.3. Let u ∈Hβ (Br) be a minimizer of J in B2r and 0 ∈ F(u). Then

r−n/2∥∇u∥L2( 1
2 Br;∣y∣β ) ≤ r−α∥u∥L∞(Br) ≤ ∥u∥Ċα(Br)≤C(1+ r−n/2∥∇u∥L2(B2r;∣y∣β )).

Proof. The first inequality is an immediate consequence of Caccioppoli, the middle
estimate is trivial and the last follows from P1 in Theorem 2.3. �

3.2 Compactness
In the following lemma we prove the compactness of minimizers in the relevant

Sobolev spaces. For convenience, we also detail several compactness results which
were either already proven in [CRS10b] or are standard consequences of the non-
degeneracy estimates in Theorem 2.3. Nevertheless, we include full proofs here
for the sake of completeness. We note here (as we did above and will do again
below) that while we currently need to assume the uniform bound on the Hölder
norm of the functions uk we can get rid of this assumption in the light of the results
of Section 7.

Lemma 3.4 (Compactness results). Let {uk}∞k=1 ⊂ Hβ

loc(Ω) be a sequence of min-
imizers in a domain Ω ⊂Rn+1 with ∥uk∥Ċα(Ω) ≤ E0 with non-empty free boundary.

Then there exists a subsequence converging to some u0 ∈ Hβ

loc(Ω) such that for
every bounded open set G ⊂⊂Ω we have

(1) uk → u0 in Cβ (G) for every β < α ,
(2) uk → u0 in Lp(G) for every p ≤∞,
(3) ∂{uk > 0}∩ Ḡ→ ∂{u0 > 0}∩ Ḡ in the Hausdorff distance,
(4) χ{uk>0}→ χ{u0>0} in L1(G′), and
(5) ∇uk →∇u0 in Lp(G; ∣y∣β ) for every p ≤ 2.

Proof. The first claim follows from uniform Hölder continuity and compact em-
beddings of Hölder spaces. The claim (2) follows from (1) easily.

We now prove the third claim. Let ε > 0. We will first show that for x ∈Rn×{0}
we have

(3.3) d(x,F(u0)) > ε ⇒ d(x,F(uk)) >
ε

2
for large k. This implies that F(uk) ⊂ {x∶ d(F(u0),x) < 2ε} for k large enough.

Let B(x,ε) ⊂ F(u0)c. If u0 is positive in B(x,ε) then it is bounded from below
by a positive number in B(x,ε/2). In this case uk are also positive in B(x,ε/2)
for large k due to uniform convergence in G. Thus B(x,ε/2) ⊂ F(uk)c for large k.
If u ≡ 0 in B′(x,ε) then due to the uniform convergence we know that for k large
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enough uk <Cε
α in B′(x,ε), where C is a constant given by P2 in Theorem 2.3 so

that uk has no free boundary points in B(x,ε/2) for all large k. This proves (3.3).
Next we will show that for all large k

(3.4) F(u0) ⊂ {x∶ d(F(uk),x) < ε}.

If this was not true we could find a point x ∈ F(u0) and a subsequence of uk such
that B′(x,ε) ⊂ F(uk)c for every k in the subsequence. If the subsequence contains
infinitely many uk such that uk ≡ 0 in B(x,ε) then also u0 ≡ 0 due to uniform con-
vergence. Otherwise, the sequence contains infinitely many uk for which B(x,ε)
is contained in the positive phase. In this case the non-degeneracy implies that in
B(x,ε/2) we have uk >Cε

α , with C independent of k. Again uniform convergence
implies the same lower bound for u0, which contradicts our choice x ∈ F(u0).

To show the fourth claim we notice that F(u0) has zero n-dimensional Lebesgue
measure by the Lebesgue differentiation Theorem and the positive density of the
zero phase. Take an open set V ⊃ F(u0) with m(V ∩G′) < ε. For large k we have
F(uk)∪F(u0) ⊂V ∩G′, so ∥χ{uk>0}−χ{u0>0}∥L1(G′) < ε.

Also the sequence is uniformly bounded in H1,p(G; ∣y∣β ) by the Caccioppoli in-
equality. This implies by compactness [HKM06, 1.31 Theorem] the weak conver-
gence of ∇uk in Lp(G; ∣y∣β ). To obtain strong convergence, use Lemma 3.5 below.

�

It remains to show that weak convergence implies strong convergence.

Lemma 3.5. Any sequence of minimizers {uk}∞k=0 in Ω ⊂ Rn+1 with uk → u0 uni-
formly and ∇uk ⇀∇u0 weakly in L2

loc(Ω, ∣y∣β ) satisfies that ∇uk →∇u0 strongly in
L2

loc(Ω, ∣y∣β ).

Proof. Let η ∈C0,1
c (Ω) be a non-negative function. We claim that for every ε > 0

there exists j0 so that ˆ
∣y∣β η ∣∇u−∇u j∣2 ≤ ε

for j ≥ j0.
First we isolate the main difficultyˆ
∣y∣β η ∣∇u0−∇u j∣2 =

ˆ
∣y∣β η(∇u0−∇u j) ⋅∇u0−

ˆ
∣y∣β η(∇u0−∇u j) ⋅∇u j.

By weak convergence,

∣
ˆ

∣y∣β η(∇u0−∇u j) ⋅∇u0∣ ≤ ε/4

for j big enough. Note that this is true even if the u j are not minimizers. The bound
on the second term, however, needs the minimization property.
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We observe thatˆ
∣y∣β η(∇u0−∇u j) ⋅∇u j

=
ˆ

∣y∣β (∇u0−∇u j) ⋅∇(ηu j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶I

−
ˆ

∣y∣β u j(∇u0−∇u j) ⋅∇η

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶II

.(3.5)

To estimate I in (3.5), let λ j be the measures corresponding to u j from Lemma
3.1. By (3.2) we get thatˆ

∣y∣β (∇u0−∇u j) ⋅∇(ηu j) =
ˆ

ηu j dλ0−
ˆ

ηu j dλ j.

Since λ j is supported on {u j = 0} we have thatˆ
ηu j dλ j = 0

for every j (including j = 0 as u0 is also a minimizer to J , see Corollary 3.4 in
[CRS10b]).

To finish the estimate on I in (3.5) we observe thatˆ
ηu j dλ0 =

ˆ
η(u j −u0)dλ0 ≤ sup

supp η

∣u j −u0∣
ˆ

η dλ0.

By uniform convergence on compact subsets, for j big enough, supsupp η ∣u j −u0∣ ≤
ε

4∥η∥L1(λ0)
.

We turn towards estimating II in (3.5):

∣II∣ = ∣
ˆ

∣y∣β u j(∇u0−∇u j) ⋅∇η∣

≤ ∣
ˆ

∣y∣β (∇u0−∇u j) ⋅ (u0∇η)∣

+ sup
supp η

∣u j −u0∣∥∇u0−∇u j∥L2(Ω,∣y∣β )∥∇η∥L2(Ω,∣y∣β ).(3.6)

The first term goes to zero by weak convergence of ∇u j to ∇u0. The second term
satisfies

sup
suppη

∣u j −u0∣∥∇u0−∇u j∥L2(suppη ,∣y∣β )∥∇η∥L2(Ω,∣y∣β ) ≤ ε/4

for j big enough, by uniform convergence and the uniform bound of the norm
∥∇u j∥L2(supp η ,∣y∣β ) derived from the Caccioppoli inequality in Lemma 3.2 together
with uniform convergence. �

Lemma 3.4 implies that minimizers converge to minimizers (which was ob-
served in Corollary 3.4 in [CRS10b]), but also implies the stronger fact that the
energy is continuous under this convergence:
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Corollary 3.6. Let uk be a sequence of minimizers in Ω ⊂Rn+1 with uk→ u0 locally
uniformly and supk ∥uk∥Hβ <∞. Then u0 is also a minimizer to J in Ω and for any
B ⊂⊂Ω we have J (uk,B) → J (u0,B) after passing to a subsequence.

4 Monotonicity formula and some immediate consequences

From [All12] we have the following monotonicity formula:

Theorem 4.1 (Monotonicity formula, see [All12, Theorem 4.3] ). Let u be a
minimizer in Bδ (x0) for the functional J with x0 ∈ F(u). Then the function

r↦Ψ
u
r(x) ∶=Ψ(r) = J (u,Br(x0))

rn − α

rn+1

ˆ
∂Br(x0)

∣y∣β u2 dHn

is defined and nondecreasing in (0,δ), and for 0 < ρ < σ < δ , it satisfies

Ψ(σ)−Ψ(ρ) =
ˆ

Bσ (x0)∖Bρ(x0)
∣y∣β 2 ∣αu(x)−(x−x0) ⋅∇u(x)∣2

∣x0−x∣n+2 dx ≥ 0.

As a consequence, the blow-up limits are cones, in the sense of the following
corollary.

Corollary 4.2. Let u be a minimizer in Bδ (x0) with x0 = (x′0,0). Consider a de-

creasing sequence 0 < ρk
k→∞ÐÐÐ→ 0 and the associated rescalings uk(x) ∶= u(x0+ρkx)

rα .
Then the Allen-Weiss density

Ψ
u
0(x0) ∶= lim

r↘0
Ψ

u
r(x0)

is well defined. Furthermore, for every bounded open set D ⊂ Rn+1 and k ≥ k(D)
this subsequence uk is bounded in H1,2(D; ∣y∣β ) and, passing to a subsequence uk j ,
converges (in the sense of Lemma 3.4) to u0 which is a globally defined minimizer
of J that is homogeneous of degree α .

The proof is the same as in [Wei99, Theorem 2.8]

Remark 4.3 (Non-uniqueness of blow-ups). We call the function u0 appearing in
Corollary 4.2 a blow-up of u at x0. A priori, the function u0 may depend on the
subsequence uk j . However, a simple scaling argument shows that for all radii r ≥ 0
and all blow-ups u0 to u at x0 we have

Ψ
u0
r (0) ≡Ψ

u
0(x0).

4.1 Dimension reduction
We use the homogeneity of the blow-ups to obtain dimension estimates on the

points in the free boundary for which there exists a non-flat blow-up. This process
is known as “dimension reduction” and has been applied to a variety of situations
(see [Wei99] for its application to the Bernoulli problem).

The first lemma shows that blow-up limits of blow-up limits have additional
symmetry:
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Lemma 4.4. Let u ∈ Hβ

loc(Rn+1) be an α-homogeneous minimizer of J and let
x0 ∈ F(u)∖{0}. Then any blow-up limit u0 at x0 is invariant in the direction of x0,
i.e., for every x ∈Rn+1 and every λ ∈R,

u0(x+λx0) = u0(x).

Proof. Let x ∈Rn+1, and consider its decomposition x = x̃+λx0 with x̃ ∈ ⟨x0⟩�. We
only need to check that

(4.1) u0(x) = u0(x̃).

Bρk(x0)
P1 P2P3

O
x0

FIGURE 4.1. The distance dist(P1,P3) = O(ρ
2
k ).

Consider a ball B = B(0,r) ⊂ Rn+1 so that x̃,x ∈ B. Let {ρk} be a sequence of
radii converging to zero and such that uk(x) ∶= u(x0+ρkx)

ρα

k
converges to u0 uniformly

on Br. For k big enough, ∥uk −u0∥L∞(Br) < ε . Then,

(4.2) ∣u0(x)−u0(x̃)∣ ≤ 2ε +∣uk(x)−uk(x̃)∣.

To control the last term above, we use the homogeneity of u. Writing P1 ∶=
x0+ρkx̃ and P2 ∶= x0+ρkx we have ρ

α

k uk(x̃) = u(P1) and ρ
α

k uk(x) = u(P2). Let P3 be
the intersection between the line through P1 and x0 and the line through the origin
and P2 (see Figure 4.1). By homogeneity of u

u(P2) = u(P3)(
∣P2∣
∣P3∣

)
α

= u(P3)(1± ∣P2−P3∣
∣P3∣

)
α

.

Thus,

ρ
α

k ∣uk(x)−uk(x̃)∣ ≤ ∣u(P1)−u(P3)(1+O(ρk))α ∣ ≤ ∣u(P1)−u(P3)∣+ ∣u(P3)∣O(ρk).

By Thales’ Theorem, ∣P1−P3∣ = ∣P1−P2∣∣P3−x0∣
∣x0∣ =O(ρ

2
k ) and using the Ċα character of

u and the fact that u(x0) = 0, we get

ρ
α

k ∣uk(x)−uk(x̃)∣ ≤ ∥u∥Ċα (∣P1−P3∣α +∣P3∣αO(ρk)) = O(ρ
2α

k )+O(ρk),
and (4.1) follows by (4.2) since ρk → 0. �



THE THIN ONE-PHASE PROBLEM 17

We then recall that a minimizer with a translational symmetry is actually a
minimizer without that symmetry in one dimension less. This is known as “cone
splitting”:

Lemma 4.5. Let u ∈ Hβ

loc(Rn+1) be an α-homogeneous minimizer of J in Rn+1

which is invariant in the direction en. Then ũ(x′,y) ∶= u(x′,0,y) is a minimizer of
J in one dimension less.

Proof. The proof is a slight variation of [Wei99, Proof of Lemma 3.2]. �

Next we provide a non-standard proof of Proposition 2.2, that is, to show that
the trivial solution is a minimizer. We use P5 in a sequence of conveniently chosen
blow-ups and a dimension reduction argument, based on the following lemma.
Note that the proposition could also be proven via a classical dimension reduction
argument.

Proof of Proposition 2.2. Consider a non-zero minimizer u with non-empty free
boundary (see [CRS10b, Proposition 3.2] for its existence), choose a free boundary
point x0 ∈ F(u) and consider u0 to be a blow-up weak limit at this point, which
exists and is α-homogeneous by Lemma 4.2. Then u0 is also a global minimizer
by P5 and not null by the nondegeneracy condition.

Next we argue by induction: given 0 ≤ j ≤ n−2 let u j be an α-homogeneous
global minimizer different from 0 such that it is invariant in a j-dimensional linear
subspace H j ⊂Rn, i.e., for every v ∈H j and every x′ ∈Rn,

u j(x′,y) = u(x′+v,y).

Consider a point x j ∈ F(u j)∖(H j×{0}) which exists as long as j < n−1 by the
interior corkscrew condition and positive density, and let u j+1 be a blow-up limit
at this point, which is again an α-homogeneous global minimizer. We claim that
u j+1 is invariant in fact in the ( j+1)-dimensional subspace H j +⟨x′j⟩.

Indeed u j+1 is invariant in ⟨x′j⟩ by Lemma 4.4. On the other hand, since u j
is invariant in H j, so are the functions in the blow-up sequence and, thus, u j+1 is
invariant in H j. Thus, for v ∈H j, v0 ∈ ⟨x′j⟩ and x ∈Rn+1 we get

u(x+v+x′j) = u(x+v) = u(x),

and the claim follows.
Thus, after n−1 steps, we obtain un−1 which is an α-homogeneous global min-

imizer invariant in an (n−1)-dimensional space Hn−1, with non-empty free bound-
ary. Thus,

un−1(x′,0) =Cn,α(x′n)α

+ ,

where the constant is given by P6. The proposition follows by Proposition A.1. �
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4.2 Upper semicontinuity
Next we show that Allen-Weiss energy at a fixed radius is continuous both with

respect to the minimizer and with respect to the point:

Lemma 4.6. Let u j ∈Hβ

loc(Ω) be minimizers of J in Ω and u j → u0 in the sense of
Lemma 3.4. Then, for x j → x0 and r < dist(x0,∂Ω),

Ψ
u j
r (x j)

j→∞ÐÐÐ→Ψ
u0
r (x0).

Proof. Let ε > 0. We want to check that for j big enough,

∣Ψu j
r (x j)−Ψ

u0
r (x0)∣ ≤ ε.

We will consider the three terms of the energy separately. For the first term,ˆ
Br(x j)

∣y∣β ∣∇u j∣2−
ˆ

Br(x0)
∣y∣β ∣∇u0∣2 ≤ rn

ε/3

follows from the L2 convergence of the gradients. Indeed, if δ j ∶= ∣x j −x0∣ ≤ δ for j
big enough and Br+δ ⊂Ω, thenˆ

Br(x j)
∣y∣β ∣∇u j∣2−

ˆ
Br(x0)

∣y∣β ∣∇u0∣2

≤
ˆ

Br(x j)
∣y∣β (∣∇u j∣2−∣∇u0∣2)+

ˆ
Br(x j)∆Br(x0)

∣y∣β ∣∇u0∣2

≤
ˆ

Br+δ (x j)
∣y∣β (∣∇u j∣2−∣∇u0∣2)+

ˆ
(Br+δ j

∖Br−δ j
)(x0)

∣y∣β ∣∇u0∣2

≤ rn
ε/3.

For the measure, we estimate

∣
ˆ

Br(x j)′
χΩ+(u j)dm−

ˆ
Br(x0)′

χΩ+(u0)dm∣ ≤ rn
ε/3

for j big enough as a consequence of χΩ+(u j)→ χΩ+(u0) in L1
loc as before. The fact

that

α ∣
ˆ

∂Br(x j)
u2

j −
ˆ

∂Br(x0)
u2

0∣ ≤ rn+1
ε/3

for j big enough is a straight consequence of the uniform convergence and the
continuity of u0. �

It is well known that the limit of a decreasing sequence of continuous functions
is upper semicontinuous (see [Dal12, Theorem 1.8]). The monotonicity formula
also implies the following result.
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Lemma 4.7. Let u j ∈Hβ

loc(Ω) be minimizers of J in Ω and u j
j→∞ÐÐÐ→ u0 in the sense

of Lemma 3.4, with x j ∈ F(u j) for j ∈N. Then, if x j → x0 and r j → 0,

limsup
j

Ψ
u j
0 (x j) ≤ limsup

j
Ψ

u j
r j (x j) ≤Ψ

u
0(x0).

Proof. The first inequality comes from monotonicity.
To see that

limsup
j

Ψ
u j
r j (x j) ≤Ψ

u0
0 (x0),

it is enough to check that for every r > 0

limsup
j

Ψ
u j
r j (x j) ≤Ψ

u0
r (x0),

or using monotonicity it suffices to show that for every ε > 0 and j big enough,

Ψ
u j
r (x j)−Ψ

u0
r (x0) ≤ ε.

But this is true for j big enough because the left-hand side converges to 0 by the
continuity of the energy from Lemma 4.6. �

5 Measure-theoretic properties

5.1 Finite perimeter
We will show that Ω

′
+(u) is a set of locally finite perimeter. Then Fred(u) will

coincide with the measure-theoretic reduced boundary by the ε-regularity theorem,
see [AC81, Sections 4.6 and 4.7].

Definition 5.1. For every 0 < α < 1 we can define k∗α as the infimum of

{k ∈N ∶ ∃ an α-homogeneous minimizer u ∈Hβ

loc(Rk+1) such that Σ(u) = {0}} .

Note that, to the best of our knowledge, there is no result showing that k∗α needs
to be finite.

Lemma 5.2. Let u be an α-homogeneous minimizer of J in Rn+1 with n< k∗α . Then
u is a rotation of the trivial solution.

See [Wei99, Section 3] for the proof.
From the positive density properties, we know that k∗α ≥ 2. From the homogene-

ity of the blow-ups we find out that the free boundary in R1+1 is in fact a collection
of isolated points. Later in Theorem 6.1 we will show that in fact k∗α ≥ 3.

Lemma 5.3 (Isolated singularities). Let u ∈ Hβ

loc(Ω) for Ω ⊂R1+1 be a minimizer
of J in Ω. Then F(u) has no accumulation points in Ω.
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Proof. Arguing by contradiction, we assume that F(u) has an interior accumula-
tion point which, without loss of generality, we assume to be the origin.

Let (xk,0) be a sequence of singular points converging to 0 with xk > 0. Con-
sider the blow-up rescaling uk(x) ∶= u(xkx)

xα

k
. Note that uk(0,0) = uk(1,0) = 0. More-

over, by the interior corkscrew condition, there exist zk ∈ (1/2,3/2) such that
uk∣B′c(zk,0) > 0, so u(zk,0) ≳C by the non-degeneracy condition.

Choosing a subsequence, we may assume that zk → z0 ≥ 1/2, and uk → u0 in the
sense of Lemma 3.4. In particular u0 is homogeneous by Corollary 4.2, reaching a
contradiction with the fact that u0(1,0) = 0 and u0(z0,0) ≳C. �

We will prove the local finiteness of the perimeter of the free boundary adapting
a proof of De Silva and Savin in [DS15]. Our proof is essentially the same, but we
repeat it for the sake of completeness.

As in [DS15] we say that a set A ⊂Rn satisfies the property (Pt) if the following
holds: for every x ∈ A there exists an rx > 0 such that for every 0 < r < rx, every
subset S of B(x,r)∩A can be covered with a finite number of balls B(xi,ri) with
xi ∈ S such that

(5.1) ∑
i

ri ≤ rt/2.

Lemma 5.4. IfHt(Σ(U)) = 0 for every minimal cone U in Rn+1 thenHt(Σ(u)) = 0
for every minimizer u of J defined on Ω ⊂Rn+1

Proof. We first show that Σ(u) satisfies the property (Pt). If (Pt) does not hold we
find a point y ∈ Σ(u) for (Pt) is violated for a sequence rk → 0. We consider the
blow-up sequence

(5.2) urk(x) = r−α

k u(y+ rkx).
By Corollary 3.6 we may assume, by taking a subsequence, that urk converges to
a minimal cone U . By our assumptions we may cover Σ(U)∩B(0,1) with a finite
collection of balls {B(xi,

ρi
10)}

k
i=1 with

∑
i

ρ
t
i ≤

1
2
.

By Lemma 3.4 we know that free boundaries converge in Hausdorff sense and
thus the set F(urk)∩B(0,1)∖⋃i B(xi,ρi/5) is flat for all large k. From Theorem
2.4 we infer that all singularities must be covered by the same balls, that is, for all
k ≥ k0

(5.3) Σ(urk)∩B(0,1) ⊂⋃
i

B(xi,ρi/5).

After rescaling we see that u satisfies the condition for property (Pt) in the ball
B(y,rk), which is a contradiction. Therefore the property (Pt) holds as claimed.
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Consider the set Dk ∶= {y ∈ Σ(u) ∶ ry ≥ 1/k}. Fix a point y0 ∈ Dk. By property
(Pt) applied to r0 = 1/k we find a finite cover of Dk ∩B(y0,r0) with balls B(yi,ri),
yi ∈Dk, satisfying

∑
i

rt
i ≤ rt

0/2.

Similarly, for each ball B(yi,ri) in the cover we use the property (Pt) to find a finite
number of balls B(yi j,ri j), yi j ∈Dk, which cover Dk ∩B(yi,ri) and satisfy

∑
j

rt
i j ≤ rt

i/2,

and thus ∑i, j ri j ≤ rt
0/4. By repeating the argument N times we obtain a cover of

Dk ∩B(y0,r0) by balls B(zl,rl) which satisfies

∑
l

rt
l ≤ 2−Nrt

0.

This implies that Ht(B(y0,r0)∩Dk) = 0 and thus Ht(Dk) = 0. By countable addi-
tivity we obtain the claim.

�

Lemma 5.5. If Ht(Σ(U)) = 0 for some t > 0 and for every minimal cone in Rn+1,
we then have thatHt+1(Σ(V)) = 0 for every minimal cone V in R(n+1)+1.

Proof. Without loss of generality we may assume Σ(V) ≠ {0}. Let x ∈ Σ(V)∖{0}.
By Corollary 3.6 the blow-ups at any point of Σ(V)∩∂B converge to a minimal
cone in dimension (n+1)+1 up to a subsequence. Let Vx be a blow-up at x. By
Lemma 4.5 Vx is a minimal cone which is invariant in at least one direction. By
Lemma 4.5, using our assumption this implies that Ht+1(Σ(Vx)) = 0, and thus the
singular set of every possible blow-up cone of any minimizer V has zero Ht+1-
measure.

Arguing as in Lemma 5.4 we obtainHt+1(Σ(V)) = 0.
�

Combining Lemmas 5.3, 5.4 and 5.5 we obtain the following corollary. Notice
that we will be able to replace n−1 by n−2 by Theorem 6.1.

Corollary 5.6. Every minimizer satisfies

Hn−1(Σ(u)) = 0.

Lemma 5.7. Let u ∈Hβ (2B) be a minimizer of J in 2B with ∥u∥Ċα(2B) < E0. Then
there exists a constant C depending on n, α and E0 and a finite collection of balls
{B(Xi,ri)} s.t.

(5.4) Hn−1((F(u)∩B)∖
m
⋂
i=1

B(Xi,ri)) ≤C
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and

(5.5)
m

∑
i=1

rn−1
i ≤ 1

2
.

Proof. Proof is by contradiction. For k ∈ N assume we have ∥uk∥Ċα(2B) < E0 and
the left-hand side of (5.4) is bounded below by k > 0 for every collection of balls
satisfying (5.5). By Lemma 3.2 we know the sequence uk is bounded in Hβ (B).
Taking a subsequence we may assume that uk converges locally uniformly to a
minimizer u (see Corollary 3.6).

By Corollary 5.6 the set of singularities Σ(u) has Hn−1 -measure zero and thus
they can be covered with finitely many balls Bi satisfying (5.5).

Since F(u)∖Σ(u) is a C1,γ -surface by Theorem 2.4, using the Hausdorff con-
vergence of the free boundaries we apply again Theorem 2.4 to see that F(uk)∩
B1 ∖⋃M

i=1 Bi are also C1,γ -surfaces converging to F(u)∩B1 ∖⋃M
i=1 Bi uniformly in

the C1-norm. This is a contradiction with the assumption that the Hausdorff mea-
sure blows up as k goes to ∞. �

The fact that the free boundary has finite perimeter follows now from the same
iteration argument as [DS15, Lemma 5.10].

Lemma 5.8. Let u be as in Lemma 5.7. Then for some constant C depending only
on E0,

(5.6) Hn−1 (F(u)∩B) ≤C.

Proof. By Lemma 5.7 we find a finite collection of balls Bri such that

(5.7) F(u)∩B ⊂ Γ∪⋃Bri ,

withHn−1(Γ) ≤C and ∑rn−1
i ≤ 1

2 .

Applying Lemma 5.7 again for each ball Bri we have

(5.8) F(u)∩Bri ⊂ Γi∪⋃Bri j ,

withHn−1(Γi) ≤Crn−1
i and ∑rn−1

i j ≤ 1
2 rn−1

i . Moreover, we have

Hn−1⎛
⎝
(F(u)∩B1)∩⋃

i, j
Bri j

⎞
⎠
≤Hn−1(Γ)+∑Hn−1(Γi)

≤C
⎛
⎝

1+∑
i, j

rn−1
i j

⎞
⎠
≤C(1+ 1

2
) .

Continuing inductively, after k steps we have that

(5.9) F(u)∩B1 ⊂ Γ
′∪

N
⋃
q=1

Brq ,
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with

Hn−1(Γ
′) ≤C(

k

∑
i=0

2−i) ≤ 2C,

and ∑rn−1
q ≤ 2−k. This gives the claim. �

Finally the fact that {u > 0}∪Ω has locally finite perimeter in Ω follows from
the previous lemma and well-known results of Federer, see for example [AFP00,
Prop. 3.62] or [Fed69, 4.5.11].

5.2 Energy gap
Next we will check that the Allen-Weiss density can also be used to identify

singular points. First let us state a useful identity for minimizers (which is also
valid in the context of variational solutions in the sense of [Wei98]).

Lemma 5.9 (See [All12, Proposition 3.4]). Let u ∈Hβ

loc(Ω) be a minimizer to (1.1)
in Ω. For every B ⊂⊂Ω we have

(5.10)
ˆ

B
∣y∣β ∣∇u∣2 =

ˆ
∂B

∣y∣β u∇u ⋅ν dHn.

Let u be a minimizer and x0 ∈ F(u). If we consider a blow-up u0 at x0, then

Ψ
u
0(x0) =Ψ

u0
1 (0) =

ˆ
B1

∣y∣β ∣∇u0∣2+m({u0 > 0}∩Rn∩B1)−α

ˆ
∂B1

∣y∣β u2
0 dHn.

By Lemma 5.9 we get

Ψ
u0
1 (0) =

ˆ
∂B1(x0)

∣y∣β u0∇u0 ⋅ν dHn+m({u0 > 0}∩Rn∩B1)−α

ˆ
∂B1

∣y∣β u2
0 dHn.

Since ∇u0(x) ⋅ν(x) = α

∣x∣u0(x) almost everywhere on the sphere, the first and the
third terms cancel out and we obtain

Ψ
u0
1 (0) =m({u0 > 0}∩B′1).

Thus, the density Ψ
u
0 at a free boundary point is given by the area of the positive

phase of any blow-up at the same point.
We write ωn ∶=m(B′1) for the volume of the n-dimensional ball.

Proposition 5.10. Every homogeneous minimizer u ∈Hβ

loc(Rn+1) has density

Ψ
u
1(0) =m({u > 0}∩B′1) ≥

ωn

2
,

and equality is only attained when u is the trivial minimizer.

Proof. Let u be a minimizer such that Ψ
u
1(0) ≤ ωn

2 .
Let x1 ∈ Fred(u). Being a regular point, Ψ

u
0(x1) = ωn

2 . On the other hand, by the
homogeneity and the continuity in Lemma 4.6,

lim
r→∞

Ψ
u
r(x1) = lim

r→∞
Ψ

u
1(x1/r) =Ψ

u
1(0) ≤ ωn

2
.
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Combining both assertions with the monotonicity of Ψ we get that Ψ
u
r(x1) ≡ ωn

2 .
But using the second formula in Theorem 4.1, one can see that this is true only
whenever Ψ is α-homogeneous with respect to x1. Thus, u is 1-symmetric and
invariant in the direction of ⟨x1⟩.

By Corollary 5.6 Fred(u) has full Hn−1 measure on F(u). Thus, we can find
x1, . . .xn−1 ∈ Fred(u) linearly independent. By the previous discussion u is invariant
on an (n−1)-dimensional affine manifold and, thus, it is the trivial solution. �

Corollary 5.11 (Energy Gap). There exists ε > 0 depending only on n and α such
that every minimizer u ∈Hβ

loc(Ω) and every singular point x0 ∈ Σ(u) satisfy

Ψ
u
1(x0)−

ωn

2
≥ ε.

Proof. Assume the conclusion to be false. Then there exist u j minimizers in B1
with

Ψ
u j
1 (0) ≤ ωn

2
+1/ j.

Passing to a subsequence, u j → u0 as in Lemma 3.4. Using Lemma 4.7 we get that

Ψ
u0
1 (0) = lim

j
Ψ

u j
1 (0) ≤ ωn

2
.

But then u0 is the trivial cone by Proposition 5.10. Since F(u j) → F(u) in the
Hausdorff distance, using ε-regularity (see Theorem 2.4) we get that u j is the trivial
cone for j big enough. �

The value ε above depends on the constants and on ∥u∥Ċα in a neighborhood of
x0. In Section 7 we will show that ε does not depend on u at all.

6 Full regularity in R2+1

In the case of n = 2, we prove full regularity of the free boundary for minimizers
of our functional. Note that this result does not depend on the previous sections
except that we use dimension reduction and blow-ups to deduce regularity of the
free boundary.

Theorem 6.1. Let n = 2. Then there is no singular minimal cone. In particular, the
free boundary F(u) of every minimizer u is C1,α everywhere.

Proof. We follow closely the arguments in [DS15, Theorem 5.5], building on
[SV13]. The case β = 0 has been considered in [DS15]. The idea is to construct
a competitor by a perturbation argument. We note at this point that the argument
is two dimensional in nature and does not generalize to higher dimensions. Recall
the functional under consideration:

J (u,Ω) =
ˆ

Ω

∣y∣β ∣∇u∣2+m({u > 0}∩Rn∩Ω).
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Let V be a non trivial minimal cone. Define, as in [DS15], the Lipschitz continuous
function

(6.1) ψR(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, 0 ≤ t ≤ R,
2− ln(t)

ln(R) , R ≤ t ≤ R2,

0, t ≥ R2

Define now the bi-Lipschitz change of coordinates

Z(x′,y) = (x′,y)+ψR(∣(x′,y)∣)e1

and set V+
R (Z) =V(x′,y). Clearly, one has

D(x′,y)Z = Id+A

where ∥A∥ ≤ ∣ψ ′
R(∣(x′,y)∣)∣ << 1. Defining now V−

R exactly as V+
R changing ψR into

−ψR, the very same computation as in [DS15] gives

J (V+
R ,BR2)+J (V−

R ,BR2) ≤ 2J (V,BR2)+
ˆ

BR2

∣y∣β ∣∇V ∣2∥A∥2.

Now, we have
ˆ

BR2

∣y∣β ∣∇V ∣2∥A∥2 =
ˆ R2

R

ˆ
∂Br

∣y∣β ∣∇V ∣2∥A∥2 dHn dr.

Now since V is homogeneous of degree α by assumption, the function g(x,y) =
∣y∣β ∣∇V ∣2 is homogeneous of degree β +2α −2 = −1. Therefore by a trivial change
of variables on the sphere of radius r and using the fact that n = 2, we get the very
same estimate ˆ

BR2

∣y∣β ∣∇U ∣2∥A∥2 ≤ C
ln(R)

R→∞ÐÐÐ→ 0.

The rest of the proof follows verbatim [DS15], page 1318 since this is only based
on energy considerations and we refer the reader to it. �

7 Uniform bounds around the free boundary

The optimal regularity bound and the non-degeneracy described in Theorem 2.3
were obtained in [CRS10b] with bounds that depend on the seminorm ∥u∥Ḣβ (B1).
As a consequence, this dependence propagates to many of our estimates above.
In this chapter we use the semi-norm dependent estimates (e.g. Lemma 5.8) to
prove semi-norm independent non-degeneracy estimates. Re-running the argu-
ments above yields the semi-norm independent results presented in our main The-
orem 1.1.

The question of semi-norm independence may seem purely technical; however,
independence allows the compactness arguments of the next section to work with-
out additional assumptions on the minimizers involved.
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7.1 Uniform non-degeneracy
We will begin by showing uniform non-degeneracy from scratch to deduce uni-

form Hölder character from this fact, reversing the usual arguments in the literature.
The following lemma was shown in [All12, Corollary 4.2] in a more general

setting. Here we give a more basic approach based on [AC81, Lemma 3.4]. The
main difference is that where Alt and Caffarelli could use the energy to directly
control the H1 norm of the minimizer, in our case we need to find an alternative
because the measure term of the functional is computed on the thin phase (as op-
posed to the H1 norm which is computed on the whole space). To bypass this
difficulty we will use Allen’s monotonicity formula.

The drawback of our approach is that we need the ball to be centered on the
free boundary, while in the original lemma, Alt and Caffarelli could center the ball
in the zero phase, allowing for a slightly better result.

Lemma 7.1. Let u be a minimizer in Br with 0 ∈ F(u). Then sup∂Br
u ≥Crα with C

depending only on n and α .

Proof. By rescaling we can assume that r = 1.
Let Lu ∶= −∇ ⋅ (∣y∣β∇u), consider Γ(x) = 1

∣x∣n−2α which is a solution of LΓ = 0
away from the origin (or Γ(x) = log ∣x∣ if n = 1 and α = 1/2), and let

ṽ(x) ∶= `max{1−Γ(2x),0}
1−Γ(2) ,

where
` ∶= sup

∂B1

u.

It follows that u ≤ ṽ on ∂B1 and thus

J (u,B1) ≤ J (min{u, ṽ},B1),
and observing that ṽ = 0 on B1/2 and ṽ > 0 on the annulus A ∶= B1∖B1/2, we getˆ

B 1
2

∣y∣β ∣∇u∣2+m(B′1
2 ,+

(u)) ≤
ˆ

A
∣y∣β (∣∇(min{u, ṽ})∣2−∣∇u∣2)

+m(A′+(min{u, ṽ}))−m(A′+(u))

≤ −2
ˆ

A
∣y∣β∇max{u− ṽ,0} ⋅∇ṽ.

By Green’s theorem, writing dσ = ∣y∣β dHn we getˆ
B 1

2

∣y∣β ∣∇u∣2+m(B′1
2 ,+

(u)) ≤ −2
ˆ

∂B 1
2

u∂ν ṽdσ =Cn,α`

ˆ
∂B 1

2

udσ ,(7.1)

with Cn,α > 0.
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Using the monotonicity formula and Proposition 5.10, we get that ψ
u(r) ≥

ψ
u(0) ≥ ω(B1)

2 and, therefore

(7.2)
α

r

ˆ
∂Br

u2 dσ + ω(B1)rd

2
≤ Jr(u),

so using Hölder’s inequality and the AM-GM inequality we obtain

(7.3)
ˆ

∂B 1
2

udσ ≤
⎛
⎜
⎝

ˆ
∂B 1

2

u2 dσ

⎞
⎟
⎠

1
2

C
1
2
n,α ≤ 1

2

ˆ
∂B 1

2

u2 dσ + 1
2

Cn,α ≤Cn,αJ 1
2
(u).

Combining (7.1), (7.2) and (7.3) we obtain

0 < J 1
2
(u) ≤Cn,α`J 1

2
(u),

and therefore ` ≥C−1
n,α .

�

To show averaged non-degeneracy we need a mean value principle which is
well-known, but we include its proof for the sake of completeness.

Lemma 7.2 (Mean value principle). Let u ∈ H1(β ,Ω) be a weak solution to Lu ∶=
∇ ⋅(∣y∣β∇u) = 0 in Ω, and let x0 ∈Rn×{0} with Br(x0) ⊂Ω. Then

u(x0) =
 

Br

udω

where the mean is taken with respect to the measure dω ∶= ∣y∣β dx.

Proof. Changing variables, we have that

A(ρ) ∶= 1
ρβ+n+1

ˆ
Bρ(x0)

∣y∣β u(x)dx =
ˆ

B1

∣y∣β u(ρx+x0)dx.

On the other hand, set

Ã(ρ) ∶=
ˆ

B1

∣y∣β∇u(ρx+x0) ⋅xdx

=
ˆ

Bρ(x0)
(∣y∣

ρ
)

β ∇u(x) ⋅ (x−x0)
ρ

dx
ρn+1

= 1
2ρβ+n+2

ˆ
Bρ(x0)

∣y∣β∇u(x) ⋅∇∣x−x0∣2 dx.
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Since u is a weak solution to ∇⋅(∣y∣β∇u) = 0 in Ω, we can apply Green’s formula
twice to obtain

Ã(ρ) = 1
2ρβ+n+2

ˆ
∂Bρ(x0)

∣x−x0∣2∣y∣β∇u(x) ⋅ν dx

= 1
2ρβ+n

ˆ
∂Bρ(x0)

∣y∣β∇u(x) ⋅ν dx = 0.

Since u is absolutely continuous on lines (see [EG15, Theorem 4.21]), for almost
every x we have

´ r
ρ
∇u(tx+ x0) ⋅ xdt = u(rx+ x0)−u(ρx+ x0). Applying Fubini’s

Theorem we get
ˆ r

ρ

Ã(t)dt =
ˆ

B1

∣y∣β
ˆ r

ρ

∇u(tx+x0) ⋅xdt dx

=
ˆ

B1

∣y∣β (u(rx+x0)−u(ρx+x0))dx = A(r)−A(ρ).

So A(r)−A(ρ) = 0 for all ρ < r.
On the other hand, taking the mean with respect to the measure dω ∶= ∣y∣β dx

and using the continuity of u (see [FKS82, Theorem 2.3.12]) we obtain

∣u(x0)−
1

ω(B1)
lim
ρ→0

A(ρ)∣ = lim
ρ→0

1
ω(Bρ(x0))

∣
ˆ

Bρ(x0)
(u(x0)−u(x))dω(x)∣

≤ lim
ρ→0

oρ→0(1) = 0.

�

Corollary 7.3. Let u be a minimizer in Br with 0 ∈ F(u) and let dσ = ∣y∣β dHn.
Then

ffl
∂Br

udσ ≥Crα with C depending only on n and α .

Proof. Let v be the L−harmonic replacement of u in Br, that is, the solution to

(7.4)
⎧⎪⎪⎨⎪⎪⎩

Lv = 0 in Br,

v ≡ u on ∂Br,

see [HKM06, Theorem 3.17]. After differentiating with respect to the radius, by
the mean value principle we get that v(0) =

ffl
∂Br

udσ . By the comparison principle
and the Harnack inequality we get that

(7.5) Crα ≤ sup
Br/2

u ≤ sup
Br/2

v ≤C
 

∂Br

udσ .

�
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7.2 Behavior of the distributional fractional Laplacian
Next we use an idea of [AC81] and investigate the behavior of the distributional

α-Laplacian of the minimizer introduced in Section 3. As mentioned in the intro-
duction, in [AC81] this investigation immediately yields that the positivity set is a
set of locally finite perimeter, and more precisely, that it is Ahlfors regular of the
correct dimension. However, the nonlocal nature of this problem indicates that the
distributional fractional Laplacian may not be supported on the free boundary and
thus we cannot expect to immediately gain such strong geometric information.

First we can bound the growth of the fractional Laplacian measure around a
free boundary point. Note that this growth is the natural counterpart to the upper
Ahlfors regularity in the case of Alt-Caffarelli minimizers.

Theorem 7.4. Let u ∈ Hβ (B2r(x0)) be a minimizer of J in B2r(x0), and let x0 ∈
F(u). Then, we have

λ(Br(x0)) ≤Crn−α .

In particular λ(F(u)) = 0.

A glance at (2.1) will convince the reader that these estimates are sharp, for
they cannot be improved even in the case of the trivial solution.

Proof. Without loss of generality we may assume that x0 = 0. Let Lu ∶= −∇ ⋅
(∣y∣β∇u) and let v be the L-harmonic replacement of u in B2r, see (7.4). Write
dσ = ∣y∣β dHn and M ∶=

ffl
∂B2r

udσ . By Harnack’s inequality (see [CRS10b], for
instance) and the mean value principle in Lemma 7.2,

inf
Br

v ≥Cv(0) =CM.

We have that

λ(Br) =
ˆ

Br

dλ ≤ 1
CM

ˆ
Br

vdλ .

Since u ≡ 0 in the support of λ and u is L-subharmonic (see [AC81, Lemma 2.2])
we get ˆ

Br

vdλ =
ˆ

Br

(v−u)dλ ≤
ˆ

B2r

(v−u)dλ .

By the properties of the measure λ , we obtainˆ
B2r

(v−u)dλ = −
ˆ

B2r

∣y∣β∇(v−u) ⋅∇u =
ˆ

B2r

∣y∣β (∣∇u∣2−∣∇v∣2) ,

and using the definition of the functional and the fact that u is a minimizer, we getˆ
B2r

∣y∣β (∣∇u∣2−∣∇v∣2) = J (u,B2r)−m(B+2r(u))−J (v,B2r)+m(B′2r) ≤Crn.

All together, we have that

λ(Br) ≤
1

CM
Crn,
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and, since uniform non-degeneracy (see Corollary 7.3) implies that M ≥Crα we
can conclude the proof of the first statement.

To show the second one, note that since the free boundary has locally finite
(n−1)-dimensional Hausdorff measure, given a set E ⊂F(u) and k ∈N we can find
a collection of balls Ik = {Bk

i }i such that

E ⊂ ⋃
B∈Ik

B, sup
B∈Ik

r(B) ≤ 1/k and ∑
B∈Ik

r(B)n−1 ≤ 2Hn−1(E).

Thus,

λ(E) ≤ ∑
B∈Ik

λ(B) ≲ ∑
B∈Ik

r(B)n−α ≤ sup
B∈Ik

r(B)1−α ∑
B∈Ik

r(B)n−1 k→∞ÐÐÐ→ 0.

�

Next we study the measure away from the free boundary. We should empha-
size here that even though the estimates in Lemma 7.5 and Theorem 7.6 depend
on E0, they will be used to remove the dependence of our other estimates on E0.
More precisely, Theorem 7.6 will play a role in establishing the continuity of the
Green function in Lemma 7.9. This qualitative fact is used to prove the quantitative
uniform Hölder character in Theorem 7.8.

After proving Theorem 7.8, we may drop the hypothesis ∥u∥Hβ (B2) ≤ E0 from
both Lemma 7.5 and Theorem 7.6.

Lemma 7.5. If u ∈Hβ

loc(B2) is a minimizer of J in the ball B2 with ∥u∥Hβ (B2) ≤ E0

and 0 ∈ F(u), then for every x0 = (x′,0) ∈ B1,0(u) we get

lim
y→0

∣y∣β ∣uy(x′,y)∣ ≈Cdist(x0,F(u))−α .

Moreover, for every ball B centered at Rn×{0} with B′ ⊂⊂ B1,0(u), we have that

∣y∣β ∣uy(x′,y)∣ ≤Cdist(x0,F(u))−α ,

for ∣y∣ <CBdist(x,F(u)), where the constant CB may depend on B.

Proof. Let u be a minimizer, and let B ∶= Br(x0) with B′ ⊂ B1,0(u). By [Sil12,
Lemma 2.2], we can write u(x′,y) = ∣y∣1−β g(x′)+O(y2), where g is a C1+β ( 1

2 B′)
function, with a uniform control on the error term in terms of ∥u∥L2(B,∣y∣β ). In
particular, limy→0 ∣y∣β−1u(x′,y) = g(x′).

Let us define

(7.6) ũ(x′,y) ∶=
⎧⎪⎪⎨⎪⎪⎩

u(x′,y) if y ≥ 0
−u(x′,−y) if y < 0.

It is clear that Lũ ≡ 0 in B. According to [Vit18, Lemma 3.26, Corollary 3.29]
v(x′,y) = ∣y∣β y−1ũ(x′,y) is an even C∞( 1

2 B) function in H2−β (B) (note that 1 <
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2−β < 3 is out of the usual range of β ) and satisfying ∇⋅(∣y∣2−β∇v) = 0. The mean
value principle (see Lemma 7.2) applies also to this case, so

g(x′0) = v(x0) =
1´

1
2 B ∣y∣2−β

ˆ
1
2 B

∣y∣2−β v(x) =C
1

r2−β+n+1

ˆ
1
2 B

∣y∣u(x),

and using P1-P3 , if r = dist(x0,F(u)) we get

g(x′0) = v(x0) ≈Crβ−2+1+α =Cr−α .

On the other hand, on the upper half plane we have uy = (y1−β v)y = (1−β)y−β v+
y1−β vy, so

yβ uy(x′,y) = (1−β)v(x′,y)+yvy(x′,y),
and

lim
y→0+

yβ uy(x′,y) = (1−β)g(x′) ≈ r−α ,

the limit being uniform on compact subsets of B. �

Theorem 7.6. If u ∈Hβ

loc(B2) is a minimizer ofJ in the ball B2 with ∥u∥Hβ (B2) ≤E0,
then the measure λ is absolutely continuous with respect to the Lebesgue measure,
and for m-almost every x ∈ B′1(u) we have that

dλ

dm
(x) = 2lim

y→0
∣y∣β uy(x′,y) ≈ χB1,0(u)(x)dist(x,F(u))−α ,

with constants depending on n, α and E0.

Proof. By Theorem 7.4 we only need to show absolute continuity in B1,0(u) ∪
B′1,+(u). For x = (x′,0) ∈ B′1,+(u) by [CS07, Lemma 4.2] we have that

lim
y→0

∣y∣β uy(x′,y) = 0,

and, for x ∈ B1,0(u) we have seen in Lemma 7.5 that

lim
y→0

∣y∣β uy(x′,y) ≈ dist(x,F(u))−α ,

showing the second part of the statement.
Consider a ball Br(x0) with x0 ∈Rn×{0} and a collection of even smooth func-

tions χBr ≤ψk ≤ χBr+ 1
k
. Then

(7.7) λ(Br) ≤ −
ˆ

∣y∣β∇u ⋅∇ψk ≤ λ(Br+ 1
k
),

and for every ε > 0 we use the Green’s theorem to get

−
ˆ

∣y∣β∇u ⋅∇ψk = −
ˆ
∣y∣≤ε

∣y∣β∇u ⋅∇ψk −
ˆ
∣y∣=ε

∣y∣β ψk∇u ⋅ν dm.

Using the symmetry properties and taking limits,

(7.8) −
ˆ

∣y∣β∇u ⋅∇ψk = 2 lim
ε→0

ˆ
ε

β
ψk(x′,ε)uy(x′,ε)dm(x′).
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Next we want to apply the dominated convergence theorem. Let us begin by
considering a ball Br(x0) ⊂B1 centered in the zero phase, with dist(B′r(x0),F(u)) ≥
2r. In this case, by Lemma 7.5 we have

(7.9) ε
β uy(x′,ε) ≲ r−α ,

with constants depending perhaps on u and Br as well.
If instead B′r(x0) ⊂⊂B′1,+(u), by [Vit18, Theorem 3.28] u is an even C∞ function

on B′r(x0), so ∣y∣β uy =O(∣y∣1+β ). Thus

(7.10) ε
β uy(x′,ε) ≲ r2−2α .

In both cases, the dominated convergence theorem applies and

lim
ε→0

ˆ
Br+ 1

k
∩{y=ε}

ε
β

ψkuy dm =
ˆ

B′
r+ 1

k

ψk lim
ε→0

(ε
β uy(⋅,ε))dm,

and by (7.7) and (7.8) we obtain

λ(Br) ≤ 2
ˆ

B′
r+ 1

k

ψk lim
ε→0

(ε
β uy(⋅,ε))dm ≤ λ(Br+ 1

k
).

In particular limε→0(ε
β uy(⋅,ε)) ∈ L1

loc(B1,0(u)∪B′1,+(u)) and taking limits in k we
get

λ(Br) = 2
ˆ

B′r
lim
ε→0

(ε
β uy(⋅,ε))dm.

�

A consequence of our control of the behavior of λ is that we can establish
the existence of exterior corkscrews. We should note that exterior corkscrews can
be also obtained by a purely geometric argument given the non-degeneracy and
positive density of Theorem 2.3 (see, e.g. the proof of Proposition 10.3 in [DT15]).

Corollary 7.7. If u ∈ is a minimizer in B2 with ∥u∥Hβ (B2) ≤E0, then B′1,+(u) satisfies
the exterior corkscrew condition, i.e. there exists a constant C1 such that for every
x ∈ F(u) and every 0 < r < dist(x,∂B1) one can find x0 ∈ Br(x) so that

B(x0,C1r)∩B′1,+(u) = ∅.

Proof. This is a consequence of Theorems 7.4 and 7.6, and the positive density
condition for the zero phase. Indeed, given a ball Br ⊂Rn+1, combining both theo-
rems we get

rn−α ≳ λ(B1,0(u)∩Br) ≥CE0

ˆ
B1,0(u)∩Br

dist(x,∂B1)−α

≥C
⎛
⎝

sup
B1,0(u)∩Br

dist(x,∂B1)
⎞
⎠

−α

∣B1,0(u)∩Br∣,
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and the positive density condition implies that

∣B1,0(u)∩Br∣ ≥CE0rn.

Thus,
sup

B1,0(u)∩Br

dist(x,∂B1) ≥CE0r,

which is equivalent to the exterior corkscrew condition. �

7.3 Uniform Hölder character
The uniform non-degeneracy of Section 7.1 lets us conclude uniform control

on the Hölder norm of u.

Theorem 7.8. Let u be a minimizer of J in Br with 0 ∈ F(u). Then ∣u(x)∣ ≤C∣x∣α
for every x ∈ ∂Br/2 with C depending only on n and α .

Proof. Again we set v to be the L-harmonic replacement of u inside of Br as in
(7.4). Let ũ ∶= v−u, so that

Lũ = Lv−Lu = −λ = −∇⋅(∣y∣β∇u),
and ũ ∈H1,2

0 (Br; ∣y∣β ).
Consider the Green function G ∶Br×Br→R such thatLG(⋅,z) = δz, and G(⋅,z) ∈

H1,2
loc (Br ∖{z}) with null trace on ∂Br (see [FJK82, Proposition 2.4]). By [FJK82,

Proposition 2.1, Lemma 2.7] there exists p0 > 1 so that ũ is the unique function in
H1,p0

0 (Br; ∣y∣β ) such that Lũ = λ , and moreover

(7.11) ũ(z) =
ˆ

Br

G(z,x)dλ(x),

for almost every z ∈ Br.
Below, in Lemma 7.9, we will see that the equality (7.11) is in fact valid for

every z ∈ Br/4, that is, ũ =
´

Br
G(⋅,x)dλ(x). In particular

v(0) = ũ(0) =
ˆ

Br

G(0,x)dλ(x).

Next we use the following estimate (see [FJK82, Theorem 3.3]): let z,x ∈ Br/4.
Then

G(z,x) ≈
ˆ r

∣x−z∣

sds
w(B(x,s)) ,

where w is the A2 weight w(x) = ∣y∣β . Computing, for x = (x′,y) we obtain

w(B(x,s)) ≈ sn
ˆ y+s

y−s
∣t ∣β dt ≈ sn max{∣y∣,s}β+1.

First we assume that n−2α > 0. Thus, if x ∈ B′r/4 then

(7.12) G(z,x) ≈
ˆ r

∣x−z∣
s−n−β ds ≈ ∣x− z∣−n−β+1 = ∣x− z∣2α−n.
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Note that λ(Br) ≤Crn−α by Theorem 7.4. Thus, writing At,s ∶= Bs∖Bt , we have
that

v(0) =
ˆ

Br

G(0,x)dλ(x)

≤
ˆ ∞

cr2α−n
λ ({x ∈ Br/4 ∶G(0,x) > t})dt +

ˆ
Ar/4,r

G(0,x)dλ(x).

By the strong maximum principle, the Green function in the annulus is bounded
by Crn−2α . This fact, together with Theorem 7.4, implies that

v(0) ≤
ˆ ∞

cr2α−n
λ (B

Ct
−1

(n−2α)
)dt +Crα ≤C

ˆ ∞

cr2α−n
t−

n−α

n−2α dt +Crα =Crα .

By the mean value theorem we conclude that 
∂Br

vdσ ≤Crα ,

where dσ = ∣y∣β dHn. The theorem follows by observing that, as in (7.5), the mean
of v dominates u by sup∂Br/2 u ≤ sup∂Br/2 v ≤C

ffl
∂Br

vdσ .
In case n− 2α = 0, which could only happen for n = 1 and α = 1/2, estimate

(7.12) reads as

G(z,x) ≈ log( r
∣x− z∣) ,

and the proof follows the same steps.
In case n−2α < 0, then estimate (7.12) reads as

G(z,x) ≈ rn−2α ,

and the estimate is even better compared to the above.
�

Lemma 7.9.
´

Br
G(z,x)dλ(x) is continuous in z ∈ Br/4.

Proof. Let ε < r/2 and let z1,z2 ∈ Br/4, with ∣z1− z2∣ ≤ ε/2. Thenˆ
Br

∣G(z1,x)−G(z2,x)∣dλ(x) ≤
ˆ

Br∖Bε(z1)
∣G(z1,x)−G(z2,x)∣dλ(x)

+
ˆ

Bε(z1)
G(z1,x)dλ(x)+

ˆ
Bε(z1)

G(z2,x)dλ(x).(7.13)

Next we use (7.12) and Theorems 7.4 and 7.6. By decomposing the domain on
dyadic annuli, in case n−2α > 0 we getˆ

Bε(z1)
G(z1,x)dλ(x) ≤∑

j≤0

ˆ
A2 j−1ε,2 jε

(z1)
G(z1,x)dλ(x)

≲∑
j≤0

λ(B2 jε(z1))(2 j−1
ε)2α−n ≲ ε

α∑
j≤0

2 jα .(7.14)
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In case n−2α = 0 we obtain ε
α∑ j≤0 2 jα log( r

2 jε
) on the right-hand side instead,

and in case n−2α < 0 we obtain ε
n−αr2α−n∑ j≤0 2 j(n−α). In every case, fixing ε

small enough this term can be as small as wanted. The same will happen with the
last term on the right-hand side of (7.13).

On the other hand, by [FKS82, Theorem 2.3.12] Green’s function is uniformly
continuous on the set {(z,x) ∈Br×Br ∶ ∣z−x∣ > ε} so ∣G(z1,x1)−G(z2,x2)∣ ≤ δε(∣z1−
z2∣+ ∣x1−x2∣) with δε(t) t→0ÐÐ→ 0. Thus,ˆ

Br∖Bε(z1)
∣G(z1,x)−G(z2,x)∣dλ(x) ≤ δε(∣z1− z2∣)λ(Br) → 0.

Assuming that ∣z1−z2∣ is small enough, we obtain that
´

Br
∣G(z1,x)−G(z2,x)∣dλ(x)

is as small as wanted and the claim follows. �

Remark 7.10. In light of Theorem 7.8 and Caccioppoli inequality (see Section
3.1), arguing as in [CRS10b, Theorem 1.1] we obtain that every minimizer u in a
ball Br with 0 ∈ F(u) has uniform Cα character in Br/2 and the same for the Hβ

norm. Moreover, using [CRS10b, Theorem 1.2] we can find interior corkscrew
points with constants not depending on these norms. This allows us to remove the
a priori dependence on ∥u∥Hβ from all of our results above.

7.4 Lower estimates for the distributional fractional Laplacian
Next we bound the growth of the measure around a free boundary point from

below. None of these results will be used in the present paper, but we include them
to give a complete picture of the tools under consideration.

Theorem 7.11. Let u ∈ Hβ (B2r) be a minimizer of J in B2r such that 0 ∈ F(u).
Then we have

λ(Br) ≥Crn−α .

Proof. Let Lu ∶= −∇⋅(∣y∣β∇u) and let v be the L-harmonic replacement of u in Br
(see (7.4)). Let ũ ∶= v−u and consider the Green function G ∶ Br ×Br →R as in the
proof of Theorem 7.8.

Let 0 < κ < 1 to be fixed later. By P1-P3 in Theorem 2.3 there exists a point
z0 ∈ Bκr with

(7.15) u(z0) ≈ (κr)α ,

with constants depending only on n and α by Remark 7.10. By P1 there is a
constant c such that for every z ∈ B(z0,cκr) we have that u(z) ≈ (κr)α . Since λ is
supported on the zero phase of u, the ball B(z0,cκr) is away from its support, and

ũ(z) =
ˆ

Br∖B(z0,cκr)
G(z,x)dλ(x).
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Using the strong maximum principle (see [HKM06, Theorem 6.5]) and (7.12),
for almost every z ∈ B(z0,cκr/2) we get

ũ(z) ≤ λ(Br) sup
x∈Br∖B(z0,cκr)

G(z,x) = λ(Br) sup
x∈Br/4∖B(z0,cκr)

G(z,x)

≈ λ(Br) sup
x∉B(z0,cκr)

∣x− z∣2α−n = λ(Br)(cκr)2α−n.

That is,

(7.16) ũ(z) ≲ λ(Br)(cκr)2α−n.

On the other hand, note that u is continuous. By the Riesz representation theo-
rem, there exists a probability measure ω

z
L such that

v(z) =
ˆ

∂Br

u(x)dω
z
L(x).

We can choose r so that ∂Br intersects a big part of a corkscrew ball, i.e., assume
that there exists a point ξ0 ∈ ∂B′r which is the center of a ball B′(ξ0,cr) where u
has positive values. This can be done by the interior corkscrew condition, with all
the constants involved depending only on n and α . Then, changing the constant if
necessary, all points ξ ∈ B(ξ0,cr) satisfy that u(ξ) ≥Crα by the non-degeneracy
condition and the optimal regularity. Call U ∶= ∂Br ∩B(ξ0,cr). Then

v(z) ≳ rα
ω

z
L(U).

But ω
z
L(U) is bounded below by a constant by [HKM06, Lemma 11.21] and the

Harnack inequality (use a convenient Harnack chain). All in all, we have that

(7.17) v(z) ≳ rα .

Combining (7.16), (7.15) and (7.17) and choosing κ small enough, depending
in n and α , we get

λ(Br) ≳
ũ(z0)

(cκr)2α−n ≥
Crα −C′(κr)α

(cκr)2α−n ≥Cn,αrn−α ,

for κ small enough.
In case n−2α = 0, that is for n = 1 and α = 1/2, using similar changes as in the

proof of Theorem 7.8 we get ũ(z) ≲ λ(Br)supx∉B(z0,cκr) log( r
∣x−z∣) ≈ λ(Br)∣ logκ ∣

instead of (7.16). In case n−2α < 0, the proof is even easier than before. �

Remark 7.12. Theorem 7.11 implies that the (n−α)-Hausdorff measure of the
free boundary is locally finite. This does not suffice to show finite perimeter of the
positive phase and, therefore, we had to use the approach in Section 5.

The following theorem summarizes the information that we have gathered so
far about the measure λ .
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Theorem 7.13. If u ∈ Hβ

loc(Ω) is a minimizer of J in Ω, then the measure λ is
absolutely continuous with respect to the Lebesgue measure in Ω

′(u). Moreover,
given x0 ∈ F(u) and r > 0 such that B2r(x0) ⊂Ω, then

(7.18) λ(Br(x0)) ≈ rn−α ,

and for almost every x ∈ B′r(x0) we have that

dλ

dm
(x) = 2lim

y→0
∣y∣β uy(x′,y) ≈ χΩ0(u)(x)dist(x,F(u))−α ,

with constants depending only on n and α .

8 Rectifiability of the singular set

In this section we use the Rectifiable-Reifenberg and quantitative stratification
framework of Naber-Valtorta [NV17] to prove Hausdorff measure and structure
results for the singular set. Recall that k∗α is the first dimension in which there
exists non-trivial α-homogeneous global minimizers to (1.1) defined in Section 5.

Theorem 8.1. Let u ∈ Hβ

loc(Ω) be a minimizer of (1.1) in a domain Ω. Then Σ(u)
is (n−k∗α)-rectifiable and for every D ⊂⊂Ω, we have

Hn−k∗α (Σ(u)∩D) ≤Cn,α,dist(D,∂Ω).

Part of the power of this framework is that it is very general. One needs certain
compactness properties on the minimizers and a connection between the drop in
the monotonicity formula and the local flatness of the singular set (see Theorem
8.14 below). To avoid redundancy and highlight the original contributions of this
article, we omit many details here and try to focus on the estimates needed to apply
this framework to minimizers of (1.1). Whenever we omit details we will refer the
interested reader to the relevant parts of [EE19].

The key first step is to introduce the appropriate formulation of quantitative
stratification. First introduced by Cheeger and Naber [CN13] in the context of
manifolds with Ricci curvature bounded from below, this is a way to quantify the
intuitive fact that F(u) should “look” (n−k∗α)-dimensional near a point x0 ∈ F(u)
at which the blow-ups have (n−k∗α)-linearly independent translational symmetries.

8.1 Quantitative stratification for minimizers to J
We have seen in Section 4.1 that homogeneous functions have linear spaces of

translational symmetry. Here we want to quantify (both in terms of size and sta-
bility) how far a function is from having no more than k directions of translational
symmetry.

Definition 8.2. We write V k for the collection of linear k-dimensional subspaces
of Rn. A function u is said to be k-symmetric if it is α-homogeneous with respect
to some point, and there exists a L ∈V k so that

u(x+v) = u(x), for every v ∈ L.
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A function u is said to be (k,ε)-symmetric in a ball B if for some k-symmetric ũ we
have

r−2−n
ˆ

B
∣y∣β ∣u− ũ∣2dy < ε.

Next we define the k-stratum Sk(u), the (k,ε)-stratum Sk
ε(u) and the (k,ε,r)-

stratum Sk
ε,r(u). A key insight here is to define these strata by the blow-ups having

k or fewer symmetries as opposed to exactly k symmetries.

Definition 8.3. Let 0 ≤ k ≤ n, 0 < ε <∞ and 0 < r < dΩ(x) ∶= dist(x,∂Ω), let u be a
continuous function in Ω and let x ∈ F(u). We say that:

● x ∈ Sk(u) if u has no (k+1)-symmetric blow-ups at x.
● x ∈ Sk

ε(u) if u is not (k+1,ε)-symmetric in Bs(x) for 0 < s ≤min{1,dΩ(x)}.
● x ∈ Sk

ε,r(u) if u is not (k+1,ε)-symmetric in Bs(x) for r ≤ s≤min{1,dΩ(x)}.

If it is clear from the context we will omit u from the notation.

We now detail some standard properties of the strata defined above and how
they interact with the free boundary F(u). While the proofs are mostly standard,
we give the details as the scaling associated to the problem (1.1) adds some tech-
nical difficulties. This proof also provides a blueprint for fleshing out the details in
Sections 8.3 and 8.4.

Lemma 8.4. Let 0 ≤ j ≤ k ≤ n, 0 < ε ≤ τ < ∞, 0 < r ≤ s < dist(x,∂Ω), and let u ∈
Hβ

loc(Ω) be a minimizer in Ω. Then:

(1) S0 ⊂ S1 ⊂ ⋯ ⊂ Sn−1 = Sn = F(u). Moreover, for the reduced boundary, we
have that Fred(u) ⊂ Sn−1∖Sn−2 and Σ(u) ⊂ Sn−k∗α .

(2) We have S j
τ ⊂ Sk

ε ⊂ Sk and, moreover, Sk = ⋃
ε>0

Sk
ε .

(3) Also S j
τ ⊂ S j

τ,r ⊂ Sk
ε,s and, moreover, Sk

ε = ⋂
r>0

Sk
ε,r.

(4) The sets Sk
ε are closed, in both x and u: if ui

L2
loc(Ω;∣y∣β )
ÐÐÐÐÐÐ→ u and xi → x with

xi ∈ Sk
ε(ui), then x ∈ Sk

ε(u).

(5) If ui
L2

loc(Ω;∣y∣β )
ÐÐÐÐÐÐ→ u, εi → 0, and ui are (k,εi)-symmetric in B1, then u is k-

symmetric in B1.

Proof. 1. The inclusions Sk ⊂ Sk+1 of the first property are trivial. The last equali-
ties are consequences of the non-degeneracy. The fact that Fred(u)∩Sn−2 = ∅ can
be deduced from the Hausdorff convergence of the free boundaries described in
Lemma 3.4 and Theorem 2.4. Finally, Σ(u) ⊂ Sn−k∗α is a consequence of Lemmas
4.5 and 5.2.

2. The inclusions S j
τ ⊂ Sk

ε of the second property come from the definitions: if
x ∉ Sk

ε then there exist a ball B ⊂ Ω centered at x and a (k+1)-symmetric ũ so that
r(B)−2−n ´

B ∣y∣β ∣u− ũ∣2dy < ε ≤ τ. But ũ is also ( j+1)-symmetric. Thus, x ∉ S j
τ .
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The fact that Sk
ε ⊂ Sk is a consequence of the uniform convergence on Lemma

3.4: if x ∉ Sk, then u has a (k+1)-symmetric blow-up sequence ui → u0 at x con-
verging uniformly. Thus,

ˆ
Bρi(x0)

∣y∣β ∣u(x)−ρ
α

i u0(
x−x0

ρi
)∣

2

dx

= ρ
β+2α+n+1
i

ˆ
B1

∣y∣β ∣u(x0+ρix)
ρα

i
−u0(x)∣

2

dx

≤ ρ
n+2
i ω(B1)∥ui−u0∥L∞ .

That is,

ρ
−n−2
i

ˆ
Bρi(x)

∣y∣β ∣u(x)− rα

i u0(
x−x0

ρi
)∣

2

dx
i→∞ÐÐ→ 0,

and therefore, for every ε there exists a ball small enough so that u is (k+1,ε)-
symmetric in it. In particular Sk ⊃ ⋃ε>0 Sk

ε .
To see the converse, assume that x ∉ ⋃ε Sk

ε . Then for every i ∈ N there ex-
ist a (k + 1)-symmetric function ũi, invariant with respect to Li ∈ V k+1 and ri <
min{1,dist(x,∂Ω)} such that

1
rn+2

i

ˆ
Bri

∣y∣β ∣u(x)− ũi(x)∣2 dx < 1
i
.

In the case when ri stays away from zero, since ri < 1, we can take a subsequence
converging to r0 ∈ (0,1), and one can see that u is (k+ 1)-symmetric in the ball
Br0(x0). Otherwise, consider ui ∶= u(x0+rix)

rα

i
and ũi,i = ũi(x0+rix)

rα

i
. Taking subse-

quences, we can assume that Li → L0 locally in the Hausdorff distance, and that
ui→ u0 locally uniformly. One can check also using the Hölder character of u that
{ũi,i} is uniformly bounded in L2(B; ∣y∣β ), so taking subsequences again, we can
assume the existence of ũ0 so that ũi,i → ũ0 in L2(B; ∣y∣β ). This function will be
(k+1)-symmetric, being invariant in the directions of L0. By the triangle inequal-
ity we getˆ

B1

∣y∣β ∣u0− ũ0∣2 dx ≲
ˆ

B1

∣y∣β ∣u0−ui∣2 dx+
ˆ

B1

∣y∣β ∣ui− ũi,i∣2 dx+
ˆ

B1

∣y∣β ∣ũi,i− ũ0∣2 dx.

The first and the last integrals converge to zero by our choice of the subsequence.
For the middle term just change variables as before:ˆ

B1

∣y∣β ∣ui− ũi,i∣2 dx = 1
rn+2

i

ˆ
Bri

∣y∣β ∣u(x)− ũi(x)∣2 dx→ 0.

Thus we have that u0 = ũ0 and, therefore, x ∉ Sk.
3. The inclusions S j

τ ⊂ S j
τ,r ⊂ Sk

ε,s of the third property come from the definitions
and thus, Sk

ε ⊂ ⋂r>0 Sk
ε,r. The converse implication is also trivial.
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4. The closedness is obtained by a contradiction argument again. It is straight-
forward but we write it here for the sake of completeness.

Assume by contradiction that x ∉ Sk
ε(u). Then there exist a (k+1)-symmetric

function ũ and a radius r such that

ε0 ∶=
1

rn+2

ˆ
Br(x)

∣y∣β ∣u(x)− ũ(x)∣2 dx < ε.

Let τ < 1 to be fixed and consider i0 ∈N so that Bτr(xi) ⊂ Br(x) for every i ≥ i0. By
the triangle inequality

1
(τr)n+2

ˆ
Bτr(xi)

∣y∣β ∣ui(x)− ũ(x)∣2 dx ≤ 1
(τr)n+2 ∥ui−u∥2

L2(Bτr(xi);∣y∣β )+
ε0

τn+2 .

We define τ so that ε0
τn+2 = ε+ε0

2 . Choose i0 big enough so that every i ≥ i0 satisfies
that ∥ui−u∥2

L2(Bτr(xi);∣y∣β ) < (τr)n+2 ε−ε0
2 . Then xi ∉ Sk

ε(ui), contradicting the hypoth-
esis.

5. Assume that ũi is invariant with respect to Li ∈V k+1 andˆ
∣y∣β ∣ui− ũi∣2 ≤ εi.

Consider a subsequence {ui} so that the varieties Li → L locally in the Hausdorff
distance. Using the triangle inequality as in 4 it follows that u is (k,δi)-symmetric
with δi→ 0.

�

Proposition 8.5. There exists ε(n,α) > 0 such that if u ∈Hβ

loc(Ω) is a minimizer of

J in a domain Ω ⊂Rn+1, then Σ(u) ⊂ Sn−k∗α
ε (u).

Proof. It is enough to show that if u is a minimizer of J in B2(0), then Σ(u)∩
B1(0) ⊂ Sn−k∗α

ε (u).
By contradiction, let us assume that there is a sequence of positive numbers

εi
i→∞ÐÐ→ 0, functions ui minimizing J in B2(0) and xi ∈ Σ(ui)∩B1(0), ri ∈ (0,1],

with ui being (n− k∗α + 1,εi)-symmetric in Bri(xi), and let Li be an (n− k∗α + 1)-
dimensional subspace that leaves invariant one of the admissible (n − k∗α + 1)-
symmetric approximants. By rescaling we can assume that ri = 1.

Passing to a subsequence we can assume that Li → L0 ∈V n−k∗α+1 locally in the
Hausdorff distance and xi→ x0. By the compactness results in Lemma 3.4 we have
a uniform limit u0 which is a minimizer as well, and it is (n− k∗α +1)-symmetric
with invariant manifold L0. By Lemma 4.4 any blow-up u0,0 at x0 will be (n−k∗α +
1)-symmetric as well. Applying Lemma 4.5 (n− k∗α + 1) times we find that the
restriction of u0,0 to the orthogonal manifold L⊥0 is a (k∗α −1)-dimensional minimal
cone which, by Lemma 5.2 is the trivial solution, and so is u0,0. Thus, x0 is a
regular point for u0.
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On the other hand, the Hausdorff convergence of Lemma 3.4 together with the
improvement of flatness of Theorem 2.4 imply that for i big enough xi ∈ Fred(ui),
reaching a contradiction. �

8.2 The Refined Covering Theorem
Our estimates on the size and structure of the singular set Σ(u) come from

similar results concerning the Sk
ε(u). In particular, we prove the following covering

result:

Theorem 8.6. Let u ∈ Hβ (B5) be a minimizer to (1.1) in B5 with 0 ∈ F(u). For
given real numbers ε > 0, 0 < r ≤ 1 and every natural number 1 ≤ k ≤ n−1, we can
find a collection of balls {Br(xi)}N

i=1 with N ≤Cn,α,εr−k such that

Sk
ε,r(u)∩B1 ⊂⋃

i
Br(xi).

In particular, ∣B′r(Sk
ε,r ∩B1)∣ ≤Cn,α,εrn−k for every 0 < r ≤ 1 and

Hk(Sk
ε(u)∩B1) ≤Cn,α,ε .

From Proposition 8.5 and Theorem 8.6 we can conclude the following corollary
which comprises the second part of Theorem 8.1 above.

Corollary 8.7. If u ∈Hβ (B5) is a minimizer to (1.1) in B5 with 0 ∈F(u), then Σ(u)
is (n−k∗α)-rectifiable and for every 0 < r ≤ 1 we have

∣Br(Σ(u)∩B1)∣ ≤Cn,αrk∗α .

In particular,
Hn−k∗α (Σ(u)∩B1) ≤Cn,α .

Rectifiability is encoded in the following result. We omit the details of proof
here but it is a consequence of the packing result above, the Rectifiable-Reifenberg
theorem of [NV17] and Theorem 8.14 below. For more details see Sections 2 and
8 of [EE19] (particularly Theorem 2.2 in the former and the proof of Theorem 1.12
in the latter).

Theorem 8.8. Let u be a non-negative, even minimizer to (1.1) in a domain Ω.
Then Sk

ε(u) is k-rectifiable for every ε and, hence, each stratum Sk(u) is k-rectifia-
ble as well.

The proof of Theorem 8.6 follows from inductively applying the following,
slightly more technical, packing result (for details see Section 4 of [EE19]).

Theorem 8.9. Let ε > 0. There exists η(n,α,ε) such that, for every minimizer
u ∈Hβ (B5) of J in B5 with 0 ∈ F(u) and 0 < R < 1/10, there is a finite collection U
of balls B with center xB ∈ Sk

ε,ηR and radius R≤ rB ≤ 1/10 which satisfy the following
properties:
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A) Covering control:
Sk

ε,ηR∩B1 ⊂ ⋃
B∈U

B.

B) Energy drop: For every B ∈ U ,

either rB = R, or sup
2B

Ψ
u
2rB

≤ sup
B2

Ψ
u
2−η .

C) Packing:

∑
B∈U

rk
B ≤ c(n,α,ε).

We construct the balls of Theorem 8.9 using a “stopping time” or “good ball/bad
ball” argument. Much of this argument uses harmonic analysis and geometric mea-
sure theory and is completely independent of the original problem (1.1). However,
there are a few places in which we need to connect the behavior of minimizers to
the geometric structure of the singular set. Here we will sketch the “good ball/bad
ball” argument, taking for granted the estimates needed to apply this argument to
our functional. In the next few subsection we will provide these estimates. For
more details on the construction itself we refer the reader to Section 7 in [EE19].

Outline of the Construction in Theorem 8.9 To find this covering we define good
and bad balls as follows: imagine our ball, B, has radius 1. We say that B is a good
ball, if at every point in x ∈ Sk

ε(u)∩B the monotone quantity centered at that point
at some small scale, ρ , is not much smaller than the monotone quantity on ball B
(we say these points have “small density drop”). A ball B is a bad ball if all the
points in Sk

ε(u)∩B with small density drop are contained in a small neighborhood
of a (k−1)-plane. This dichotomy follows from Theorem 8.10 in Section 8.3.

In a good ball of radius r we cover Sk
ε(u) with balls of radius ρr iterating the

construction until we find a bad ball or until the radius of the ball becomes very
small. In a bad ball, we cover Sk

ε(u) away from the (k−1)-plane without much
care. Close to the (k−1)-plane we cover Sk

ε(u) with balls of radius ρr iterating the
construction until we reach a good ball or until the radius of the ball becomes very
small.

Inside long strings of good balls, the packing estimates follow from powerful
tools in geometric measure theory (see Theorem 8.13 below) and the connection
between the drop in monotonicity and the local flatness of the singular strata (see
Theorem 8.14 below). We give more details in Section 8.4.

Inside long strings of bad balls each of which is near the (k−1)-plane of the
previous bad ball, we have even better packing estimates than expected (as we are
effectively well approximated by planes which are lower dimensional). This leaves
only points which are in many bad balls and in most of those balls they are far away
from the (k− 1)-plane. However, at these points the monotone quantity drops a
definite amount many times, which contradicts either finiteness or monotonicity.
This implies that the points and scales inside the bad balls which are not close to
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the (k−1)-plane form a negligible set (the technical term is a Carleson set). We
give more information about the bad balls in Section 8.3.

8.3 Tools for bad balls: key dichotomy
Theorem 8.10 (Key dichotomy). Let ε,ρ,γ,η ′ > 0 be fixed numbers with ργ < 2.
There exists an η0(n,α,ε,ρ,γ,η ′) < ρ/100 such that for every η ≤ η0, every r >
0, every E > 0 and every minimizer u ∈ Hβ (B4r) of J in B4r with 0 ∈ F(u) and
supBr

Ψ
u
2r ≤ E, then either

● Ψ
u
γρr ≥ E −η

′ on Sk
ε,ηr ∩Br, or

● there exists ` ∈ Lk−1 so that {x ∈ Br ∶Ψu
2ηr(x) ≥ E −η} ⊂ Bρr(`).

The key dichotomy is a direct consequence of the Lemma 8.11 below. The core
idea is to make effective the following assertion: if u is k-symmetric, then along
the invariant manifold the Allen-Weiss density is constant, and every point away
from the manifold will have (k+1)-symmetric blow-ups by Lemma 4.4.

Lemma 8.11. Let ε,ρ,γ,η ′ > 0 be fixed numbers with γρ < 2. There exist η0,θ > 0
such that for every η < η0, every E > 0 and every minimizer u of J in B4 with
0 ∈ F(u) and supB1

Ψ
u
2 ≤ E, if there exist w0, . . . ,wk ∈ B1 and affine manifolds Li ∶=

⟨w0, . . . ,wi⟩ ∈V i with

wi ∉ Bρ(Li−1), and Ψ
u
2η(wi) ≥ E −η for every i ∈ {0,⋯,k},

then,

(8.1) Ψ
u
γρ(x) ≥ E −η

′ on Bθ(Lk)∩B1

and

(8.2) Sk
ε,η ∩B1 ⊂ Bθ(Lk)

The proof follows (with only minor modifications) the proof in [EE19, Lemma
3.3]. We end this subsection by formally defining the good/bad balls alluded to
above:

Definition 8.12. Let x ∈ B2, 0 < R < r < 2 and u be a minimizer to J in B5. We say
that the ball Br(x) is good if

Ψ
u
γρr ≥ E −η

′ on Sk
ε,ηR∩Br(x),

and otherwise we say that Br(x) is bad.

By Theorem 8.10 in any bad ball B there exists an affine (k−1)-manifold `B
with

(8.3) {w ∈ B ∶Ψu
2ηr(w) ≥ E −η} ⊂ Bρr(`k−1

B ).
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8.4 Tools for good balls: packing estimates and GMT
In this section we control the local flatness of the singular strata by the drop in

monotonicity. To do this we introduce a key tool from geometric measure theory
which estimates the flatness of a set. Given a Borel measure µ , a point x and a
radius r, the beta coefficient is defined as follows:

(8.4) β
k
µ,2(Br(x))2 ∶= β

k
µ,2(x,r)2 = inf

L∈V k
a

1
rk

ˆ
Br(x)

dist(z,L)2

r2 dµ(z)

where V k
a stands for the collection of k-dimensional affine sets of Rn. The beta

coefficients are meant to measure in a scale invariant way how far is a measure
from being flat, in this case in the L2 distance, although other Lp versions have
been used in the literature for 1 ≤ p ≤∞ quite often, dating back to [Jon90] (for the
L∞ version) and David-Semmes [DS93] (for the Lp version).

If we control the size of the β
k’s we can conclude size and structure estimates

on the measure µ . The following theorem says exactly this and represents a major
technical achievement. It differs (importantly) from prior work in this area by
the lack of a priori assumptions on the upper or lower densities of the measure
involved.

Theorem 8.13 (Discrete-Reifenberg Theorem, see [NV17, Theorem 3.4]). Let
{Brq(q)}q be a collection of disjoint balls, with q ∈ B1(0) and 0 < rq ≤ 1, and let
µ be the packing measure µ ∶= ∑q rk

qδq, where δq stands for the Dirac delta at q.
There exist constants τDR,CDR > 0 depending only on the dimension such that ifˆ 2r

0

ˆ
Br(x)

β
k
µ,2(z,s)2 dµ(z)ds

s
≤ τDRrk for every x ∈ B1(0), 0 < r ≤ 1,

then
µ(B1(0)) =∑

q
rk

q ≤CDR.

To obtain the packing estimates required for the Discrete-Reifenberg Theorem,
we need to control the beta coefficients. The key estimate of this entire framework
lies in the following theorem, which shows the drop in monotonicity at a given
point and a given scale controls the beta coefficient at a comparable scale.

Theorem 8.14. Let ε > 0 be given. There exist δ(n,α,ε) and c(n,α,ε) such that
for every u ∈Hβ (B5r) minimizing J in B5r(x) with x ∈ F(u) and

(8.5)
⎧⎪⎪⎨⎪⎪⎩

u is (0,δ)-symmetric in B4r(x)
u is not (k+1,ε)-symmetric in B4r(x),

and every Borel measure µ , we have that

(8.6) β
k
µ,2(Br(x))2 ≤ c(n,α,ε)

rk

ˆ
Br(x)

(Ψ
u
4r(w)−Ψ

u
r(w)) dµ(w).
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We follow the proof of [EE19, Theorem 5.1] closely. First the authors give an
explicit formula for the beta coefficients.

Lemma 8.15. Let X be the center of mass of a Borel measure µ on B = Br(x).
Let {λi}n

i=1 be the decreasing sequence of eigenvalues of the non-negative bilinear
form

Q(v,w) ∶=
 

B
(v ⋅ (z−X))(w ⋅ (z−X))dµ(z),

and let {vi}n
i=1 be a corresponding orthonormal sequence of eigenvectors, that is

vi ⋅v j = δ
i j and Q(vi,v) = λivi ⋅v. Then

β
k
µ,2(B)2 = 1

rk

ˆ
B

dist(z,Lk)2

r2 dµ(z) = µ(B)
rk

(λk+1+⋅ ⋅ ⋅+λn)
r2 ,

where Lk ∶= X + span⟨v1, . . . ,vk⟩.
Next we find a relation between the eigenvalues of Q and Allen-Weiss’ energy.

Lemma 8.16. Under the hypothesis of Lemma 8.15, for every u ∈ Hβ (B5r) mini-
mizing J in B5r(x) and every i ≤ n, we have that

(8.7) λi
2

rn+2

ˆ
A2r,3r(x)

∣y∣β (vi ⋅Du(z))2 dz ≤C
 

Br(x)
(Ψ

u
4r(w)−Ψ

u
r(w)) dµ(w).

Proof. The argument follows as in [EE19, (18) and below]. In formula (18) one
needs to change u(z) by αu(z), which can be done with exactly the same argument.

�

Finally, using compactness, we bound the left-hand side of (8.16) from below.

Lemma 8.17. Let ε > 0 be given. There exists a δ(n,α,ε) and c(n,α,ε) such that,
for every orthonormal basis {vi}n

i=1 and every u ∈Hβ (B5r) minimizing J in B5r(x)
with x ∈ F(u) and satisfying (8.5), we have that

(8.8)
1

c(n,α,ε) ≤ r−n
ˆ

A2r,3r(x)
∣y∣β

k+1

∑
i=1

(vi ⋅Du(z))2 dz.

Proof. The proof follows that of [EE19, (19)] and we omit it.
�

Proof of Theorem 8.14. By Lemmas 8.15, 8.17 and 8.16 we get that

β
k
µ,2(B)2 ≤ µ(B)

rk+2 (n−k)λk+1

≤ µ(B)
rk (n−k)c(n,α,ε)

k+1

∑
i=1

λi

rn+2

ˆ
A2r,3r(x)

∣y∣β (vi ⋅Du(z))2 dz

≤ c(n,α,ε)
rk

ˆ
Br(x)

(Ψ
u
4r(w)−Ψ

u
r(w)) dµ(w).

�
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Cozzi, Albert Mas, Maria del Mar González, Luis Silvestre and Stefano Vita
for some conversations around [Vit18]. They would also like to thank Mihalis
Mourgoglou for some conversations regarding the degenerate elliptic measure.
© 2000 Wiley Periodicals, Inc.

Appendix

Appendix: Relation with the nonlocal Bernoulli problem

As in [DV17, Lemma 2.1], we see that the study of minimizers of J includes
the study of minimizers of J.

Proposition A.1. If f is a minimizer of J in the unit ball of Rn then f ∗Py is a
minimizer of J in every ball B such that B′ ⊂⊂ B′1.

If u = f ∗Py is a minimizer of J , then f is a minimizer for J. In particular, if
u is a minimizer of J in every ball, positive outside the hyperplane {y = 0}, and
u(x,y) = O(∣(x,y)∣α), then u∣Rn×{0} is a minimizer for J in every ball.

We follow [DV17, Lemma 2.1], that is, we use the following result from
[CRS10a, Section 7].

Lemma A.2 (see [CRS10a, Section 7]). Let f ,g satisfy that J0( f ,B1),J0(g,B1) <
∞, and suppose that f −g is compactly supported in B1 ⊂Rn. Then we have that

J0(g,B1)−J0( f ,B1) = cn,α inf
ˆ

Ω

∣y∣β (∣∇v(x,u)∣2−∣∇( f ∗Py)(x)∣2),

where the infimum is taken among all the symmetric bounded Lipschitz domains
Ω with the property that Ω∩(Rn×{0}) ⊂ B1 and among all symmetric functions v
with trace g satisfying that v− f ∗Py is compactly supported on Ω.

Proof of Proposition A.1. Let f be a minimizer of J in the unit ball of Rn and let
Br be a ball such that B′r ⊂⊂ B′1. We want to show that u ∶= f ∗Py is a minimizer of
J in Br.
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Let v ∶Rn+1→R so that v ≡ u in Rn+1∖Br and v ∈ H1(β ,Br). Let g be the trace
of v in Rn×{0}. By Lemma A.2 we have that

(A.1) J0(g,B1)−J0( f ,B1) ≤ cn,α

ˆ
Br+ε

∣y∣β (∣∇v∣2−∣∇u∣2)

for every ε > 0.
In particular, since g∣(B′)c ≡ 0, g is an admissible competitor for f and J( f ,B1) ≤

J(g,B1), i.e.,

J0(g,B1)−J0( f ,B1) ≥ −m({g > 0}∩B1)+m({ f > 0}∩B1)(A.2)

=m({u > 0}∩B′r)−m({v > 0}∩B′r).

The proposition follows combining (A.1) and (A.2) and letting ε → 0.
The converse follows the same sketch: every global minimizer can be expressed

as the Poisson extension of its restriction to the hyperplane by Proposition B.1 and
it is left to the reader. �

As a consequence of the previous proposition, all the results that we have
proven for minimizers of J also apply to minimizers of J:

Corollary A.3. If u ∶ Rn → R is a minimizer to J in B2 ⊂ Rn and 0 ∈ F(u), then
∥u∥Cα(B1) ≤C, it satisfies the nondegeneracy condition u(x) ≥Cdist(x,F(u))α for
x ∈ B1, the positive phase satisfies the corkscrew condition, every blow-up limit is
α-homogeneous, and the boundary condition in (1.2) is satisfied at Fred(u).

Moreover, the positive phase {u> 0}∩B1 is a set of finite perimeter, the singular
set is an (n−3)-rectifiable set, it is discrete whenever n = 3 and it is empty if n ≤ 2.

All the constants depend only on n and α .

Appendix: Uniqueness of extensions

In Proposition A.1 we have used the following result, included in [CRS10b,
Proposition 3.1]. Here we provide a proof which is different than the one appearing
in [CRS10b].

Proposition B.1. Let α ∈ (0,1), β = 1−2α , and set Lu = −div(∣y∣β∇u) in Rn+1.
Suppose that v ∶ Rn+1

+ → R is nonnegative outside Rn, it is a solution to Lv = 0 in
Rn+1
+ with v(x′,0) = 0 for all x′ ∈Rn and ∣v(x)∣ ≤C∣x∣α . Then v ≡ 0.

Proof. First, since ∣y∣β is C∞ away from the hyperplane Rn, v ∈C∞
loc(Rn+1

+ ). Let
now i ∈ {1, . . .n}, and set

fm(x) =
v(x+ 1

m ei)−v(x)
1/m .
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Let Br = Br(x′,0) be a ball centered at (x′,0) ∈Rn×{0} with radius r, and let B2r

be its double ball. Set also w(x) = w(x′,y) = yβ for y > 0. Since fm is a solution of
L fm = 0 in B+r = B∩Rn+1

+ , [FKS82, Theorem 2.4.3] shows that

max
B+r

∣ fm(x)∣ ≤C
⎛
⎝

1
w(B+2r)

ˆ
B+2r

∣ fm∣2w
⎞
⎠

1/2

.

From convergence of difference quotients (similarly to [Eva98, Theorem 3, page
277]), if v ∈H1(β ,B+2r), the last estimate will imply that fm is uniformly bounded in
B+r by a constant Cr. Therefore, from the boundary Caccioppoli estimate ([FKS82,
(2.4.2)]) we have thatˆ

B+r/2

∣∇ fm∣2w ≤ C
r2

ˆ
B+r

∣ fm∣2w ≤ C
r2

ˆ
B+r

C2
r w ≤Cn,r,w <∞,

hence { fm} is bounded in H1(β ,B+r/2). From weak compactness, a subsequence of
{ fm} converges to a solution of Lu = 0 in B+r/2, and since fm → ∂iv pointwise, we
obtain that ∂iv is an H1(β ,B+r/2) solution in B+r/2. Hence ∂iv is a solution to Lu = 0
in Rn+1

+ .
Now, for x = (x′,y) ∈ Rn+1

+ , let R = ∣x∣. We distinguish between two cases: y >
R/16, and y < R/16.

In the first case, set BR to be the ball of radius R, centered at x. Note then that
BR/16 ⊆Rn+1

+ . Then, from [FKS82, Theorem 2.3.1], Caccioppoli’s estimate and the
assumption ∣v(x)∣ ≤C∣x∣α ,

∣∂iv(x)∣2 ≤ C
w(BR/32)

ˆ
BR/32

∣∂iv∣2w ≤ C
w(BR/32)

C
R2

ˆ
BR/16

∣v∣2w

≤ C
R2

w(BR/16)
w(BR/32)

sup
BR/16

∣v∣ ≤CR2α−2.

In the second case, let BR be the ball centered at (x′,0) with radius R, and denote
B+R = BR ∩RN+1

+ . Then x ∈ B+R/8, therefore from [FKS82, Theorem 2.4.3] and the
boundary Caccioppoli estimate,

∣∂iv(x)∣2 ≤ C
w(B+R/8)

ˆ
B+R/8

∣∂iv∣2w ≤ C
w(B+R/8)

C
R2

ˆ
B+R/4

∣v∣2w

≤ C
R2

w(B+R/4)
w(B+R/8)

sup
B+R/4

∣v∣ ≤CR2α−2.

So, in all cases, ∣∂iv(x)∣ ≤C∣x∣α−1. Letting R→∞ and using the maximum princi-
ple, we find that ∂iv = 0 for any i = 1, . . .n. Therefore v does not depend on the first
n variables, so v(x′,y) = v(y). Hence, in Rn+1

+ ,

0 = −div(yβ∇v(y)) = −∂y(yβ v′(y)) ⇒ yβ v′(y) = c̃,
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for some constant c̃. From [FKS82, Theorem 2.4.6], v is Hölder continuous up to
the boundary, therefore for any y > 0,

v(y) = v(y)−v(0) =
ˆ y

0
v′ =

ˆ y

0
c̃s−β ds = c̃

1−β
y1−β ,

which implies that

∣c̃∣ = (1−β)yβ−1∣v(y)∣ = (1−β)yβ−1∣v(0,y)∣ ≤ (1−β)yβ−1yα = (1−β)y−α ,

for any y > 0. Letting y→∞ we obtain that c̃ = 0, hence v′(y) = 0 as well, which
implies that v is a constant. Since v vanishes on Rn, this implies that v ≡ 0. �
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