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Abstract. In this paper we prove the rectifiability of and measure bounds on the
singular set of the free boundary for minimizers of a functional first considered by Alt-
Caffarelli [AC81]. Our main tools are the Quantitative Stratification and Rectifiable-
Reifenberg framework of Naber-Valtorta [NV17], which allow us to do a type of “effective
dimension-reduction.” The arguments are sufficiently robust that they apply to a broad
class of related free boundary problems as well.
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1. Introduction

Let us consider a function u : Ω ⊂ Rn → R minimizing the functional

(?Ω,Q) J(u) =

ˆ
Ω

|Du(x)|2 +Q2(x)1{u>0}(x) dx,
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subject to the condition u|∂Ω = u0|∂Ω ≥ 0 for some u0 ∈ W 1,2(Ω), and positive Q ∈ Cα(Ω).
We will abuse notation and also refer to this minimization problem as (?Ω,Q).

For unbounded Ω, let us say u solves (?Ω,Q) if u|∂Ω = u0|∂Ω and u minimizes J(u) on
every compact subset, in the sense that for every D ⊂⊂ Ω, we haveˆ

D

|Du|2 +Q21{u>0} ≤
ˆ
D

|Dv|2 +Q21{u>0} ∀v s.t. u− v ∈ W 1,2
0 (D).

For u as above, ∂{u > 0} is called the free-boundary, and (?Ω,Q) is a simple example
(“one-phase with constant coefficients”) in a broad class of free-boundary problems. These
problems arise naturally in physical models, such as heat flows and jet cavitation. Other
fundamental types of free-boundary problems, which we shall also address in this paper,
are the two-phase, vector-valued one-phase, and one-phase almost-minimizers (see Section
1.4).

The problem (?Ω,Q) was first studied systematically by Alt-Caffarelli in their seminal
paper [AC81]. They demonstrated existence and certain regularity of u and its free-
boundary, and proved that u essentially solves the system:

u ≥ 0, ∆u = 0 on {u > 0} ∩ Ω, |∇u| = Q on ∂{u > 0} ∩ Ω.

Alt-Caffarelli showed the free-boundary is a set of locally finite perimeter, and proved an
ε-regularity (also known as “improvement of flatness”) theorem for the free-boundary (see
Theorem 1.2).

The regular set of ∂{u > 0}, written reg(u), is defined to be the set of points in ∂{u > 0}
near which ∂{u > 0} can be written as a C1,β graph, for some β > 0. The singular set,
which we write as sing(u), consists of all other points in ∂{u > 0}. By the regularity
theorem of [AC81], the regular set is open, dense, and has full Hn−1-measure. Moreover,
if Q is smooth then the regular set is smooth also.

In general the singular set may be non-empty, but following a strong analogy between
solutions of (?Ω,Q) and minimal surfaces, significant progress has been made towards
partial regularity. That is, demonstrating some kind of smallness of the singular set. Let
us summarize the known results in this direction: given u solving (?Ω,Q), then

(i) For n = 2, sing(u) = ∅ (Alt-Caffarelli [AC81]).
(ii) Let k∗ be the first dimension admitting a non-linear, one-homogeneous solution

of (?Rk∗ ,1). Then we have the Hausdorff dimension bound dim sing(u) ≤ n − k∗
(Weiss, [Wei99]).

(iii) k∗ ≥ 4 (Caffarelli-Jerison-Kenig [CJK04]).
(iv) k∗ ≥ 5 (Jerison-Savin [JS15]).
(v) k∗ ≤ 7 (De Silva-Jerison [SJ09]).

The exact value of k∗ ∈ {5, 6, 7}, and hence the sharp dimension bound on the singular set,
is still unknown. Following the analogy with area-minimizing hypersurfaces, one might
expect k∗ = 7 (supported by the fact that the De Silva-Jerison example is closely related
to the Simons cone). We mention also that the central contribution of Weiss [Wei99] was
to introduce a monotone quantity (see Section 1.1), which enforces one-homogeneity of
blow-ups, and allowed him to adapt standard dimension reducing techniques of Federer-
Almgren to the free-boundary setting.

In this paper we are interested in the quantitative and fine-scale structure of the singular
set. We shall adapt the techniques of Naber-Valtorta [NV17] to prove rectifiability and
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packing bounds on sing(u). For example, we obtain the following Theorem. We recall
that a set is k-rectifiable if Hk-almost-all of it is contained in the countable union of C1

k-manifolds.

Theorem 1.1. Let u solve (?Ω,Q). Then for every D ⊂⊂ D′ ⊂⊂ Ω, we have

Hn−k∗(sing(u) ∩D) ≤ C,

and sing(u) ∩D is (n− k∗)-rectifiable. Here C depends only on the quantities

n, |Q|Cα(D′), min
D′

Q, dist(D, ∂D′), Ln(D′).

More generally, we shall extend the notions of quantitative stratification to solutions
of (?Ω,Q). The k-stratum is defined classically in terms of degrees of symmetry of the
blow-ups (see Section 1.2), and, through ε-regularity Theorems, is directly related to the
singular set. As introduced in [CN13], we define for (?Ω,Q) the (k, ε, r)-strata, which are
effective notions of the k-strata. Theorem 1.1 is a Corollary of more precise packing
estimates and rectifiability of the effective stata.

We also observe that many of our results here actually hold for a whole class of related
free boundary problems. In particular, they hold (with only minor modifications) for
the two-phase problem first considered by Alt-Caffarelli-Friedman [ACF84], the vectorial
version of the Alt-Caffarelli problem (which has been an object of great interest recently,
see [CSY16] and [MTV17]), and for almost-minimizers (in the sense of David and Toro,
see [DT15]). For simplicity we shall write this paper only for the one-phase problem with
Hölder continuous Q, but the proofs carry over esssentially verbatim to other problems.

The techniques of Naber-Valtorta are very powerful, and should perhaps be seen as a
kind of quantitative dimension reducing. They have been used to prove similar results
for harmonic maps [NV17], varifolds with bounded mean curvature [NV15], approximate
harmonic maps [NV16], and Q-valued harmonic maps [dLMSV16]. We feel the techniques
are sufficiently new and involved that it would benefit readers to see their adaptation to
the free boundary setting in significant detail.

1.1. Notation and background. In this section we set up our notation, and recollect
various background results.

We always work in Rn. Given a set A ⊂ Rn, let d(x,A) be the Euclidean distance from
x to A, and write

Br(A) = {x ∈ Rn : d(x,A) < r}

for the open r-tubular neighborhood about A. We shall write |A| = Ln(A) for the n-
volume of A, and Hk(A) for the k-dimensional Hausdorff measure. We let dH denote the
usual Hausdorff distance between sets, so

dH(A1, A2) = inf{r : A1 ⊂ Br(A2) and A2 ⊂ Br(A1)}.

We write ωn = |B1(0)|.
Given points y0, . . . , yk ∈ Rn, we let < y0, . . . , yk > be the affine k-space spanning

y0, . . . , yk.
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Given a Borel measure µ, the Jones’ βk2 -number measures a one-sided L2 µ-distance to
k-planes:

(1) βkµ,2(x, r)2 = inf
V k
r−k−2

ˆ
Br(x)

d(z, L)2dµ(z),

where the infimum is over affine k-planes V k. We write V k
µ,2(x, r) for a choice of k-plane

realizing β. When unambiguous we may simply write β(x, r).
Take a domain Ω ⊂ Rn. We say Ω is a Lipschitz domain if the boundary ∂Ω can

be written locally as a Lipschitz graph. Given f : Ω → R, we write |f |C0(Ω), |f |Cα(Ω),
||f ||Lp(Ω), ||f ||W 1,p(Ω) for the usual sup-, Holder-, Lp-, and Sobolev-norms. We shall use
the Holder semi-norm

[f ]α,Ω = sup
x 6=y∈Ω

|f(x)− f(y)|
|x− y|α

.

Similarly, C0(Ω), Cα(Ω), Lp(Ω), W 1,2(Ω) are the usual function spaces. C∞0 (Ω) is the
space of compactly supported C∞ functions in Ω, and W 1,p

0 (Ω) is the closure of C∞0 (Ω)
with respect to || · ||W 1,p(Ω).

We can and shall assume any constant c or ci is at least 1. The precise value of a
constant written c (without any subscript) may increase from line to line.

Alt-Caffarelli have shown certain (quantitative) regularity of u, depending only on Q
and d(·, ∂Ω). We summarize the relevant results below. Since Q is positive, for shorthand
we will often write |Q+ 1/Q|C0 ≤ Λ in place of 1/Λ ≤ minQ ≤ maxQ ≤ Λ.

Theorem 1.2 (Basic existence, regularity [AC81]). Let u solve (?Ω,Q), and suppose |Q+
1/Q|C0(Ω) ≤ Λ. Let us fix an x ∈ {u > 0} ∩ Ω with 2r < d(x, ∂Ω). Then the following
hold:

(1) (existence) If Ω is a Lipschitz domain, and J(u0) < ∞, then the minimizer u
exists.

(2) (representation) The free-boundary ∂{u > 0} has locally-finite Hn−1-measure, and
∆u = qHn−1x∂{u > 0} in the sense of distributions, for some measurable function
q such that q = Q Hn−1-a.e. in ∂{u > 0}.

(3) (Lipschitz control) We have

||Du||L∞(Br(x)) ≤ c(n)Λ.

(4) (non-degeneracy) For y ∈ Br(x) we have

1

c(n,Λ)
d(y, ∂{u > 0}) ≤ u(y) ≤ c(n,Λ)d(y, ∂{u > 0}).

(5) (ε-regularity) Assume Q ∈ Cα(Ω). There are constants ε0(n), and β(n, α,Λ) < 1
so that if

(2) ∂{u > 0} ∩Br(x) ⊂ Bεr(V
n−1)

for some affine (n− 1)-plane V n−1, then ∂{u > 0} ∩Br/2(x) is a C1,β graph over
V .
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As suggested by Theorem 1.2(4), the natural scaling for (?) is graph dilation. In other
words, if we define

uy,r(x) = r−1u(y + rx),

then u solves (?Br(y),Q) if and only if uy,r solves (?B1(0),rQy,r). Notice that Q scales like
Du, and in particular as r → 0 we have [rQy,r]α,B1(0) → 0. So at small scales u looks like
a solution to (?) with constant Q.

An essentially direct consequence of Theorem 1.2, Alt-Caffarelli proved the following
compactness Theorem (see also Theorem 9.1 in [DT15]).

Theorem 1.3 (Compactness [AC81]). Let ui be a sequence of solutions to (?Bri (0),Qi),
with 0 ∈ ∂{ui > 0} for every i. Suppose ri → r ∈ (0,∞], and

0 < inf
i

min
D

Qi ≤ sup
i

max
D

Qi <∞ ∀D ⊂⊂ Br(0),

and Qi → Q in C0
loc(Br(0)).

Then there is a subsequence i′, and Lipschitz function u∞ ∈ W 1,∞
loc (Br(0)), so that

ui′ → u in the following senses:

(1) ui′ → u∞ in Cα
loc for every 0 ≤ α < 1, and in L2

loc,
(2) Dui′ → Du∞ weak-?-ly in L∞loc, and strongly in L2

loc,
(3) ∂{ui′ > 0} → ∂{u∞ > 0} in the local Hausdorff distance,
(4) 1{ui′>0} → 1{u∞>0} in L1

loc.

Moreoever, u∞ solves (?Br(0),Q) on compact sets, in the sense that for every D ⊂⊂
Br(0), we haveˆ

D

|Du∞|2 +Q21{u∞>0} ≤
ˆ
D

|Dv|2 +Q21{v>0} ∀v s.t. u− v ∈ W 1,2
0 (D).

Remark 1.1. All the properties except strong W 1,2
loc convergence are stated and proven in

[AC81]. The strong L2
loc convergence of Dui is essentially a direct consequence of smooth

convergence away from the free-boundaries, and boundedness of the Dui (see Theorem
9.1 in [DT15] for the full details in the almost-minimizers setting).

Remark 1.2. A simple but important Corollary of ε-regularity is that singular points do not
disappear under limits: if ui → u as in Theorem 1.3, and if xi ∈ sing(ui), xi → x ∈ Br(0),
then x ∈ sing(u) also.

In [Wei99] Weiss discovered a monotone quantity, which enforces a 1-homogeneity in
blow-ups. The Weiss density of u in Br(y) is defined to be

(3) Wr(Q, u, y) = r−n
ˆ
Br(y)

|Du|2dx+Q2(y)r−n|{u > 0} ∩Br(y)| − r−n−1

ˆ
∂Br(y)

u2dσ.

Notice in (3) we are fixing the value of Q at y. When unambiguous we may write Wr(x)
for Wr(Q, u, x).

The density W is scale-invariant, in the following sense:

(4) Wr(Q, u, y) = W1(rQy,r, uy,r, 0).
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Let us also remark that from Theorem 1.2, W is controlled by |Q|C0 and d(·, ∂Ω). Precisely,
whenever x ∈ ∂{u > 0} and B5r(x) ⊂ Ω, then

(5) sup
y∈B2r(x)

W2r(Q, u, y) ≤ c(n)(1 + |Q|C0(B5r(y))).

Weiss demonstrated the following monotonicity.

Theorem 1.4 (Monotonicity [Wei99]). Let u solve (?Ω,Q). Given any x ∈ ∂{u > 0} ∩Ω,
then for any 0 < s < r < R < d(x, ∂Ω), we have

(6)

ˆ
Br(x)\Bs(x)

|u− (y − x) ·Du|2

|y − x|n+2
dy ≤ Wr(u, x)−Ws(u, x) + c0(n, α)rα[Q]α,BR(x).

In particular, when Q is constant then W is increasing in r, and strictly increasing
unless u is 1-homogenous.

From (almost-)monotonicity we have a well-defined notion of density of a point:

W0(Q, u, x) := lim
r→0

Wr(Q, u, x).

Moreover, W0 is upper-semi-continuous in the following sense: if ui, u are solutions to
(?Ωi,Qi) with uniform Cα bounds on Qi, and ui → u as in Theorem 1.3, and xi → x, and
ri → 0, then

W0(Q, u, x) ≥ lim sup
i

Wri(Qi, ui, xi) ≥ lim sup
i

W0(Qi, ui, xi).

Of course, for any fixed positive radius r > 0, with Br(x) ⊂⊂ Ω, Wr is continuous with
respect to this convergence:

Wr(Q, u, x) = lim
i→∞

Wr(Qi, ui, xi).

Monotonicity and compactness gives the existence of 1-homogenous “blow-ups” (or
“tangent solutions”) at any point in the free-boundary. If x0 ∈ ∂{u > 0} ∩Ω, and ri → 0
is some sequence, then (after passing to a subsequence) we have convergence ux0,ri → u∞
as in Theorem 1.3. We call a u∞ obtained in this fashion the blow-up at x0.

The resulting u∞ will be non-zero, one-homogenous, and solve (?Rn,Q(x0)), in the sense
that for every ball Bρ(y),ˆ
Bρ(y)

|Du∞|2+Q(x0)21{u∞>0} ≤
ˆ
Bρ(y)

|Dv|2+Q(x0)21{v>0} ∀v s.t. u−v ∈ W 1,2
0 (Bρ(y)).

Homogeneity follows from Weiss’s monotonicity, since Q∞ ≡ Q(x0) is constant, and

WR(Q(x0), u∞, 0) = lim
ri→0

WR(riQx,ri , ux,ri , 0) = W0(Q, u, x) ∀R > 0.

Notice that ∂{u∞ > 0} will be an (n−1)-cone. We also remark that it is an open problem
whether blow-ups are unique in general; of course at regular points u∞ is unique, and up
to rotation is equal to

u∞(x) = Q(x0)2 max{xn, 0}.
An easy calculation shows that for blow-ups u∞ as above, the Weiss density of u∞ at

0, and hence the density of u at x0, is equal to

W0(Q, u, x0) ≡ W1(Q(x0), u∞, 0) = Q(x0)2|{u∞ > 0} ∩B1(0)|.
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It was observed by Beckner-Kenig-Pipher (in unpublished work, see also [CK98]) that
Faber-Krahn in the sphere and ε-regularity imply that

W0(Q, u, x0) ≥ Q(x0)2ωn
2
,

with equality if and only if x0 is regular. A straightforward contradiction argument, using
Theorem 1.3 on 1-homogenous solutions, can rephrase ε-regularity of Alt-Caffarelli in
terms of density.

Proposition 1.5 ([AC81] with [Wei99]). There is an ε0(n) > 0 so that the following
holds: if u solves (?Ω,Q), then x ∈ ∂{u > 0} ∩ Ω is regular if and only if W0(Q, u, x) <
Q(x)2 ωn

2
(1 + ε0).

1.2. Quantative stratification. We recall the notion of the k-dimensional strata, and
define the effective k-strata. The technique of quantitative stratification was first intro-
duced by Cheeger-Naber [CN13] to study manifolds with Ricci curvature bounded from
below, and has subsequently been used in a variety of geometric and analytic contexts.

Each k-stratum captures where u looks at most k-dimensional on an infinitesimal scale,
or equivalently, where u doesn’t look (k+1)-dimensional at infinitesimal scales. The effec-
tive k-strata consider regions where u looks quantitatively far from (k + 1)-dimensional,
on a local scale. Enforcing structure on u at a fixed positive scale is crucial to obtaining
effective estimates.

Definition 1.6. A function u is k-symmetric if u is 1-homogeneous about some point
(i.e. u(x + rξ) = ru(x + ξ) for all ξ ∈ Sn−1), and there is a k-dimensional plane, Lk, so
that

u(x+ v) = u(x), ∀v ∈ Lk.

Definition 1.7. Given x, we say u is (k, ε)-symmetric in Br(x) if

r2−n
ˆ
Br(x)

|u− ũ|2 dy < ε,

for some k-symmetric ũ.

Definition 1.8. Let u solve (?Ω,Q). The k-stratum, Sk(u), is the set of points x ∈ ∂{u >
0} ∩ Ω for which every blow-up at x is at most k-symmetric.

We define (k, ε)-stratum, Skε (u), to be the set of points x ∈ ∂{u > 0} ∩ Ω for which u
is not (k + 1, ε)-symmetric in Bs(x), for every 0 < s ≤ min{1, d(x, ∂Ω)}.

We will further quantify the strata by defining the (k, ε, r)-stratum Skε,r(u) to be the
set of points x ∈ ∂{u > 0} ∩Ω for which u is not (k + 1, ε)-symmetric in Bs(x), for every
r ≤ s ≤ min{1, d(x, ∂Ω)}.

It is instructive to make some simple observations concerning the above definition.

(i) The k-strata satisfy

S0 ⊂ . . . ⊂ Sn−2 ⊂ Sn−1 = Sn = ∂{u > 0} ∩ Ω,

where the penultimate equality is due to non-degeneracy of solutions. Clearly, we
also have

reg(u) ⊂ Sn−1 \ Sn−2.
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(ii) If δ < ε and r < s, then Skε,r ⊂ Skδ,s. If j < k, then Sjε,r ⊂ Skε,r.

(iii) We have Skε = ∩r>0S
k
ε,r, and Sk = ∪ε>0S

k
ε by an easy contradiction argument.

(iv) Unlike the Sk, the Skε are closed, in both x and u. In other words, if ui → u in
L2, and xi → x, with xi ∈ Skε (ui), then x ∈ Skε (u).

(v) If ui → u in L2, and each ui is (k, εi)-symmetric in B1(0), with εi → 0, then u is
k-symmetric in B1(0).

The main utility of the k-strata has been the dimension bound due to Almgren-Federer,
adapted to the free-boundary setting by Weiss:

dim(Sk(u)) ≤ k.

The fundamental observation behind dimension reducing is the following: if u is 1-
homogenous, and k-symmetric along the k-plane Lk, then any blow-up away from Lk

will be (k + 1)-symmetric.
Demonstrating an inclusion sing(u) ⊂ Sk(u) gives directly a dimension bound on

the singular set. Recalling that k∗ was the first dimension admitting non-trivial, 1-
homogenous solutions to (?Rk∗ ,1), we have by ε-regularity that sing(u) ⊂ Sn−k

∗
(u).

In fact, the ε-regularity of Alt-Caffarelli allows us to demonstrate sing(u) ⊂ Sn−k
∗

ε (u),
for some positive ε. This is essentially due to the fact whenever the free-boundary looks
flat at any scale, then it is regular.

Proposition 1.9. There is an ε(n,Λ, α) so that if u solves (?B3(0),Q) with |Q+1/Q|C0(B3(0)) ≤
Λ and [Q]α,B3(0) ≤ Λ, then sing(u) ∩B1(0) ⊂ Sn−k

∗
ε (u).

Proof. This follows by ε-regularity using a straightforward compactness argument. Sup-
pose, towards a contradiction, we have a sequence ui solving (?B3(0),Qi), and collections
εi → 0, xi ∈ B1(0), ri ∈ (0, 1] satisfying the hypotheses, but so that ui is (n− k∗ + 1, εi)-
symmetric in Bri(xi).

By translation and dilation invariance, we can assume xi ≡ 0, ri ≡ 1, and the ui solve
(?B2(0),Qi), with |Qi + 1/Qi|C0(B2(0)) ≤ Λ and [Qi]α,B2(0) ≤ Λ. This last inequality follows
because we are making a positive dilation (so, [Q]α will only decrease).

Passing to a subsequence, we obtain convergence Qi → Q in C0(B1(0)) and ui → u as
in Theorem 1.3. The resulting u will be (n − k∗ + 1, 0)-symmetric in B1(0), and solve
(?B1(0),Q), and have 0 ∈ ∂{u > 0}.

In particular, since u is 1-homogenous at some point, any blow-up u′ at 0 will be
(n − k∗ + 1, 0)-symmetric also, and solve (?Rn,Q(0)). Therefore u′ must be linear, as
otherwise we could obtain a non-linear, 1-homogenous solution in Rk∗−1. We deduce 0 is
a regular point of u.

By Remark 1.2 this is a contradiction, as by assumption 0 ∈ sing(ui) for every i. �

Notice, though we define (almost-)symmetry in terms of u, in the strata we consider
only points in the free-boundary. However, almost-symmetries of u will propogate to
almost-symmetries of the free-boundary. Precisely, we have the following

Proposition 1.10. There is an ε(ε′,Λ, n) so that if u solves (?B2(0),Q) with |Q+1/Q|C0(B2(0)) ≤
Λ, and 0 ∈ ∂{u > 0}, and u is (k, ε)-symmetric in B1, then ∂{u > 0} is (k, ε′)-symmetric
in B1(0) in the following sense:
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There is a cone Cn−k−1 and an affine k-space Lk so that

(7) dH(B1(0) ∩ ∂{u > 0}, B1(0) ∩ (Cn−k−1 × Lk)) ≤ ε.

Proof. Suppose the Proposition is false. Then we have a sequence ui solving (?B2(0),Qi),
and sequence εi, which for each i satisfy the hypothesis, but fail (7). Then passing to a
subsequence, we can assume ui → u as in Theorem 1.3.

Since ui → u in L2(B1(0)), u is (k, 0)-symmetric in B1(0), and hence ∂{u > 0} ∩
B1(0) = (Cn−k−1 × Lk) ∩ B1(0) for some cone Cn−k−1, and affine k-space Lk. But since
∂{ui > 0} → ∂{u > 0} in dH , we obtain a contradiction. �

1.3. Main results. We now state our main Theorems. We have k-dimensional packing
at all scales on the (k, ε)-strata.

Theorem 1.11. Suppose u solves (?B5(0),Q) with |Q|Cα(B5(0)) ≤ Λ, minB5(0)Q ≥ 1/Λ, and
0 ∈ ∂{u > 0}. Then for every ε > 0, 0 < r ≤ 1, and k ∈ {1, . . . , n − 1}, we can find a
collection of balls {Br(xi)}i which satisfy

Skε,r(u) ∩B1(0) ⊂ ∪iBr(xi), #{xi}i ≤ c(n,Λ, ε, α)r−k

In particular, we have

|Br(S
k
ε,r(u) ∩B1(0))| ≤ c(n, ε,Λ, α)rn−k ∀0 < r ≤ 1,

and
Hk(Skε (u) ∩B1(0)) ≤ c(n, ε,Λ, α).

We have rectifiability of each k-stratum.

Theorem 1.12. Suppose u solves (?Ω,Q). Then Skε (u) is rectifiable for every ε, and hence
each stratum Sk(u) is rectifiable.

Together these imply rectifiability and Minkowski estimates on the singular set. Recall
k∗ is the first dimension admitting a non-linear, 1-homogenous solution to (?Rk∗ ,1).

Corollary 1.13. Suppose u solves (?B5(0),Q) with |Q|Cα(B5(0)) ≤ Λ, minB5(0)Q ≥ 1/Λ, and
0 ∈ ∂{u > 0}.

Then sing(u) ∩B1(0) is rectifiable, and for every 0 < r ≤ 1, we have

|Br(sing(u) ∩B1(0))| ≤ c(n,Λ, α)rk
∗
,

and
(Hn−1x∂{u > 0})(Br(sing(u) ∩B1(0))) ≤ c(n,Λ, α)rk

∗−1.

In particular,
Hn−k∗(sing(u) ∩B1(0)) ≤ c(n,Λ, α).

Moreover, since when Q is constant, we have smoothness with estimates at each regular
scale, we can use the Sn−k

∗
ε,r to obtain weak Lk

∗
estimates on D2u. This is a quantitative

version of Corollary 1.13, in which we interpret sing(u) as those points with D2u =∞.

Corollary 1.14. Suppose u solves (?B5(0),1), with 0 ∈ ∂{u > 0}. Then for every 0 < r ≤
1, we have

|Br({x ∈ ∂{u > 0} ∩B1(0) : |D2u(x)| > 1/r})| ≤ c(n)rk
∗
,

and
Hn−1(Br({x ∈ ∂{u > 0} ∩B1(0) : |D2u(x)| > 1/r})) ≤ c(n)rk

∗−1.
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1.4. Other free-boundary problems. The proof of Theorems 1.11 and 1.12 require
very little specific to the problem (?Ω,Q). In fact we only really require the compactness of
Theorem 1.3, the monotonicity formula of Theorem 1.4, and some kind of a priori estimate
like that of Theorem 1.2(3). Corollary 1.13 additionally requires an ε-regularity theorem.
These properties are satisfied more-or-less verbatim for a variety of other free-boundary
problems. Let us detail some specific examples.

Two-phase Introduced by Alt-Caffarelli-Friedman in [ACF84], the problem requests
u minimize

Jd(u) :=

ˆ
Ω

|Du|2 + q2
+(x)1{u>0}(x) + q2

−(x)1{u<0}(x)dx,

for q+ ≥ q− > 0 both in Cα(Ω). Under the assumption that q2
+ − q2

− ≥ c0 > 0, Alt-
Caffarelli-Friedman prove an analogue of Theorem 1.2 (the ε-regularity for ∂{u > 0} in
all dimensions follows from later work of Caffarelli see [Caf87] and [Caf89]). The analogue
of Theorem 1.3 for the two-phase problem is stated and proven in full in [DT15] (in the
setting of almost-minimizers). Weiss [Wei99] proved almost-monotonicity (in the sense of
Theorem 1.4) of the quantity

W d
r (y) := r−n

ˆ
Br(y)

|Du|2dx+ q2
+(y)r−n|{u > 0} ∩Br(y)|+ q2

−(y)r−n|{u < 0} ∩Br(y)|

− r−n−1

ˆ
∂Br(y)

u2dσ.

As such, we can apply our arguments to the free boundary, ∂{u > 0} (note that the
set ∂{u < 0} is much less well understood without additional assumptions on q±).

Vector-valued one-phase The problem considered in [CSY16] and [MTV17] (see also
[KL16]) is essentially asking to minimize

Jv(U) :=

ˆ
Ω

|DU |2 +Q2(x)1{|U |>0}(x)dx,

where now U : Ω→ RN is vector valued, with the restriction that U i ≥ 0 on Ω (actually
something slightly weaker is true, see Remark 1.5 in [MTV17]). As usual, we stipulate Q
is positive and Cα. In [CSY16], [MTV17], again the analogues to Theorems 1.2, 1.3 are
proven as is almost-monotonicity of

W v
r (y) := r−n

ˆ
Br(y)

|DU |2dx+Q2(y)r−n|{|U | > 0} ∩Br(y)| − r−n−1

ˆ
∂Br(y)

|U |2dσ.

For the sake of precision let us remark that in [MTV17], the ε-regularity result is written
in terms of the density of W v (as opposed to flatness), much like we do in Theorem 1.5.
Let us also remark that the compactness results in [CSY16] and [MTV17] are written for
special types of limits (blow-ups in the former and what are referred to as pseudo-blowups
in the latter). However, adapting the proof for pseudo-blowups to one for generic limits
requires merely cosmetic changes.

Almost-minimizers in one-phase In [DT15], they considered u : Ω→ R which is an
almost-minimizer for J in the following sense: if Br(x) ⊂⊂ Ω, and v − u ∈ W 1,2

0 (Br(x)),
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then(ˆ
Br(x)

|Du|2 +Q2(x)1{u>0}(x)

)
≤ (1 + κrγ)

(ˆ
Br(x)

|Dv|2 +Q2(x)1{v>0}(x)

)
,

for some fixed γ ∈ (0, 1), and positive Q ∈ Cα(Ω). Except for ε-regularity (and of course,
the representation formula) analogues of Theorems 1.2 and 1.3 were proven in [DT15].
In [DET17], it is shown that the quantity in (3) is almost-monotone and an ε-regularity
theorem of type Theorem 1.5 holds (see Propositions 5.2, 6.2 and Theorem 7.1 there).

For each of the above problems we can define (effective) strata using the Weiss-type
monotonicity formulas. Lemma 3.1 and Theorems 3.2, 5.1 continue to hold, with the same
proofs. We have

Theorem 1.15. Theorems 1.11, 1.12 and Corollary 1.13 hold for the problems “two-
phase,” “vector-valued one-phase” and “almost-minimizing one-phase” listed above.

2. Rectifiable Reifenberg and proof outline

The arguments of Naber-Valtorta are an effective dimension reduction in the vein of
Federer and Almgren. Recall that in the original dimension reduction argument, for any
1-homogenous u the singular set sing(u) could always be contained in some Ln−k∗-space.
Following [NV17], this is made effective: if u is “almost” 1-homogenous, then sing(u) is
“almost” contained in some affine Ln−k

∗
.

The fundamental insight of Naber-Valtorta is that the error in each “almost” can be
controlled by the density drop between scales, and from monotonicity the density drops
are summable across scales. At a crude level this means that as you progress to smaller
scales the errors accumulate to something finite, but making this precise takes significant
effort. We recommend the introduction of [NV17] for a more detailed outline.

Broadly, the argument of [NV17] splits into two parts. The first is the Discrete-
and Rectifiable-Reifenberg Theorems, which are purely GMT results that use Jones’ β-
numbers (Jones introduced the L∞ analogue in [Jon90]) to prove packing bounds and
rectifiability. We state them below, and in this paper we will use them as black boxes,
but invite the reader to examine them in detail in [NV17], [Mis16], or [ENV] (where it is
done for general measures).

Theorem 2.1 (Discrete-Reifenberg [NV17]). Let {Brq(q)}q be a collection of disjoint
balls, with q ∈ B1(0) and 0 < rq ≤ 1, and let µ be the packing measure µ =

∑
q r

k
q δq,

where δq is the Dirac delta at q.
There exists a constant δDR > 0 (depending only on dimension), such that if

ˆ 2r

0

ˆ
Br(x)

βkµ,2(z, s)2dµ(z)
ds

s
≤ δDR(n)rk ∀x ∈ B1(0), 0 < r ≤ 1,

then

µ(B1(0)) ≡
∑
q

rkq ≤ CDR(n).
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Theorem 2.2 (Rectifiable-Reifenberg [NV17]). Let δRR > 0 be a constant depending only
on dimension and S be a set, satisfyingˆ 2r

0

ˆ
Br(x)

βkHkxS,2(z, s)2d(HkxS)(z)
ds

s
≤ δRR(n)rk ∀x ∈ B1(0), 0 < r ≤ 1.

Then S ∩B1(0) is k-rectifiable, and satisfies

Hk(S ∩B1(0) ∩Br(x)) ≤ CRR(n)rk ∀x ∈ B1(0), 0 < r ≤ 1.

The Lp-Jones β-numbers (defined in (1) above, originally introduced in [DS93]) have
been used in many instances to gain geometric information on the support of µ. In [DS93]
it was shown that if µ = Hk|E and µ(B(x, r)∩E) ' rk then bounds like those in Theorems
2.1 and 2.2 above imply that E is “uniformly rectifiable”. Later in [DT12], similar bounds
to those above (along with additional constraints on the approximating planes V k

µ,2(x, r))
were used to construct Reifenberg-type parameterizations of sets. More recently, the paper
of [AT15], showed that bounds on the β-numbers, along with additional constraints on the
density of the measure µ, imply rectifiability of the support of µ. These are just some of
the wide array of applications the Lp β-numbers have found in geometric measure theory
and harmonic analysis. For a more complete discussion on Theorems 2.1 and 2.2, and how
they fit in with the previous work in harmonic analysis and geometric measure theory, we
recommend the introduction of [NV17].

In this paper we focus on the second part of the argument of [NV17]. The starting point
is an estimate relating β-numbers of Skε to density drop (Theorem 5.1). This says, for
example, that if µ a finite measure supported in Skε , and x ∈ Skε , and W8r(x)−Wγr(x) < γ
(for some small γ), then

(8) βkµ,2(x, r)2 ≤ cr−k
ˆ
Br(x)

W8r(z)−Wr(z)dµ(z).

The naive strategy might be the following: cover Skε with a Vitali collection of balls
{Br(xi)}i, then apply (8) and discrete Reifenberg on the associated packing measure to
obtain Theorem 1.11. Unfortunately, there are several technicalities.

First, to exploit summability we need a priori µ-mass control. This is not a big problem:
since we have control on the number of overlaps, we can inductively assume mass bounds
at lower scales, to prove mass bounds at the next. This induction is implemented in
Lemma 6.1. We point out that Lemma 6.1 crucially requires small density drops at the
ball centers.

Second, we need smallness of the density drop in both (8) and discrete Reifenberg. We
adjust the naive strategy as follows: we instead build a cover of Skε by balls {Bri(xi)}i
which have a small but definite amount of density drop. So, for each i, if ri > r we have

sup
B2ri

(x)

W2ri ≤ sup
B2(0)

W2 − η.

In each of these “big” Bri(xi)’s, we can recursively create a new covering by balls of
smaller radii. Each time we recurse we eat a definite amount of density, and decrease the
radii by some fixed factor. By monotonicity the process must terminate in finitely-many
steps (see Theorem 4.1).
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However, the most subtle issue is reconciling these two conditions on the cover, of
having small density drops at the balls centers, while admitting definite density drop on
the entire ball. A naive cover satisfying one will not satisfy the other.

We are saved by the following elementary restatement of effective dimension reducing:
If the points of small density drop “look k-dimensional,” then Skε sits near a k-plane. In
particular, we get the following dichotomy (Theorem 3.2): either we have small density
drop on Skε , or the high-density points “look (k − 1)-dimensional.” In the first (“good”)
case we can use Lemma 6.1 to obtain packing bounds. In the second (“bad”) case, we
can get (very good!) packing bounds for the silly reason that we are one-dimension off.

This dichotomy allows for a general “good ball/bad ball” stopping-time construction,
wherein we alternate constructing good/bad “trees” to progress down in scale (we remark
that this has parallels to the Corona constructions of David and Semmes [DS93]). See
Section 7 for a more detailed exposition. This top-down approach is different from the
original bottom-up method of [NV17] and we hope it will be more familiar to those working
in harmonic analysis and PDEs. It has also been implemented in [NV16], [dLMSV16],
[ENV].

3. Symmetry and strata

In this section we relate the drop in density to the effective strata. First, let us show
that small density drops imply almost-symmetry.

Lemma 3.1. Take δ > 0, and u a solution to (?B2(0),Q) with |Q + 1/Q|C0(B2(0)) ≤ Λ and
0 ∈ ∂{u > 0}. Then there is a γ = γ(n,Λ, δ) so that if [Q]α,B2 ≤ γ, and

W1(Q, u, 0)−Wγ(Q, u, 0) ≤ γ,

then u is (0, δ)-symmetric in B1(0).

Proof. Suppose not: there are sequences γi → 0 and ui solving (?B2(0),Qi), with |Qi +
1/Qi| ≤ Λ and [Qi]α,B2(0) ≤ γi, such that

W1(Qi, ui, 0)−Wγi(Qi, ui, 0) ≤ γi,

but ui is not (0, δ)-symmetric in B1(0).
Passing to a subsequence, we have Qi → Q ≡ Q0 a constant, and ui → u as in Theorem

1.3, with u solving (?B3/2(0),Q0). By upper-semi-continuity,

W1(Q0, u, 0)−W0(Q0, u, 0) ≤ lim sup
i

(W1(Qi, ui, 0)−Wγi(Qi, ui, 0)) = 0.

Therefore by Theorem 1.4, Wr(Q0, u, 0) is constant in r ∈ (0, 1], and hence u is 1-
homogenous in B1(0).

Since ˆ
B1(0)

|ui − u|2 dx→ 0,

we have that each ui is (0, o(1))-symmetric, a contradiction for i sufficiently large. �

We now prove a crucial dichotomy, which says either we have small drop in the entire
Skε , or the high-density points look (k − 1)-dimensional.



14 NICK EDELEN AND MAX ENGELSTEIN

Theorem 3.2 (Key Dichotomy). There is an η0(n,Λ, E0, ε, ρ, γ, η
′, α) << ρ so that the

following holds: let u solve (?B4(0),Q), with |Q+1/Q|C0(B4(0)) ≤ Λ and 0 ∈ ∂{u > 0}. Take
E ∈ [0, E0] with supx∈B1(0) W2(Q, u, x) ≤ E.

If η ≤ η0, and [Q]α,B4(0) ≤ η, then at least one of two possibilities occurs:

(i) we have Wγρ(u, x) ≥ E − η′ on Skε,η ∩B1(0), or

(ii) there is an affine `k−1 so that {W2η(u, x) ≥ E − η} ∩B1(0) ⊂ Bρ(`).

One should keep in mind that η << ρ. Recall also that E ≤ c(n,Λ). Theorem 3.2 will
be an easy consequence of the following:

Lemma 3.3. There are η0(n,Λ, E0, η
′, γ, ρ, ε, α) << ρ, β(n,Λ, E0, η

′, ρ, γ, ε, α) < 1 so
that the following holds: Let u solve (?B4(0),Q), with |Q+ 1/Q|C0(B4(0)) ≤ Λ, 0 ∈ ∂{u > 0},
and supx∈B1(0)W2(Q, u, x) ≤ E ∈ [0, E0].

Suppose η ≤ η0, [Q]α,B4(0) ≤ η, and there are points y0, . . . , yk ∈ B1(0) satisfying

yi 6∈ Bρ(< y0, . . . , yi−1 >), and W2η(yi) ≥ E − η, ∀i = 0, . . . , k.

then writing L =< y0, . . . , yk >, we have

Wγρ ≥ E − η′ on Bβ(L) ∩B1(0)(9)

and

Skε,η ∩B1(0) ⊂ Bβ(L).(10)

Proof of Lemma 3.3. First, towards a contradiction, suppose (9) fails. Then we have
a sequence uj solving (?B4(0),Qj), and collections Ej, yij, L

k
j , ηj, and βj, which satisfy

the hypotheses with [Qj]α,B4(0) ≤ ηj → 0, βj → 0, but for each j fail (9) at some
xj ∈ Bβj(Lj) ∩B1(0).

Passing to a subsequence, we can assume

uj → u as in Theorem 1.3, Qj → Q ≡ Q0 a constant,

and

Ej → E, yij → yi, Lj → L, xj → x ∈ B1(0) ∩ L.
Since ρ is fixed, the yi span L. The limit u is a solution to (?B3(0),Q0).

By continuity of density, supz∈B1(0)W2(Q0, u, z) ≤ E and Wγρ(Q0, u, x) ≥ E − η′ at

x ∈ L ∩ B1(0). By upper-semi-continuity we know W0(Q0, u, yi) ≥ E. Therefore u is 1-
homogenous in at yi inB2(yi) for each i, and so u is independent of L inB1+δ(0) ⊂ ∪iB2(yi)
for some δ > 0 (depending on the arrangement of the yi’s). In particular, we must have
W0(Q0, u, x) = E > Wγρ(Q0, u, x), contradicting the sharp monotonicity.

We now suppose, again towards a contradiction, that (10) fails. We are allowed to
shrink η, as this will only strengthen our hypothesis, and weaken conclusion (9). We fix
β, however. We then have a sequences uj, Ej, yij, Lj, ηj, which satisfy the hypotheses of
Lemma 3.3 with ηj → 0, but for each j fail (10): there is some xj ∈ Skε,ηj ∩B1(0)\Bβ(Lj).

We can assume uj, yij, Lj, xj, Ej converge as before. By the same argument as above,
for some δ > 0 the resulting u will be k-symmetric with respect to L in B1+δ(0). Since

x ∈ B1(0) \ Bβ(L), any blow-up of u at x will be (k + 1)-symmetric. In particular, for
some fixed r > 0, uj will be (k + 1, ε)-symmetric in Br(x). This is a contradiction. �
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Proof of Theorem 3.2. If we can find y0, . . . , yk as in Lemma 3.3, then conclusion Theorem
3.2(i) is immediate. Otherwise, failing to find the yis implies there is some (k − 1)-space
`k−1, so that

y ∈ B1(0) \Bρ(`) =⇒ W2η(y) < E − η,
which is conclusion Theorem 3.2(ii). �

4. Global packing estimate

Our strategy is the following: we cook up a covering of Skε with balls of either small
radius, or with a definite amount of density drop, and demonstrate a packing estimate
on these balls. The balls with small radius give us the right packing estimate. The other
balls do not, but the density drop means we can recurse inside. Each time we recurse we
drop a fixed amount of density, and so errors will only accumulate for a finite number of
steps.

The Key Packing Estimate is the following. Recall c0(n, α) is the constant from Theo-
rem 1.4.

Theorem 4.1 (Key Packing Estimate). There is an η(n,Λ, ε, α) so that the following
holds: Let u be a solution to (?B5(0),Q) with |Q + 1/Q|C0(B5(0)) ≤ Λ, [Q]α,B5(0) ≤ η

2c0
, and

0 ∈ ∂{u > 0}. Write E = supB2(0)W2.

Given 0 < R ≤ 1, there is a collection of balls {Brx(x)}x∈U , with x ∈ B1(0)∩ Skε,ηR and
rx ≤ 1/10, which satisfy the following properties:

(A) Covering:

Skε,ηR ∩B1(0) ⊂
⋃
x∈U

Brx(x).

(B) Packing: ∑
x∈U

rkx ≤ c(n,Λ, ε, α).

(C) Energy drop: for every x ∈ U we have rx ≥ R, and either

rx = R or sup
B2rx (x)

W2rx ≤ E − η/2.

Sections 5, 6, and 7 are devoted to proving Theorem 4.1. Let us first see how this
proves Theorem 1.11.

Proof of Theorem 1.11 given Theorem 4.1. We know E ≤ c(n,Λ) from equation (5). En-
suring c(n,Λ, ε, α) is sufficiently large, it suffices to prove Theorem 1.11 for r < η. Further,
by scaling we can reduce to the case [Q]α,B5(0) ≤ η/2c0. Let us detail this. For the duration
of the proof c denotes a generic constant depending only on (n,Λ, ε, α).

Suppose we can show Theorem 1.11 with [Q]α ≤ η/2c0. Now for a general bound
[Q]α ≤ Λ, choose a Vitali cover {Bρ(xi)}i of Skη,R ∩ B1(0) (with the ρ/5-balls disjoint)
with ρ chosen so that

(5ρ)αΛ =
η

2c0

.
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We can assume R < ρ, by ensuring c is sufficiently large. The dilated solution uxi,4ρ
satisfies (?B5(0),Q̂) with [Q̂]α,B5(0) ≤ η/2c0. Therefore by our hypothesis we have the mass
bound

Rk−n|BR(Skε,R) ∩Bρ(xi)| ≤ cρk.

Since there are at most c(n)ρ−n balls {Bρ(xi)}i, we deduce the scale-1 bound

Rk−n|BR(Skε,R) ∩B1(0)| ≤ c(2c0Λ/η)(n−k)/α.

Therefore we shall assume [Q]α,B5(0) ≤ η/2c0. Use Theorem 4.1 to build the covering
U1 in B1(0). If every rx = R, then the packing and covering estimates of Theorem 4.1
(A), (B) imply Theorem 1.11 directly:

Rk−n|BR(Skε,ηR) ∩B1(0)| ≤ ωnR
k−n
∑
x∈U

(2R)n = ωn2n
∑
x∈U

rkx ≤ c.(11)

Otherwise, if some rx > R, let use Theorem 4.1 to build a (finite!) sequence of refine-
ments U1,U2,U3, . . ., which satisfy for each i the following properties:

(Ai) covering:

Skε,ηR ∩B1(0) ⊂
⋃
x∈Ui

Brx(x),

(Bi) packing: ∑
x∈Ui

rkx ≤ c

1 +
∑
x∈Ui−1

rkx

 ,

(Ci) energy drop: for every x ∈ Ui, we have rx ≥ r, and either

rx = r or sup
B2rx (x)

W2rx ≤ E − iη/2.

(Di) radius control:

sup
x∈Ui

rx ≤ 10−i and Ui ⊂ B1+10−i(0) ∩ Skε,ηR.

For any r ≤ 1 and x ∈ B2(0) ∩ ∂{u > 0}, we have from Theorem 1.4 that

Wr(x) ≥ W0(x)− c0[Q]α,B5(0) ≥ −η/2.

Therefore, once i ≥ 2 + 2E/η, then every x ∈ Ui will necessarily satisfy rx = R. Then, as
in (11), we obtain Theorem 1.11 with a bound like

Rk−n|BR(Skε,ηR) ∩B1(0)| ≤ c2+2E/η.

We have already constructed U1, which satisfies (A1), (B1), (C1), (D1) from Theorem
4.1. Suppose, inductively, we have constructed Ui−1 satisfying properties (Ai−1), (Bi−1),
(Ci−1), (Di−1).

For each x ∈ Ui−1 with rx > R, we wish to apply Theorem 4.1 at scale Brx(x) to obtain
a new collection Ui,x. Since x ∈ B1+9−1(0), and rx < 1/10, from how Q scales we see that
u, Q continue satisfy the hypotheses of Theorem 4.1 at scale Brx(x).
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However, from (Ci−1) we now have supB2rx (x) W2rx ≤ E−(i−1)η/2. Therefore Theorem
4.1(C) for the covering Ui,x becomes

sup
B2ry (y)

W2ry ≤ E − iη/2 ∀y ∈ Ui,x with ry > R.(12)

Theorem 4.1(A) is of course

Skε,ηR ∩Brx(x) ⊂
⋃

y∈Ui,x

Bry(y),(13)

and Theorem 4.1(B) becomes ∑
y∈Ui,x

rky ≤ c(n,Λ, ε, α)rkx.(14)

Moreover, from the construction of Theorem 4.1 and (Di−1) we have

(15) sup
y∈Ui,x

ry ≤ 10−1rx ≤ 10−i.

We then set

Ui = {x ∈ Ui−1 : rx = R} ∪
⋃

{x∈Ui−1 : rx>R}

Ui,x.

From (12), (13), (14), and (15), the new Ui satisfies inductive hypotheses (Ai), (Bi), (Ci), (Di).
This completes the construction of the covering refinements, and finishes the proof of The-
orem 1.11. �

5. The L2-estimate

We prove the effective version of: “for a 1-homogenous u, the Skε (u) is contained in
some k-plane.” Precisely, we show the β-numbers for Skε are controlled by the density
drop, whenever we are almost 1-homogenous.

Theorem 5.1. There is a δ(n,Λ, ε, α), so that the following holds: Let u be a solution to
(?B10r(x),Q), with |Q+ 1/Q|C0(B10r(x)) ≤ Λ, [Q]α,B10r(x) ≤ δ, and x ∈ ∂{u > 0}. Suppose{

u is (0, δ)-symmetric in B8r(x)
u is not (k + 1, ε)-symmetric in B8r(x).

(16)

Then for any finite Borel measure µ, we have

βkµ,2(x, r)2 ≤ c(Λ, ε, n, α)

rk

ˆ
Br(x)

W8r(y)−Wr(y) + c0[Q]α,B10r(x)(8r)
αdµ(y).(17)

Remark 5.1. Here is a baby case illustrating why Theorem 5.1 should be true. Suppose
for simplicity r = 1, x = 0, Q is constant, and the RHS is zero. Then at each point
y ∈ sptµ, u must be 0-symmetric in A1,8(y). In particular, if there are k + 1 linearly
independent points in sptµ ∩ B1(0), then u must be (k + 1)-symmetric in A3,4(0). But
then by (0, δ)-symmetry of B8, we have that B8 is (k+1, ε2(δ))-symmetric, with ε2 → 0 as
δ → 0. Ensuring δ is sufficiently small gives a contradiction, and therefore sptµ∩B1(0) ⊂
k-plane.
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Proof. Let X be the µ center of mass of Br(x), and define the non-negative bilinear form

Q(v, w) ≡
 
Br(x)

(v · (x−X))(w · (x−X))dµ(x).

Here · denotes the standard Euclidean inner product. Let v1, . . . , vn be a orthonormal
eigenbasis, and λ1 ≥ . . . ≥ λn ≥ 0 the associated eigenvalues. It’s easy to check that

V k
µ,2(x, r) = X + span{v1, . . . , vk}, βkµ,2(x, r)2 =

µ(Br(x))

rk
(λk+1 + . . .+ λn).

We first claim that, for any i, and any z,

λi(vi ·Du(z))2 ≤
 
Br(x)

|u(z)− (z − y) ·Du(z)|2dµ(y).(18)

We calculate, using the definition of center of mass,

λi(vi ·Du(z)) = Q(vi, Du(z))

=

 
Br(x)

(vi · (x−X))(Du(z) · (x−X))dµ(y)

=

 
(vi · (x−X))(u(z)− (z − x) ·Du(z))dµ(y)

≤ λ
1/2
i

( 
|u(z)− (z − y) ·Du(z)|2dµ(y)

)1/2

.

This proves (18).
Writing A3r,4r(x) for the annulus B4r(x) \B3r(x), we calculate

λir
−n−2

ˆ
A3r,4r(x)

(vi ·Du(z))2dz

≤ r−n−2

ˆ
A3r,4r(x)

 
Br(x)

|u(z)− (z − y) ·Du(z)|2dµ(y)dz

≤ 5n
 
Br(x)

ˆ
A3r,4r(x)

|u(z)− (z − y) ·Du(z)|2|z − y|−n−2dzdµ(y)

≤ 5n
 
Br(x)

ˆ
Ar,8r(y)

|u(z)− (z − y) ·Du(y)|2|z − y|−n−2dzdµ(y)

= c(n)

 
Br(x)

W8r(y)−Wr(y) + c0[Q]α(8r)αdµ(y).

Up until now we haven’t used hypothesis (16). Our second claim is: ensuring δ(n,Λ, ε, α)
is sufficiently small, then there exists some c(n,Λ, ε, α) so that for any orthonormal vectors
v1, . . . , vk+1, we have

1

c(n,Λ, ε, α)
≤ r−n−2

ˆ
A3r,4r(x)

k+1∑
i=1

(vi ·Du(z))2dz.(19)

Notice (19) is scale-invariant: in our proof there is no loss in assuming Br(x) = B1(0).
Suppose, towards a contradiction, (19) is false. Then we have a sequence of uj solving
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(?B10(0),Qj) with |Qj + 1/Qj|C0 ≤ Λ and [Qj]α ≤ 1/j, and orthonormal vij, so that{
uj is (0, 1/j)-symmetric in B8(0)
uj is not (k + 1, ε)-symmetric in B8(0)

but

(20) 1/j ≥
ˆ
A3,4(0)

k+1∑
i=1

(vij ·Duj(z))2dz.

Passing to a subsequence, we can assume

uj → u as in Theorem 1.3, vij → vi,

where u solves (?B9(0),Q) with Q ≡ Q(0) constant, and u is 0-symmetric in B8(0). From
(20) we deduce Du · vi ≡ 0 in A3,4(0) for each i = 1, . . . , k + 1, and hence u is (k + 1)-
symmetric in B8. But then the uj are (k + 1, o(1))-symmetric in B8(0), a contradiction.
This proves (19).

Combining (18) and (19) we deduce

βkµ,2(x, r)2 ≤ µ(Br(x))

rk
nλk+1

≤ µ(Br(x))

rk
n · c(n,Λ, ε, α)

k+1∑
i=1

λi
rn+2

ˆ
A3r,4r(x)

(vi ·Du(z))2dz

≤ c(n,Λ, ε, α)

rk

ˆ
Br(x)

W8r(y)−Wr(y) + c0[Q]α(8r)αdµ(y).

This completes the proof of Theorem 5.1. �

6. Centered density drop gives packing

We demonstrate how, if we have a collection of disjoint balls with small density drop
at the centers, then the β-estimate of Theorem 5.1 and discrete Reifenberg Theorem 2.1
give good packing estimates. The key idea is that the density drops are summable across
scales (they are essentially a telescoping series), which allows us to ensure uniformly small
β-number estimates. The slight complication is that to sum (17) across scales we require
packing bounds at lower scales. We therefore must inductively prove packing scale-by-
scale.

Lemma 6.1. There is an η1(n,Λ, ε, α) so that the following holds. Take η ≤ η1, and let
u be a solution to (?B5(0),Q) with |Q + 1/Q|C0(B5(0)) ≤ Λ and [Q]α ≤ η. Choose R > 0,
and suppose E ≥ supB1(0)W2.

If {B2rp(p)}p is a collection of disjoint balls,satisfying

(21) Wηrp(p) ≥ E − η, p ∈ Skε,R ∩B1(0), R ≤ rp ≤ 1,

then we have ∑
p

rkp ≤ c(n).
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Proof. Choose δ(n,Λ, ε, α) as in Theorem 5.1, and then γ(n,Λ, δ, α) as in Lemma 3.1.
Ensure

η ≤ min{δ, γ}
2c0 + 1

.

Recall c0 was the constant from Theorem 1.4. For convenience, in this proof we will write
ri = 2−i.

For each integer i ∈ N, define the packing measure

(22) µi =
∑
rp≤ri

rkpδp,

and for shorthand write βki = βkµi,2 (as defined for a general measure in (1)). Clearly the
required estimate is equivalent to µ0(B1(0)) ≤ c(n).

We make a few remarks about the βi. Suppose x ∈ sptµi, and j ≥ i. Then by
disjointness

(23) βi(x, rj) =

{
βj(x, rj) if x ∈ sptµj,
0 otherwise.

On the other hand, since W8ri(x) − Wηri(x) ≤ (2c0 + 1)η, we have by Lemma 3.1,
Theorem 5.1, and our choice of η that

(24) βi(x, ri)
2 ≤ c(n,Λ, ε)r−ki

ˆ
Bri (x)

W8ri(y)−Wri(y) + c0η(8ri)
α dµi(y),

whenever ri < 2−4.
For ri ≤ 2−4, we shall inductively prove the estimate

(†i) µi(Bri(x)) ≤ CDR(n)rki ∀x ∈ B1(0).

Here CDR is the constant from Theorem 2.1. We observe that (†i) vacuously holds for i
so large that ri < R, as in this case µi ≡ 0. Let us suppose the inductive hypothesis that
(†j) holds for all j ≥ i+ 1.

Fix an x ∈ B1(0). By a packing argument and our inductive hypothesis we can suppose

(25) µj(B4rj(x)) ≤ Γ(n)rkj ∀j ≥ i− 2,∀x ∈ B1(0),

where Γ = c(n)CDR. We elaborate. We have µj(B4rj(x)) = µj+2(B4rj(x)) +
∑
rkp where

we sum over p ∈ B4rj(x) having rj+2 < rp ≤ rj. Since the B2rp(p) are disjoint we are
summing over at most c(n) points.
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We calculate, using Fubini,∑
rj≤2ri

ˆ
B2ri

(x)

βi(z, rj)
2dµi(z)

(23)
=

∑
rj≤2ri

ˆ
B2ri

(x)

βj(z, rj)
2dµj(z)

(24)

≤ c
∑
rj≤2ri

1

rkj

ˆ
B2ri

(x)

ˆ
Brj (z)

W8rj(y)−Wrj(y) + c(n, α)ηrαj dµj(y)dµj(z)

≤ c
∑
rj≤2ri

ˆ
B2ri+rj

(x)

µj(Brj(y))

rkj

(
W8rj(y)−Wrj(y) + cηrαj

)
dµj(y)

(†i)
≤ cΓ

ˆ
B4ri

(x)

∑
rj≤2ri

W8rj(y)−Wrj(y) + cηrαj dµj(y)

(22)

≤ cΓ

 ∑
p∈B4ri

(x)∩sptµi

rkp(W16ri(p)−Wrp(p) + cη)


≤ cΓ · η · µi(B4ri(x))

(25)

≤ c(n,Λ, ε, α)Γ2ηrki .

Ensuring η(n,Λ, ε, α) is sufficiently small, we deduce∑
rj≤2ri

ˆ
B2ri

(x)

βi(z, rj)
2dµi(z) ≤ δdrr

k
i ,

and therefore Discrete-Reifenberg (Theorem 2.1) implies

µi(Bri(x)) ≤ CDRr
k
i .

This proves (†i), and therefore by mathematical induction (†) holds for all ri ≤ 2−4. The
required bound on µ0 now follows by a simple packing argument. �

7. A corona-type decomposition

In this section we build the cover of Theorem 4.1. The complication is in reconciling
condition (C) of Theorem 4.1, requiring a definite density drop on the entire balls, and
condition (21) of Lemma 6.1, requiring small density drops at the centers.

The crucial observation that makes it work is the dichotomy Theorem 3.2: in any
ball either we have small density drop in the entire Skε,ηR, or the high-density points
are concentrated near a lower-dimensional (k − 1)-plane. In other words, whenever we
cannot use Lemma 6.1, we get a small enough k-dimensional packing estimate on Skε,ηR
to compensate for naive overlaps.

As suggested in the Introduction, we call balls satisfying the first condition of having
small drops good, and balls satisfying the second condition of looking (k− 1)-dimensional
bad (see Definition 7.2). We shall implement two different stopping-time arguments, one
for good balls (Section 7.1) and one for bad balls (Section 7.2). In each case we build a
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tree of good or bad balls, which is a sequence of coverings at smaller and smaller scales by
good balls, bad balls, and balls satisfying the stopping condition (C) of Theorem 4.1. We
then chain these trees together (Section 7.3) to obtain our estimate. Let us detail some
the tree constructions.

A good tree is built in the following way. Start at some initial good ball Br0(g0). By
virtue of being good, we have small drop in Skε,ηR∩Br0(g0) down to a very small scale. We

let the good/bad balls at scale r1 be a Vitali cover of Skε,ηR ∩ Br0(g0). So Skε,ηR ∩ Br0(g0)
is covered by the good r1-balls, and bad r1-balls.

Now we define the good/bad balls at scale r2 to be a Vitali cover of

Skε,ηR ∩Br0(g0) ∩ (good r1-balls) \ (bad r1-balls).

So Skε,ηR is covered by the good r2-balls, and bad balls at scales r1 and r2. We con-
tinue in this fashion, inducting into the good ri-balls, and avoiding bad balls at scales
ri, ri−1, . . . , r1. We continue until we hit ri = R, and we end up with a cover of Skε,ηR ∩
Br0(g0) with stop balls at scale R, and bad balls at scale r1, . . . , ri, . . . , R.

Each stop/bad ball center has small density drop, by virtue of living inside a bigger
good ball. We can use Lemma 6.1 to obtain packing on the resulting cover. See Theorem
7.4.

A bad tree is built as follows. Start at some initial bad ball Br0(b0). By definition, there
is some (k − 1)-plane `k−1

0 , so that the points of high density are clustered near `0.
We define the good/bad balls at scale r1 to be a Vitali cover of Skε,ηR∩Br0(B0)∩B2r1(`0),

and define the stop balls at scale r1 to be a Vitali cover of Skε,ηR ∩ (Br0(b0) \ B2r1(`0)).

So Skε,ηR ∩Br0(b0) is covered by the good/bad/stop balls at scale r1, and by construction
each stop ball must have uniformly large density drop.

We define the good/bad r2-balls in the same way, covering (k−1)-planar neighborhoods
in each bad r1-ball (we don’t need to avoid previous balls). The stop r2-balls cover the
complements of (k − 1)-planar neighborhoods in bad r1-balls. We continue until ri = R,
and end up with a cover of Skε,ηR ∩ Br0(b0) with stop balls at scale R, and good/stop
balls at scales r1, . . . , ri, . . . , R, with the property that stop balls at scale > R have large
density drop.

At each scale the bad balls cover only a (k− 1)-dimensional region, and so by choosing
our scale-drop sufficiently small we can obtain k-packing estimates on all bad balls across
all scales. This in turn gives a k-packing estimate on all the good/stop balls. In fact we
can make the k-packing estimate very small. See Theorem 7.6.

Each good/bad tree satisfies the required decomposition of Theorem 4.1 away from the
bad/good balls. In a good tree we may refer to bad balls as the tree leaves, and similar the
good balls are bad tree leaves. Given an initial good/bad tree, rooted at B1(0), let us build
secondary bad/good trees in all the leaves. In the leaves of each secondary tree, build
tertiary trees. Continuing in this fashion, we obtain a sequence of decompositions with
smaller and smaller leaves. Eventually, all the balls will satisfy the stopping conditions of
Theorem 4.1 (C).

Each time we build a new family of trees, the trees switch type. This is very important,
as each time we build a new tree we incur double-counting errors, because we essentially
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forget all the other trees exist. The type-switching means we can kill the double-counting
errors with the small bad-tree packing. See Theorem 7.7

For the duration of this section we assume the hypotheses of Theorem 4.1. So, u solves
(?B5(0),Q), with |Q+ 1/Q|C0(B5(0)) ≤ Λ and [Q]α,B5(0) ≤ η

2c0
, for η to be chosen below. We

fix E = supB2(0)W2, and fix some R ∈ (0, 1].
First, choose ρ < 1/10 so that

2c1(n)c2(n)ρ ≤ 1/2,

where c1 as in Theorem 7.4, and c2 as in Theorem 7.6. Let

γ = η′ = η1(n,Λ, ε, α)/20

as in Lemma 6.1. Now take

η = η0(n,Λ, E + 1, ε, η′, γ, ρ, ε, α)

as in Theorem 3.2. Throughout this section we adhere to the following convention:

Definition 7.1. Write ri = ρi.

Precisely, our notions of good and bad are as follows.

Definition 7.2. Take x ∈ B2(0), and R < r < 2. We say the ball Br(x) is good if

Wγρr ≥ E − η′ on Skε,ηR ∩Br(x),

and we say Br(x) is bad if it isn’t good.
By Theorem 3.2 with E + η/2 in place of E (which is admissible by monotonicity and

our choice of [Q]α,B5(0) ≤ η/2c0), in any bad ball Br(x) we have

{W2ηr ≥ E − η/2} ∩Br(x) ⊂ Bρr(`
k−1)

for some affine (k − 1)-plane `k−1.

7.1. Good tree construction. Suppose BrA(a) is a good ball at scale A ≥ 0, with
a ∈ B1(0). We define precisely the good tree at BrA(a). As explained at the start of
the Section, the good tree is a sequence of coverings at finer and finer scales, which will
decompose Skε ∩ BrA(a) into a family of bad balls with packing estimates, and a Vitali
collection of balls of radius ≈ R.

We inductively define, for each scale i ≥ A, a family of good balls {Bri(g)}g∈Gi , bad
balls {Bri(b)}b∈Bi , and stop balls {Bri(s)}s∈Si . At scale i = A, we let GA = {a} (so BrA(a)
is the only good ball), and BA = SA = ∅ (so no scale-A bad or stop balls).

Suppose we have constructed the good/bad/stop balls down through scale i − 1. We
let {z}z∈Ji be a maximal 2ri/5-net in

B1(0) ∩ Skε,ηR ∩BrA(a) ∩Bri−1
(Gi−1) \

i−1⋃
`=A

Br`(B`).

If ri ≤ R, then we let Si = Ji, and Gi = Bi = ∅. In other words, we stop building the
tree. Otherwise, we differentiate the z’s into Gi ∪ Bi := Ji (disjoint union) by Definition
7.2, and take Si = ∅. This completes the good tree construction.
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Definition 7.3. The construction defined above is called the good tree rooted at BrA(a),
and may be written as TG ≡ TG(BrA(a)). Given such a good tree TG, we define the tree
leaves F(TG) := ∪iBi to be the collection of all bad ball centers, across all scales. Similarly
we let S(TG) = ∪iSi be the collection of stop ball centers.

In a slight abuse of notation, we let {rf}f∈F(TG) and {rs}s∈S(TG) be the associated radius
functions for the leaves F(TG), stop balls S(TG) (resp.), so e.g. if s ∈ Si ⊂ S(TG), then
rs = ri.

We prove the following Theorem for good trees.

Theorem 7.4. Let TG = TG(BrA(a)) be a good tree. We have

(A) Tree-leaf packing: ∑
f∈F(TG)

rkf ≤ c1(n)rkA.

(B) Stop ball packing: ∑
s∈S(TG)

rks ≤ c(n)rkA.

(C) Covering control:

B1(0) ∩ Skε,ηR ∩BrA(a) ⊂
⋃

s∈S(TG)

Brs(s) ∪
⋃

f∈F(TG)

Brf (f).

(D) Stop ball structure: for any s ∈ S(TG), we have ρR ≤ rs ≤ R.

Proof. Let us point out the two key properties of bad and stop balls. First, direct from
construction, the collections of stop/bad ri/5-balls

{Bri/5(b) : b ∈ ∪∞i=ABi} ∪ {Bri/5(s) : s ∈ ∪∞i=ASi}

are all pairwise disjoint, and centered in Skε,ηR.
Second, since each stop/bad ball is also centered in a good ball at a previous scale, we

have small density drop in the centers of every stop bad ball, i.e. for each i:

Wγri(b) ≡ Wγρri−1
(b) ≥ E − η′ ∀b ∈ Bi, and Wγri(s) ≥ E − η′ ∀s ∈ Si.

Since by monotonicity we have supBrA (a) W2rA ≤ E+η′, we can use Lemma 6.1 at scale

BrA(a) to prove packing estimates (A), (B).
Conclusion (C) is an elementary induction argument: for each i ≥ A, we claim that

B1(0) ∩ Skε,ηR ∩BrA(a) ⊂ Bri(Gi) ∪
i⋃

`=0

Br`(B` ∪ S`).(26)

When i = A (26) trivially is true. Suppose, by inductive hypothesis, that (26) holds at
i− 1. Then by construction we have

B1(0) ∩ Skε,ηR ∩Bri−1
(Gi−1) \ ∪i−1

`=ABr`(B`) ⊂ Bri(Bi ∪ Gi ∪ Si).
This proves (26) at stage i. When ri ≤ R there are no good balls, and therefore (26)
implies conclusion (C).

Conclusion (D) follows because the only i for which Si 6= ∅ is when ri ≤ R, in which
case necessarily ri−1 > R. �
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7.2. Bad tree construction. Suppose BrA(a) is a bad ball at scale A ≥ 0, with a ∈
B1(0). In the following we construct the bad tree at BrA(a), which decomposes Skε,ηR ∩
BrA(a) into a collection of good balls and balls with definite energy drop, each with
packing estimates, and a Vitali collection of balls of radius ≈ R.

As before we inductively define, for each scale i ≥ A, a family of good balls {Bri(g)}g∈Gi ,
bad balls {Bri(b)}b∈Bi , and stop balls {Bηri−1

(s)}s∈Si . At scale i = 0, we let BA = {a},
and GA = SA = ∅. However, let us emphasize that these good/bad/stop balls are distinct
from the tree construction in section 7.1. Moreover, notice we define these stop balls to
have (the smaller) radius ηri−1 instead of ρri−1 ≡ ri. This is to ensure a uniform density
drop on big stop balls.

For each bad ball b ∈ Bi we have a (k − 1)-affine plane `k−1
b , associated to Theorem

3.2(ii).
Suppose we have constructed the good/bad/stop balls down through scale i − 1. If

ri ≤ R, then take Gi = Bi = ∅, and Si to be a maximal 2ηri−1/5-net in

B1(0) ∩ Skε,ηR ∩BrA(a) ∩Bri−1
(Bi−1).

So, we’re stopping the tree. Remember η << ρ, so ηri−1 < ri ≤ R.
Otherwise, if ri > R, we define Si to be a maximal 2ηri−1/5-net in

B1(0) ∩ Skε,ηR ∩BrA(a) ∩
⋃

b∈Bi−1

(
Bri−1

(b) \B2ρri−1
(`b)
)
,

and we let {g}g∈Gi ∪ {b}b∈Bi be a maximal 2ri/5-net in

B1(0) ∩ Skε,ηR ∩BrA(a) ∩
⋃

b∈Bi−1

(
Bri−1

(b) ∩B2ρri−1
(`b)
)
.

This completes the bad tree construction.

Definition 7.5. The construction defined above is called the bad tree rooted at BrA(a),
and may be written as TB ≡ TB(BrA(a)). Given such a bad tree, we define the tree leaves
to be F(TB) := ∪iGi, the collection of all good ball centers, and set S(TB) = ∪iSi be the
collection of stop ball centers.

As before, we write rf , rs for the associated radius function. So, e.g., if s ∈ Si ⊂ S(TB),
then rs = ηri−1.

We prove the following Theorem for bad trees:

Theorem 7.6. Let TB = TB(BrA(a)) be a bad tree. Then we have:

(A) tree-leaf packing, with small constant:∑
f∈F(TB)

rkf ≤ 2c2(n)ρrkA

(B) Stop ball packing: ∑
s∈S(TB)

rks ≤ c(n, η)rkA.

(C) Covering control:

B1(0) ∩ Skε,ηR ∩BrA(a) ⊂
⋃

s∈S(TB)

Brs(s) ∪
⋃

f∈F(TB)

Brf (f).
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(D) Stop ball structure: for any s ∈ S(TB), then we have

ηR ≤ rs ≤ R, and/or sup
B2rs (s)

W2rs ≤ E − η/2.

Proof. Take ri > R. The good/bad ball centers Gi ∪ Bi lie in B2ρri−1
(`k−1), and the

ri/5-balls are disjoint. Therefore, given any bad-ball Bri−1
(b), we have

#{(Gi ∪ Bi) ∩Bri−1
(b)} ≤ ωk−1ωn−k+1(3ρ)n−k+1

ωn(ρ/5)n
≤ c2(n)ρ1−k.

We deduce

#{Gi ∪ Bi}rki ≤ c2ρ#{Bi−1}rki−1 ≤ c2ρ#{Bi−1 ∪ Gi−1}rki−1 ≤ . . . ≤ (c2ρ)i−ArkA,

and therefore
∞∑

i=A+1

#{Gi ∪ Bi}rki ≤
∞∑

i=A+1

(c2ρ)i−ArkA ≤ 2c2ρr
k
A,

by our choice of c2ρ < 1/2.
Since every good leaf is of scale ≤ rA+1 and > R, this proves the packing estimate (A).

It will also imply estimate (B) as follows.
Given i ≥ A + 1, the stop balls {Bηri−1

(s)}s∈Si form a Vitali collection centered in
Bri−1

(Bi−1). This implies that

#{Si} ≤
10n

ηn
#{Bi−1}.

Of course there aren’t any stop balls at scale rA. We deduce
∞∑

i=A+1

#{Si}(ηri−1)k ≤ 10nηk−n
∞∑
i=A

#{Bi}rki ≤ c(n, η)rkA.

This proves estimate (B).
Conclusion (C) follows precisely as in Theorem 7.4. We prove conclusion (D). Take a

stop ball center s ∈ Si. First suppose ri > R. Then necessarily s ∈ Bri−1
(b) \ B2ρri−1

(b)
for some bad ball b ∈ Bi−1. By Theorem 3.2 and Definition 7.2, and our choice η < ρ/2,
we have

sup
B2rs (s)

W2rs ≤ sup
Bρri−1 (s)

W2ηri−1
≤ E − η/2.

Conversely, the only way ri ≤ R could occur is if ri−1 ≥ R. In this case we have

R ≥ ρri−1 ≥ ηri−1 = rs ≥ ηR.

�

7.3. Alternating the trees. Our aim is to build a covering as in Theorem 4.1. In any
given tree, the stop balls and leaves cover Skε,ηR∩B1(0), and the stop balls satisfy Theorem
4.1(B) and (C), but the leaves do not. We therefore implement the following strategy:
build first a tree from B1(0) (let’s say it’s a good tree); at any bad leaf of our good tree,
build a bad tree; in any good leaf of this collection of bad trees, build a good tree; etc.

Each time we build a new tree we switch type, and we can therefore use the small
packing of bad trees to cancel overlap errors incurred by tree switching. Moreover, each
time we alternate tree-type our balls shrink by at least ρ, so the process must terminate at
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a collection of stop balls, which cover Skε,ηR ∩B1(0) and satisfy the properties of Theorem
4.1. Using Theorems 7.4 and 7.6, it will then suffice to show we have packing on all the
tree leaves.

Let us write this rigorously. Recall we have fixed ρ(n) ≤ 1/10 so that

2c1(n)c2(n)ρ ≤ 1/2,

where c1 is as in Theorem 7.4, c2 is as in Theorem 7.6.
We inductively define for each i = 0, 1, 2, . . . a family of tree leaves {Brf (f)}f∈Fi , and

stop balls {Brs(s)}s∈Si . Here rf , rs are radius functions, which may (and do) vary with
f , s; we caution the reader that we only have the upper bound rf ≤ ri at each i. For each
i, the leaves Fi will be either all good balls, or all bad balls.

We let F0 = {0}, and define the associated radius function rf=0 = 1, so the ball B1(0)
is our only leaf at stage 0. We let S0 = ∅, so there are no stop balls at stage 0. Trivially,
the leaves F0 are either all good or all bad.

Suppose we have defined the leaves and stop balls up to stage i− 1. The leaves in Fi−1

are (by inductive hypothesis) either all good or all bad balls. If they good, let us define
for each f ∈ Fi−1 a good tree TG,f = TG(Brf (f)), with parameters ρ and η as fixed above.
Then we set

Fi =
⋃

f∈Fi−1

F(TG,f ),

and

Si = Si−1 ∪
⋃

f∈Si−1

F(TG,f ).

Since leaves of good trees are always bad balls, all the leaves Fi are bad.
On the other hand, if all the leaves Fi−1 are bad, for each f ∈ Fi−1 define the bad tree
TB,f = T (Brf (f)), and correspondingly set

Fi =
⋃

f∈Fi−1

F(TB,f ), and Si = Si−1 ∪
⋃

f∈Fi−1

S(TB,f ).

Clearly all the leaves Fi now are good.
This completes the construction. By concatenating the trees, we obtain the following

estimates.

Theorem 7.7. There is some integer N so that FN = ∅, and we have:

(A) packing of all leaves:
N−1∑
i=0

∑
f∈Fi

rkf ≤ c(n).

(B) Packing of stop balls: ∑
s∈SN

rks ≤ c(Λ, ε, n, α).

(C) Covering control:

Skε,ηR ∩B1(0) ⊂
⋃
s∈SN

Brs(s).
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(D) Stop ball structure: for any s ∈ SN , we have

ηR ≤ rs ≤ R, and/or sup
B2rs (s)

W2rs ≤ E − η/2.

This Theorem directly gives the cover the Theorem 4.1.

Proof of Theorem 4.1 given Theorem 7.7. Let U = SN , and given x = s ∈ U , define the
radius function

rx = max{R, rs}.
That {Brx(x)}x∈SN is the cover promised by Theorem 4.1 follows immediately from The-
orem 7.7(B), (C) and (D). �

Proof of Theorem 7.7. Let us first show FN = ∅ for some N . From our tree constructions,
in any given (good or bad) tree T (Br(x)), every leaf f ∈ F(T ) necessarily satisfies rf ≤ ρr.
We deduce

max
f∈Fi

rf ≤ ρ max
f∈Fi−1

rf ≤ ρi.

For i sufficiently large, we would have ρi < R, contradicting our definition of a good or
bad ball.

Let us prove part (A): suppose the Fi are good. The collection of {f ∈ Fi} are precisely
the leaves of bad trees rooted at {f ′ ∈ Fi−1}. Therefore, using Theorem 7.6, we have∑

f∈Fi

rkf ≤ 2c2ρ
∑

f∈Fi−1

rkf .

Conversely, if the Fi are bad, then the Fi are all leaves of good trees rooted at Fi−1. So
by Theorem 7.4, ∑

f∈Fi

rkf ≤ c1

∑
f∈Fi−1

rkf .

If Fi are good, then it is clear that the Fi−1 are bad, and vice versa. We deduce that∑
f∈Fi

rkf ≤ c(n)(2c1c2ρ)i/2 ≤ c(n)2−i/2.

The packing estimate (A) follows directly.
We prove (B). Each stop ball s ∈ SN arises from a good or bad tree rooted in some

f ∈ Fi, for some i < N . Using Theorems 7.4 and 7.6, we therefore have∑
s∈SN

rks ≤ c(Λ, ε, n)
N∑
i=0

∑
f∈Fi

rkf ≤ c(Λ, ε, n).

We show (C). Apply Theorems 7.4 and 7.6 to each tree constructed at f ∈ Fi−1, to
deduce ⋃

f∈Fi−1

(Skε,ηR ∩Brf (f)) ⊂
⋃
f∈Fi

(Skε,ηR ∩Brf (f)) ∪
⋃
s∈Si

Brs(s).

Since, vacuously, Skε,ηR ∩B1(0) ⊂ B1(0), it follows by induction that

Skε,ηR ∩B1(0) ⊂
⋃
f∈Fi

Brf (f) ∪
⋃
s∈Si

Brs(s)
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for any i. Setting i = N we obtain (C). (D) is immediate from Theorems 7.4, 7.6. �

8. Rectifiability and other Corollaries

Theorem 1.11 shows that the Hausdorff measures HkxSkε are upper-Ahlfors-regular
away from the boundary ∂Ω. Demonstrating rectifiability is then an easy calculation in
the spirit of Lemma 6.1.

Proof of Theorem 1.12. Let Uν = Skε ∩ {W0 ≥ ν}. We will show each Uν is rectifiable.
Since rectifiability is a local property, we can assume we are working in a small ball B2r(x),
with x ∈ Uν ∩B1(0), satsifying

|Q+ 1/Q|C0(B10r(x)) ≤ Λ, [Q]α,B10r(x) ≤ η, and sup
B4r(x)

W2r − ν ≤ η,

for some Λ <∞, and η to be chosen.
The second condition is simply how Q scales with u. The third follows by upper-

semi-continuity: otherwise, we would have a sequence yi → x ∈ Uν , and ri → 0, with
Wri(yi) ≥ ν + η. But this would imply

W0(y) ≥ lim sup
i

Wri(yi) ≥ ν + η ≥ W0(y) + η,

a contradiction.
Take δ(n,Λ, ε, α) as in Theorem 5.1, and γ(n,Λ, δ, α) as in Lemma 3.1. We now ensure

η ≤ (2c0 + 1)−1 min{δ, γ}. Write µν = HkxUν , and for convenience set ri = 2−i. Recall
that Theorem 1.11 implies

µν(Bs(y)) ≤ c(n,Λ, ε, α)sk ∀s ≤ 2r, y ∈ B2r(x).

We calculate using Theorem 5.1 and Fubini:∑
rj≤r

ˆ
Br(x)

βkµν ,2(z, rj)
2dµν(z)

≤ c
∑
rj≤r

r−kj

ˆ
Br(x)

ˆ
Brj (z)

W8rj(y)−Wrj(y) + cηrαj dµν(y)dµν(z)

≤ c

ˆ
B2r(x)

∑
rj≤r

W8rj(y)−Wrj(y) + cηrαj

 dµν(y)

≤ cηrk.

Now we can ensure η is small and use Rectifiable-Reifenberg Theorem 2.2, or Theorem
1.1 of [AT15], to deduce Uν is rectifiable.

Since rectifiability is stable under countable unions, we obtain rectifiability of each Skε
and Sk. �

We now prove the remaining Theorems stated in the Introduction.

Proof of Corollary 1.13. Immediate from Proposition 1.9 and Theorems 1.11, 1.12. �
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Proof of Corollary 1.14. First, we observe the following: if 0 ∈ ∂{u > 0}, and ∂{u > 0}
satisfies the ε-regularity condition (2) in B2(0), then by Theorem 1.2 (and in particular
the effective estimate of Theorem 8.1 in [AC81]), and the higher-regularity of [KN77],
then we have |D2u(0)| ≤ c(n).

Therefore, using Proposition 1.10 and scale-invariance, we deduce there exists some
ε(n,Λ) so that |D2u(x)| ≤ c(n)/r whenever u is (n− k∗+ 1, ε)-symmetric in Br(x), where
x ∈ B1(0) and r ∈ (0, 1].

This implies that

{x ∈ ∂{u > 0} ∩B1(0) : |D2u| > 1/r} ⊂ Sn−k
∗

ε,c(n)r(u) ∩B1(0),

and the required packing estimates follow from Theorem 1.11, and the Ahlfors-regularity
of the free-boundary (Theorem 4.5 in [AC81]). �

Finally, we prove the very first Theorem stated.

Proof of Theorem 1.1. Rectifiability is direct from Theorem 1.12. The packing bound is
a simple covering argument. Take ρ = d(D, ∂D′)/20. Choose a Vitali cover of D by
balls {B5ρ(xi)}i centered in D, so that the ρ-balls are disjoint. In each ball we can apply
Theorem 1.11. Since the number of balls is ≤ c(n)Ln(D′)ρ−n, we obtain the required
packing estimate. �
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