
Barista: A Technique for Recording, Encoding, and
Running Platform Independent Android Tests
Mattia Fazzini*, Eduardo Noronha de A. Freitas†, Shauvik Roy Choudhary*and Alessandro Orso*

*Georgia Institute of Technology †Instituto Federal de Goiás
{mfazzini | shauvik | orso}@cc.gatech.edu efreitas@ifg.edu.br

Abstract—Because mobile apps are extremely popular and
often mission critical nowadays, companies invest a great deal
of resources in testing the apps they provide to their customers.
Testing is particularly important for Android apps, which must
run on a multitude of devices and operating system versions.
Unfortunately, as we confirmed in many interviews with quality
assurance professionals, app testing is today a very human
intensive, and therefore tedious and error prone, activity. To
address this problem, and better support testing of Android apps,
we propose a new technique that allows testers to easily create
platform independent test scripts for an app and automatically
run the generated test scripts on multiple devices and operating
system versions. The technique does so without modifying the
app under test or the runtime system, by (1) intercepting the
interactions of the tester with the app and (2) providing the
tester with an intuitive way to specify expected results that it
then encode as test oracles. We implemented our technique in a
tool named BARISTA and used the tool to evaluate the practical
usefulness and applicability of our approach. Our results show
that BARISTA (1) can faithfully encode user defined test cases
as test scripts with built-in oracles that can run on multiple
platforms and (2) outperforms two popular tools with similar
functionality. BARISTA and our experimental infrastructure are
publicly available.

I. INTRODUCTION

Mobile platforms are becoming increasingly prevalent, and
so are the mobile applications (or simply apps) that run on such
platforms. Today, we use apps for many of our daily activities,
such as shopping, banking, social networking, and traveling.
Like all other software applications, apps must be tested to
gain confidence that they behave correctly under different
inputs and conditions. This is especially important nowadays,
given the number of companies that make apps available to
their users, as failures in an app can result in loss of reputation,
and ultimately customers, for the company that provides the
app. For this reason, companies are spending considerable
amounts of money and resources on quality assurance (QA)
activities, and in particular on testing.

In the case of Android apps, the picture is further com-
plicated by the fragmentation of the Android ecosystem [1],
which includes countless devices that come in all shapes and
sizes and that can run a number of different versions of the
Android system. Gaining confidence that an app works cor-
rectly across the whole range of Android devices and operating
system versions is especially challenging and expensive.

To help QA testers in this difficult task, we propose a
new technique for supporting testing of Android apps that has
three main capabilities. First, it allows testers to interact with

an app and (1) record the actions they perform on the app,
and (2) specify the expected results of such actions using a
new, intuitive mechanism. Second, it automatically encodes
the recorded actions and specified expected results in the
form of a general, platform-independent test script. Third, it
allows for automatically running the generated test scripts on
any platform (i.e., device and operating system), either on a
physical device or in an emulator.

In addition, there are several advantages to our approach,
compared to the state of the art. One advantage is that our
approach implements the record once-run everywhere princi-
ple. Testers can record their tests on one platform and ideally
rerun them on any other platform. Existing approaches focused
on GUI test automation through record/replay [2], [3] tend to
generate tests that are brittle and break when run on platforms
other than the one on which they were recorded, as confirmed
by our empirical evaluation (Section V). A second advantage
of our approach is that it supports the creation of oracles,
and it does it in an intuitive way, whereas most existing
approaches have very limited support for this aspect [2]–
[6]. In general, our approach can be used with very limited
training, as it does not require any special skill or knowledge.
A third advantage is that, because of the way our approach
encodes test cases, these tests tend to be robust in the face
of (some) changes in the user interface of the app (and are
unaffected by changes that do not modify the user interface).
The test cases generated by our approach can therefore also be
used for regression testing. From a more practical standpoint,
a further advantage of our approach is that it encodes test
cases in a standard format—the one used in the Espresso
framework, in our current implementation. These test cases
can therefore be run as standalone tests. A final, also practical
and advantage of our approach is that it is minimally intrusive.
Because it leverages accessibility mechanisms already present
on the Android platform [7], our approach does not need to
instrument the apps under test (AUTs). To use the approach,
testers only have to install an app on the device on which they
want to record their tests, enable the accessibility framework
for it, and start recording.

Our technique offers these advantages while handling sev-
eral practical challenges specific to the Android framework.
First, the information required for replay is not directly avail-
able from accessibility events, and our technique needs to
reconstruct it. This is particularly challenging in our context,
in which BARISTA runs in a separate sandbox than the AUT.

Inputs
Test Case
Recording

Recorded
Trace

Test Case
Encoding Test Case

Test Case
Execution Test Report

Figure 1: High-level overview of the technique.
This challenge is also a distinguishing factor with respect to
related work [8] from a related domain (web app) that instead
relies on a debugging interface and has direct access to the
AUT. Second, our technique must process events in a timely
fashion, in the face of a constantly evolving user interface.
To address this challenge, our technique efficiently caches the
GUI hierarchy and performs operations on its local cache.

To evaluate the practical usefulness and applicability of
our technique, we implemented it in a prototype tool, called
BARISTA, that encodes user recorded test cases and oracles
as Espresso tests. We then performed a comparative user
study in which 15 participants used BARISTA and two popular
tools TESTDROID RECORDER (TR) [2] and ESPRESSO TEST
RECORDER (ETR) [3], to generate tests for a set of 15
Android apps. The results of this initial study are promising. In
particular, they show that BARISTA (1) can faithfully record
and encode most user defined test cases, whereas the other
two tools fail to do so in many cases, (2) can encode test
cases that run on multiple platforms, unlike TR and ETR,
and (3) provides better support for oracle generation than the
two tools. In more general terms, our evaluation shows that
BARISTA has the potential to improve considerably the way
test cases for Android apps are generated and run, which can
in turn result in an overall improvement of the Android QA
process. In summary, the main contributions of this paper are:

• A technique for easily recording, encoding in a standard
format, and executing in a platform-independent1 manner
test cases for Android apps.

• An implementation of the technique, BARISTA, that gen-
erates Espresso test cases and is freely available for
download at http://www.cc.gatech.edu/~orso/software/barista.

• A user study, performed on a set of Android apps, that
shows initial yet clear evidence of the practical usefulness
and applicability of our technique, together with the
improvements it provides over related work.

II. TECHNIQUE

In this section, we present our technique for recording,
encoding, and executing test cases for Android apps. Figure 1
provides a high-level overview of our technique, which con-
sists of three main phases. In the test case recording phase, the
user interacts with the AUT with the goal of testing its func-
tionality. Our technique records user interactions together with

1By platform-independent here we mean independent from the device and
operating system version running on that device.

user induced system events and offers a convenient interface
to define assertion-based oracles. At the end of the recording
phase, the technique enters its test case encoding phase, which
translates recorded interactions and oracles into test cases that
are (as much as possible) device independent. Finally, in the
test case execution phase, our technique executes the encoded
test cases on multiple devices and summarizes the test results
in a report. In the remainder of this section, we describe these
three phases in detail.

A. Test Case Recording

In this phase, the user records test cases by exercising the
functionality of an app. This phase receives the package name
of the AUT as input. Based on the package name provided,
the technique launches the app’s main activity [7] and, at the
same time, creates an interactive menu. The menu is displayed
as a floating menu above the AUT and is movable, so that it
does not interfere with the user interaction with the app.

As soon as the app is launched, a second component starts
operating: the recorder. This component is used to (1) access
the UI displayed by the AUT, (2) process user interactions,
(3) process system events induced by user interactions that
affect recorded test cases, and (4) assist the oracle definition
process. The recorder leverages the accessibility framework
of the Android platform [7] to accomplish these tasks. The
accessibility framework provides access to events generated
by the system in response to user interface events (e.g., the
click of a button). The recorder leverages the accessibility
infrastructure to listen to two categories of events: events
that describe a change in the UI and events that are fired
as consequence of user interactions. Events in the former
category are used to create a reference that uniquely identifies
an element in the app’s UI. We call this reference the selector
of the element. Events in the latter category are used to
identify user interactions. Recorded interactions use selectors
to refer to their target UI elements. Interactions and defined
oracles are logged by the recorder in the recorded trace in
the form of actions. When the user stops the recorder, our
technique passes the content of the recorded trace to the test
case encoding phase. In the rest of this section, we discuss the
content of the recorded trace, describe how the recorder defines
selectors, present what type of interactions are recognized by
our technique, and describe the oracle definition process.

1) Recorded Trace: Figure 2 shows an abstract syntax for
the recorded trace. The beginning of the trace is defined by
the trace-def production rule, which indicates that a trace

http://www.cc.gatech.edu/~orso/software/barista

trace-def ::= trace main-activity actions

main-activity ::= string

actions ::= action | action, actions

action ::= interact-def | sys-interact-def | ui-assert-def
| af-assert-def | key-def

interact-def ::= interact i-type selector timestamp i-props
i-type ::= click | long click | type | select | scroll

selector ::= resource-id | xpath | properties-based
resource-id ::= string

xpath ::= string

properties-based ::= element-class element-text
element-class := string

element-text := string

timestamp ::= number

i-props ::= | exprs
sys-interact-def ::= sys-interact sys-i-type timestamp sys-i-props
sys-i-type ::= pause | stop | restart | start | resume | rotate | message

sys-i-props ::= | exprs
ui-assert-def ::= ui-assert ui-a-type selector timestamp ui-a-props
ui-a-type ::= checked | clickable | displayed | enabled | focus

ui-a-props ::= | selector | exprs
af-assert-def ::= af-assert timestamp af-a-props
af-a-props ::= | exprs
key-def ::= key key-type timestamp

key-type ::= action | close

exprs ::= expr | expr, exprs

expr ::= bool | number | string

Figure 2: Abstract syntax of the recorded trace.

consists of the name of the main activity followed by a list of
actions. The types of actions logged into the recorded trace is
indicated by production action. In the rest of this section, we
will refer to the abstract syntax while describing the actions
recorded in this phase.

2) Selectors: Our technique creates a selector for user in-
teractions and oracles, which is used to accurately identify the
UI element associated with these actions and is independent
from the screen size of the device. The technique defines and
uses three types of selectors: (1) the resource ID selector
(resource-id in Figure 2), (2) the XPath selector (xpath),
and (3) the property-based selector (property-based). The
resource ID selector corresponds to the Android resource ID
that is associated to a UI element [7]; the XPath [9] selector
identifies an element based on its position in the UI tree (as
the UI tree can be mapped to an XML document); and the
property-based selector identifies an element based on two
properties: the class of the element (element-class) and the
text displayed by the element (element-text), if any.

Our technique does not use the Android resource ID as its
only type of selector because the Android framework does
not require a developer to specify a resource ID for each UI
element. Moreover, the framework cannot enforce uniqueness
of IDs in the UI tree. Our technique does not use an element’s
screen coordinates as a selector either because the screen
coordinates of a UI element can be considerably different on
different devices.

The recorder aims to identify the most suitable type of se-
lector for every interaction and oracle processed by leveraging
the accessibility functionality of the Android platform. It does
so by analyzing the accessibility tree for the UI displayed on
the device. Each node in the tree represents an element in the
UI and is characterized by two properties of interest: resource
ID (if defined) and class of the UI element represented by
the node. The recorder navigates the accessibility tree to

track uniqueness of resource IDs and stores the IDs and the
corresponding nodes in a resource ID map. The information
stored in this map is then used every time an interaction
occurs or an oracle is defined by the user. More precisely,
when the recorder processes these types of actions, it considers
the accessibility node associated with the action. The recorder
checks whether the node has a resource ID and, if it does,
checks for its uniqueness using the resource ID map. In case
the resource ID is unique, the recorder creates a selector of
type resource ID for that action. If the node associated to an
action does not have a resource ID or the ID is not unique, the
recorder generates a selector of type XPath, where the XPath
selector is a path expression that identifies a specific node in
the tree.

When the window containing the element affected by
an interaction becomes inactive immediately after the in-
teraction is performed (e.g., when selecting an entry of a
ListPreference dialog), the accessibility framework does
not provide the reference to the node in the accessibility tree
affected by the interaction. In this case, the recorder cannot
define a resource ID or XPath selector and uses a property-
based selector instead. The property-based selector leverages
the information stored in the accessibility event representing
the interaction (see Section II-A3). This type of selector
identifies an element in the UI using the class of the element
and the text displayed by the element (if any). We selected
these two properties because they will not change across
devices with different screen properties. Two UI elements that
belong to the same class and display the same text would
have the same selector and would thus be indistinguishable.
Although this could be problematic, this type of selector is
used only when the resource ID and XPath selectors cannot
be used, which is not a common situation and never occurred
in our evaluation.

3) Interactions: The recorder recognizes user interactions
by analyzing accessibility events created by the Android
platform as a result of such interactions. These events have
a set of properties that describe the characteristics of the
interactions. Due to space limitations, we only illustrate how
the recorder processes two types of events, as other events are
handled similarly.

a) Click: Our technique detects when a user clicks on
a UI element by listening to accessibility events of type
TYPE_VIEW_CLICKED. The recorder encodes an event of
this type as an entry in the recorded trace (interact-def
in Figure 2). It labels the entry as of type click (i-type),
identifies the interaction selector (selector) as discussed in
Section II-A2, and saves the action timestamp (timestamp).

b) Type: Our technique recognizes when a user types
text into an app by processing accessibility events of type
TYPE_VIEW_TEXT_CHANGED. Naively recording events from
this class, however, would result in a recorded trace that also
includes spurious events in the case of programmatic (i.e., not
user driven) modifications of the text. TO address this issue,
our technique leverages the fact that actual typing is always
followed by a TYPE_WINDOW_CONTENT_CHANGED event. For

each typing event, the recorder encodes the event as an entry in
the recorded trace (interact- def), labels the entry as of class
type (i-type), identifies the interaction selector (selector),
saves the action timestamp (timestamp), and adds the text
typed by the user to the properties of the entry (i-props). It
is worth noting that, when a user enters text incrementally,
this results in a sequence of events. This sequence of events
is processed in the test case encoding phase to minimize the
size of the generated test cases (see Section II-B).

After typing text, a user can click the input method action
key to trigger developer defined actions. Because the Android
system does not generate accessibility events for this type
of interactions, our technique provides an on-screen keyboard
that can be used by the tester as a regular keyboard and records
this type of interactions as well. In response to this event, the
recorder adds an entry (key-def) to its recorded trace (action).
Our technique handles in a similar fashion the key that, when
clicked, hides the on-screen keyboard (close).

4) User-induced System Events: User interactions can lead
to system events that affect the AUT and consequently the
behavior of recorded test cases. We classify these events under
three categories: events that trigger callbacks of the activity
lifecycle; runtime changes in the configuration of the device;
and messaging objects (intents) that originate from other apps
and trigger the execution of components in the AUT. We
illustrate how our technique accounts for these events.

a) Activity Lifecycle Callbacks: These are triggered by
the Android system as result of certain user interactions
and can be divided into (1) callbacks generated as the user
navigates through the AUT and (2) callbacks triggered when
the AUT is not running in the foreground. Our technique
does not take any action on callbacks of the former type
because they are automatically triggered in the test scripts
generated by our technique. Conversely, our technique de-
tects and suitably processes the latter type of callbacks. The
recorder detects when an activity of the AUT stops running
in the foreground by analyzing accessibility events of type
TYPE_WINDOW_STATE_CHANGED. In this case, the recorder
checks if the activity is in its PAUSED or STOPPED state by
accessing the activity manager running in the Android system.
When the AUT starts running in the foreground again (detected
by the recorder using the accessibility event mentioned above),
the recorder creates entries (sys-interact-def) of type pause

and resume (sys-i-type) if the activity was in the paused state.
Otherwise, if the activity was in the stopped state, it adds
pause, stop, restart, start, and resume entries.

b) Device Configurations: Configurations can be
changed at runtime by the Android system as result of certain
user actions. Among those, screen orientation is particularly
important for test case recording because an activity of
the AUT can display different UI elements based on the
orientation of the device. Our technique records such changes
so that the test execution phase can properly execute recorded
interactions. The recorder listens for configuration change
events generated by the Android system and when it detects
a screen orientation change it stores the change as an entry

Table I: Assertable properties for UI-based oracles.
Property Description

CHECKED The element is checked
CLICKABLE The element can be clicked
DISPLAYED The element is entirely visible to the user
ENABLED The element is enabled
FOCUS The element has focus
FOCUSABLE The element can receive focus
TEXT The element contains a specific text
CHILD Child-parent relationship between two elements in the UI
PARENT Parent-child relationship between two elements in the UI
SIBLING Sibling relationship between two elements in the UI

(sys-interact-def) of type rotate (sys-i-type) having the
current orientation value as its property (sys-i-props).

c) Intents: Intents are the messaging objects used by the
Android system to enable communication between different
apps. An app can let the system know about what messages is
interested in receiving by using intent filters [7]. Our technique
allows users to define and send intents to the AUT so that
they can test the behavior of the AUT upon receiving these
messages. Users can also define the properties of an intent
through the menu provided by our technique. When an intent
is defined, the recorder saves it and its properties as an entry
(sys-interact-def) of type message into the recorded trace
and then sends the intent to the AUT.

5) Oracles: Oracles are an essential part of a test case.
Our technique uses assertion based oracles that can be of two
types: UI-based and activity-flow-related oracles. The former
check for properties of UI elements, whereas the latter check
for properties of intents used to transfer control between AUT
components.

a) UI-based Oracles: These oracles can either check the
state of a UI element at a specific point of the execution
or check the relationship between two UI elements. Table I
reports the properties that can be asserted using UI-based
oracles and provides a brief description of them. Variations
of the properties listed in Table I can also be asserted.
For instance, our technique can be used to assert that the
percentage of visible area of an element is above a user defined
threshold. Moreover, the technique can also define assertions
that check that a property of an element does not have a
certain value. The menu and the recorder contribute together
to the creation of assertions. Figures 3, 4, and 5 show part
of the assertion creation process. The user starts the process
by clicking the assert button in the menu (the button with
the tick symbol in Figure 3). This creates the assertion pane,
a see-through pane that overlays the device screen entirely
(Figure 4). This pane intercepts all user interactions and is
configured so that the Android system does not generate
accessibility events for interactions intercepted on the pane,
so that no spurious events are recorded. At this point, the
user can define assertions either automatically or manually.
With the automatic process, the user selects an element in the
UI, and our technique automatically adds assertions for each
property of the element. With the manual process, assertions
are defined directly by the user. For the sake of space, we
describe in detail only the manual process. The automatic
process follows similar principles.

Figure 3:
Menu overlay.

Figure 4:
Assertion pane.

Figure 5:
Oracle selection.

As shown in Table I, the user can assert properties that affect
either a single element or a pair of elements. We illustrate how
the technique works when asserting properties that affect one
element. (Assertions that affect a pair of elements are defined
similarly.) The user selects an element in the UI by long
clicking (tap-hold-release) on it. In response to the long click,
BARISTA sends the x and y coordinates of the location being
pressed to the recorder, which explores the accessibility tree to
find the node identified by the location, computes the screen
location of the node’s vertexes, and sends these coordinates
back to BARISTA. BARISTA uses the coordinates to highlights
the element, as shown in Figure 4.

The user can then either change the currently selected
element through dragging or accept it. At this point, the
recorder identifies the node on the accessibility tree as usual
(in case the user changed it), checks the node class, and based
on this information builds a list of assertable properties. The
top of the list is populated with properties that are specific to
the node. As shown in Figure 5, these properties are displayed
in the proximity of the selected element. The user can then
choose a property and the value to be considered in the
assertion, and BARISTA sends the property and the value to
the recorder. The recorder creates an entry in the recorded
trace (ui-assert-def), suitably labels the entry based on the
selected assertion property (ui-a-type), identifies the selector
for the assertion (selector), and adds the user defined value for
the assertion to the properties of the entry (ui-a-props). After
the recorder successfully adds the assertion to its recorded
trace, it signals the end of the assertion definition process to
BARISTA, which removes the assertion pane from the screen,
so that the user can continue to interact with the app.

b) Activity-Flow-Based Oracles: Apps use intents to
transfer control flow between app components. Our technique
allows users to check the properties of intents in their recorded
test cases. The user can enable this type of assertions by
setting a flag at the beginning of the recording process. The
recorder recognizes intents being used within the AUT by
reading a log of system messages generated by the Android
system. When the recorder detects that the AUT used an
intent to transfer control between two app components (by
processing system message entries in the log), it adds an

assertion (af -assert-def) into the recorded trace that checks
for the values describing the properties of the intent (action,
data, type, category).

B. Test Case Encoding

The test case encoding phase receives as input the recorded
trace and a user-provided flag (retain-time flag) that indicates
whether the timing of recorded interactions should be pre-
served. For instance, if a user sets a 30-seconds timer in an
alarm clock app and wants to check with an assertion the
message displayed when the timer goes off, he or she would
set the retain-time flag to true to ensure that the assertion is
checked 30 seconds after the timer is started. The test case
encoding phase produces as output a test case that faithfully
reproduces the actions in the recorded trace. In the current
version of our technique, the generated test case is an Android
UI test case based on the Espresso framework [10]. In the rest
of this section, we illustrate how the technique translates the
recorded trace into a test case.

The test case encoding phase starts by translating the
main-activity entry of the recorded trace into a statement
that loads the starting activity of the recorded interactions.
It then translates actions into statements grouping generated
statements into a single test procedure.

Statements that reproduce user interactions and UI-based
oracles are divided into three parts. The first part is used by the
test case execution engine to retrieve the UI element affected
by the action. Our technique places the selector (selector) of
the action in this part of the statement. The second part of the
statement consists of the action that the test case execution
engine performs on the UI element identified by the first
part of the statement. The technique encodes this part of
the statement with the Espresso API call corresponding to
the action being processed (i-type or ui-a-type). The third
part of the statement accounts for parameters involved in
the action and it is action specific. To generate this part of
the statement, our technique processes the properties of the
action (i-props or ui-a-props). Statements representing user-
induced system events and activity-flow-based oracles do not
follow this structure. Actions representing user-induced system
events are translated into statements that call procedures of
the currently executing activity. Actions representing activity-
flow-based oracles translates into statements that check the
properties of intents generated by the execution of the AUT.

The content of the generated test case is affected by the
retain-time flag as follows. If the retain-time flag is set,
our technique places an additional statement between the
statements representing two subsequent actions. This statement
pauses the execution of the test cases (but not the execution
of the app being tested) for a duration that is equal to the
difference of the timestamps associated with the two actions.

Overall, our technique translates interactions and oracles
into a single line statement. The one-to-one mapping between
actions and statements favors readability and understanding of
generated test cases, thus addressing a well-known problem
with automatically generated tests.

C. Test Case Execution

The test case execution phase takes as input the test case
produced by the second phase of the technique, together with a
user-provided list of devices on which to run the test case, and
performs three main tasks: (1) prepare a device environment
for the test case execution, (2) execute the test case, and (3)
produce the test report.

The first step installs the AUT and the generated test case
on all devices in the user-provided list. Once the execution
environment is set up, the technique executes the test case
on each device in the user-provided list in parallel. The
execution of a test case is supported through our extension of
the Espresso framework and works as follows. The test case
execution engine begins with loading the starting activity of
the test. From this point, the engine synchronizes the execution
of the test case’s steps with the updates in the UI of the AUT.

The engine processes user interaction and UI-based oracle
statements as follows. It first navigates the UI displayed by the
device to find the UI element referenced by the action. If the
element is not present, the execution of the test case terminates
with an error. If the element is present, the execution engine
behaves differently according to whether it is processing an
interaction or an oracle statement. In the former case, the
execution engine injects a motion event into the app or
performs an API call on the UI element being targeted by the
interaction. In the case of an oracle statement, the execution
engine retrieves all elements in the UI that hold the property
expressed by the oracle’s assertions and checks whether the
element targeted by the oracle is one of these elements. If the
element is not present, the test case terminates with a failure.
Otherwise, the execution continues.

The engine processes user-induced system event statements
by mediating the execution of the system event with the
Android system. Activity-flow-based oracle statements are
processed as follows. During the execution of the test case,
the test engine stores intents being sent by the AUT into a
buffer. When the engine reaches an oracle statement it checks
that the buffer contains an intent with the same properties as
the one expressed by the statement. After the execution of
such statement, the engine clears the buffer to make sure that
following oracle statements will match new intents.

At the end of the execution, the technique produces a test
execution report that contains: (1) the outcome of the test case
on each device, (2) the test case execution time, and (3) debug
information if an error or failure occurred during execution.

III. IMPLEMENTATION

We implemented our technique in a framework called
BARISTA. There are three main modules in the framework: (1)
the recording module, which implements the aspects of the test
case recording phase (Section II-A); (2) the encoding module,
which encodes test cases as presented in the test case encoding
phase (Section II-B); and (3) the execution module, which
executes test cases as described in the test case execution
phase (Section II-C). The recording module is implemented
as an Android app and runs on devices that use the platform

API level 16 and above. The app does not require root access
to the device to operate and does not require the device to be
connected to an external computational unit during recording,
as the test case recording happens directly and entirely on
the device. The encoding and execution modules are part of
a web service implemented in Java. We describe these three
components in more detail.

There are three fundamental components in the BARISTA
app: (1) the menu component, (2) the recording component,
and (3) the input method component. The three components
correspond, respectively, to the menu, recorder, and keyboard
presented in Section II-A. The three components run in distinct
processes, which in turn are different from the process in
which the AUT is running. This design allows BARISTA to
perform its test case recording phase on all apps installed on
the device without the need to instrument these apps. When
the user ends the recording phase, the app attaches the trace to
an HTTP requests and sends it to the BARISTA web service.

The encoding module of the BARISTA web service uses
the JavaWriter 2.5 library [11] to create the source code
of the generated test cases. BARISTA encodes test cases
based on the Espresso 2.2 framework [10]. More precisely,
BARISTA extends Espresso to provide a larger API that
implements the concepts introduced by the technique. The
extended API includes the notion of XPath selector (added
to the ViewMatcher class), a select action for multiple view
elements (implemented by extending the ViewAction class),
and an extended support for the scroll functionality. The
BARISTA web service uses the adb server to prepare device
environments and execute test cases. Test reports are produces
using Spoon 1.7 [12].

IV. LIMITATIONS

As we stated in Section II-A, our technique leverages the
accessibility functionality of the Android platform to detect
user interactions. In this way, the technique does not need to
run on a “rooted” device, does not need customization of the
underlying platform, and does not need to instrument the AUT.
However, the accessibility infrastructure does not currently
offer support for complex multi-touch gestures (e.g., pinch
in and out). We are currently investigating ways to address
these limitations. Fortunately, these actions are mostly used in
games and are not predominant in other types of app.

Our technique binds interactions and oracles with UI el-
ements. Certain Android apps, however, rely on bitmapped
(rather than UI) elements. Hence, the technique cannot cur-
rently handle such apps. Luckily, as in the previous case, the
vast majority of these apps are games, whereas other types of
app tend to rely exclusively on standard UI elements.

Although our technique generates by design single-app
test cases (i.e., records only the actions performed within
the AUT), the accessibility framework allows for observing
system-wide interactions. The technique could therefore be
extended to handle such system-wide interactions as well.

Finally, our technique does not have sandboxing capabilities
at the moment, so it is not able to record inputs that require

Table II: Description of our benchmark apps.

ID Name Category Installations (#K) LOC (#K)
A1 DAILY MONEY Finance 500 - 1000 10.7
A2 ALARM KLOCK Tools 500 - 1000 6.1
A3 QUICKDIC Books 1000 - 5000 289.7
A4 SIMPLE C25K Health 50 - 100 1.5
A5 COMICS READER Comics 100 - 500 8.4
A6 CONNECTBOT Communication 1000 - 5000 24.3
A7 WEATHER NOTIFICATION Weather 100 - 500 13.2
A8 BARCODE SCANNER Shopping 100000 - 500000 47.9
A9 MICDROID Media 1000 - 5000 5.6
A10 EP MOBILE Medical 50 - 100 31.4
A11 BEECOUNT Productivity 10 - 50 16.2
A12 BODHI TIMER Lifestyle 10 - 50 10.5
A13 ANDFHEM Personalization 10 - 50 60.3
A14 XMP MOD PLAYER Music & Audio 10 - 50 58.7
A15 WORLD CLOCK Travel & Local 50 - 100 31.4

sandboxing (e.g., sensors data, networking data, camera data).
Adding these capabilities would require our technique to
instrument the AUT or the Android framework, which would
change the nature of the approach and is something that we
plan to explore in future work.

V. EMPIRICAL EVALUATION

To assess the expressiveness, efficiency, and ultimately
usefulness of our approach, we used BARISTA to perform
a user study involving 15 human subjects and 15 real-world
Android apps. Because defining oracles is a fundamental part
of generating test cases and of our approach, to perform an
apple-to-apple comparison we used as a baseline for our evalu-
ation: TESTDROID RECORDER (TR) [2] and ESPRESSO TEST
RECORDER (ETR) [3]. The former tool records test cases in
the Robotium [13] format while the latter records test cases
in the Espresso [10] format. We therefore did not consider
pure record/replay tools with no oracle definition capabilities,
such as RERAN [14], VALERA [15], and MOSAIC [16]. We
considered including ACRT [4] in our study, as it can record
tests in Robotium format. Unfortunately, however, ACRT does
not work with recent Android versions, so using it would
have required us to backport our benchmark applications to
an earlier Android version.

In our empirical evaluation, we investigated the following
research questions:
RQ1: Can BARISTA record user defined test cases? If so, how
does it compare to TR and ETR?
RQ2: Is the test case recording process with BARISTA more
efficient than the one with TR and ETR?
RQ3: Does BARISTA’s encoding preserve the functionality of
the test cases? How does BARISTA compare to TR and ETR
in this respect?
RQ4: Can test cases generated by BARISTA run on different
devices? How platform independent are they with respect to
test cases generated by TR and ETR?

In the remainder of this section, we first describe the
benchmarks used in the evaluation. We then present the user
study, discuss evaluation results, and conclude illustrating
anecdotal evidence of BARISTA’s usefulness using feedback
from developers that used it.

A. Experimental Benchmarks

For our empirical evaluation, we used a set of real-world
Android apps. Specifically, we selected 15 free and open-
source apps from the F-Droid catalog [17] (ETR requires an
app source code). Our choice of apps is based on three param-
eters: (1) popularity, (2) diversity, and (3) self-containment. As
a popularity measure, we used the number of installations for
an app according to the Google Play store [18]. We selected
apps from different categories to have a diverse corpus of
benchmarks and prioritized apps for which we did not have to
build extensive stubs (e.g., apps that do not rely on a hard to-
replicate backend database). Table II shows the lists of apps
we used. For each app, the table shows its ID (ID), name
(Name), category (Category), the range of its installations
(Installations), and the number of lines of code (LOC). It is
worth noting that none of the apps in Table II had a reference
test suite.

B. User Study

For our experimentation, we recruited 15 graduate stu-
dents from three institutions. We asked the participants to
perform four tasks: (#1) write natural language test cases
(NLTCs), (#2) record NLTCs using TR, (#3) record NLTCs
using ETR, and (#4) record NLTCs using BARISTA. Before
performing the user study, we conducted a three-hour tools
demonstration session to familiarize the participants with the
three tools. We did not inform the subjects of which tool was
ours and which ones were the baseline (but they obviously
could have discovered this by searching the name of the tools).

All participants started from the task #1. In this task we
provided the participants with three benchmark apps, so that
each app was assigned to three different users. We asked
the participants to explore the apps’ functionality and then
define five NLTCs for each app assigned to them. NLTCs
were written purely in natural language, without the use of
any framework and without even following any particular
structure. After they all completed task #1, we manually
analyzed the NLTCs for possible duplicates and checked with
the participants in case of ambiguities. Table III shows the
properties of the NLTCs we collected. For each app, the
table shows the number of distinct NLTCs (NLTC(#)), average
number of interactions per test case (I(#)), and average number
of assertions per test case (A(#)). The total number of distinct
NLTCs is 215. All NLTCs have at least one assertion. A1 is the
app having the NLTC with the highest number of interactions
(27), while A11 is the app with the NLTC having the highest
number of assertions (10). All NLTCs are expected to pass.

In tasks #2, #3 ,and #4, we asked participants to record
NLTCs using TR, ERT, and BARISTA, respectively. For each
task, each participant was provided with a set of NLTCs
written for three apps. The set of NLTCs provided to a specific
participant was different between the three tasks. However, the
set of all test cases across the three tasks was the same. We also
decided not to give participants NLTCs they wrote, so as to
mimic a scenario in which the test specifications are provided
by a requirements engineer and the testing is performed by a

Table III: Information on the NLTCs
considered: NLTC(#) = number of NLTCs
for the app; I(#) = average number of
interactions across NLTCs; A(#) = average
number of assertions across NLTCs.

ID NLTC(#) I(#) A(#)
A1 15 9.33 3.40
A2 15 7.07 1.40
A3 14 6.21 1.36
A4 14 4.36 3.14
A5 14 3.50 1.93
A6 13 8.92 1.23
A7 14 3.29 2.79
A8 14 2.93 1.86
A9 12 4.08 1.25
A10 15 6.47 3.00
A11 15 6.73 2.20
A12 15 3.67 1.73
A13 15 3.93 3.13
A14 15 4.87 2.47
A15 15 4.47 3.27
Total 215 5.33 2.30

Table IV: Results of the test case recording process, for each app considered: C(#) = number
of test cases that could be recorded; NC(#) = number of test cases that could not be recorded;
AS(#) = number of assertions skipped; AA(#) = number of assertions altered; and T(s) = average
recording time.

ID TR ETR BARISTA
C(#) NC(#) AS(#) AA(#) T(s) C(#) NC(#) AS(#) AA(#) T(s) C(#) NC(#) AS(#) AA(#) T(s)

A1 15 0 9 20 176 15 0 0 36 97 15 0 2 0 119
A2 4 11 0 2 108 15 0 14 3 27 15 0 0 0 42
A3 9 5 5 1 11 13 1 3 9 40 14 0 2 0 18
A4 9 5 8 7 27 14 0 26 13 30 14 0 3 0 29
A5 12 2 2 2 38 14 0 1 20 19 14 0 0 0 9
A6 6 7 0 1 18 13 0 0 13 29 13 0 0 0 11
A7 11 3 13 5 14 13 1 5 21 15 14 0 0 0 8
A8 11 3 5 0 25 14 0 0 17 21 14 0 0 0 5
A9 11 1 3 3 23 12 0 0 12 28 12 0 0 0 11
A10 13 2 10 2 61 14 1 17 8 38 15 0 0 0 56
A11 12 3 10 0 66 15 0 1 13 56 15 0 0 0 57
A12 15 0 5 0 25 15 0 4 14 28 15 0 0 0 22
A13 13 2 14 3 123 15 0 0 39 51 15 0 0 0 46
A14 15 0 7 2 97 11 4 1 24 43 15 0 2 0 49
A15 15 0 17 0 83 14 1 1 35 124 15 0 2 0 57
Total 171 44 108 48 60 208 7 74 277 43 215 0 11 0 36

QA tester. For each of the three tasks, we asked the users to
reproduce the steps of the NLTCs as faithfully as possible,
unless the tool prevented them to do so (e.g., they could
skip assertions that the tool was unable to encode). Finally,
we grouped participants so that some performed the task #2
before the other two tasks, others started from task #3, and
still others started from task #4.

The experimental setup to perform task #2 was structured
as follows. We asked users to record NLTCs on a device
running Android API level 19. The device was connected to
a MacBook Pro (2.3 GHz i7 processor and 8GB memory)
running Eclipse 4.4, with TR installed as a plugin. To define
an assertion using TR, users might need to specify the Android
resource IDs of the element involved in the assertion. We thus
made the UIAUTOMATORVIEWER tool [19] available to users,
so that they could easily explore an app’s UI. In task #3, we
asked users to record NLTCs on a device running Android
API level 19. The device was connected to a MacBook Pro
(2.3 GHz i7 processor and 8GB memory) running Android
Studio 2.2 with ETR installed. To perform task #4, we asked
users to record NLTCs using a device running API level 19
with BARISTA installed. We did not impose any timeout to
perform the three tasks.

C. Results

RQ1: To answer the part of RQ1 about BARISTA’s expres-
siveness, we checked the test cases recorded by users using
BARISTA against the corresponding NLTCs. The third part of
Table IV (columns below BARISTA header) shows the results
of this check. For each app, we report the number of test
cases that could be recorded (C), the number of test cases that
could not be recorded (NC), the number of assertions skipped
(AS), and the number of assertion altered (AA). We considered
an NLTC as recorded if the generated test case contained
all interactions defined in it, and not recorded otherwise. We
considered an assertion as skipped if the user did not define
it, whereas we considered an assertion as altered if the user
defined an assertion with a different meaning from the one in
the NLTC. When using BARISTA, participants could record all

test cases, skipped 11 assertions (2.2% of the total number of
assertions), and did not alter any assertion. The 11 assertions
that users could not express with BARISTA do not directly
check for properties of UI elements (e.g., an NLTC for A4
states “assert that the alarm rings”).

The first (TR) and second (ETR) sections of Table IV help
us answer the second part of RQ1, which compares BARISTA
to the baseline. 44 test cases could not be recorded using TR.
36 of those could not be recorded because TR altered the
functionality of 10 apps, preventing users from performing
certain interactions. In the remaining cases, users stopped
recording the test case after making a mistake. Even without
considering the last eight test cases, which mostly depend on
user errors, BARISTA could record 20.1% more test cases than
TR. 7 test cases were not recorded using ETR because users
stopped recording the test case after making a mistake.

As the table also shows, users skipped 108 assertions while
using TR and 74 while using ETR (the assertions skipped
while using BARISTA are included in both sets). The reason
behind these two high numbers is that TR and ETR offer a
limited range of assertable properties. For instance, TR does
not allow for checking whether a UI element is clickable or
whether an element is checked, while ETR offers only three
assertable properties: text is, exisit, and does not esist. In the
test cases generated by TR and ETR, we can also note that 48
and 277 assertions (sum of column AA) were different from the
ones defined in the corresponding NLTCs. An example of such
assertion mismatch is an NLTC from A1, for which the user
recorded “assert button is enabled” instead of “assert button
is clickable”. We asked the participants involved why they
modified these assertions, and they said that it was because
they could not find a way to record the original assertion with
the tool. Among the test cases recorded by all tools, BARISTA
could faithfully express 65.2% more assertions than TR and
3.8X more assertions than ETR.

These results provide initial evidence that BARISTA can
record test cases and is more expressive than TR and ETR.

RQ2: To answer RQ2, we compare the amount of time taken
by the participants to record test cases using TR, ETR, and

BARISTA. For each app, Table IV reports the average time in
seconds (T(s) columns) taken to record test cases. The average
time is computed considering the test cases that were recorded
by all three tools and in which no assertion was skipped. The
amount of time associated with each test case is calculated
from the moment in which the user recorded the first action
to the time in which the user terminated the recording process.
Recording test cases with BARISTA was faster than TR for 13
apps and faster then ETR for 10 apps. BARISTA has the lowest
average recording time considering all apps and it is 32.3%
faster than TR and 19.9% faster than ETR.

We can thus conclude that, on average, BARISTA is more
efficient in recording test cases than TR and ETR.

RQ3: To answer the part of RQ3 about BARISTA’s correct-
ness, we executed the 215 test cases generated using BARISTA
on the device on which they were recorded. We report the
execution results in the third part of Table V (columns below
BARISTA header). For each app, we report the number of
test cases executed (T), the number of test cases that worked
correctly (W), the number of test cases that terminated with
an error or failure due to a problem in the tool encoding
or execution phase (NW), and the number of test cases that
terminated with an error or failure due to a user mistake
in the recording process (M). We consider a test case as
working correctly if it faithfully reproduces the steps in its
corresponding NLTC. Across all benchmark apps, 97.2% of
the recorded test cases worked correctly, and 12 apps had all
test cases working properly. The test case from A5, which is
marked as not working, terminated with an error because the
file system of the device changed between the time the test
case was recorded and the time the test case was executed.
The five test cases marked as user mistakes terminated with
an assertion failure. In two of these cases, the user asserted
the right property but forgot to negate it. In the remaining
three test cases, the user asserted the right property but on the
wrong UI element. We presented the errors to users and they
confirmed their mistakes.

The first and second part of Table V (columns below TR
and ETR headers) lets us answer the second part of RQ3,
which compares the correctness of the test cases generated
by BARISTA with respect to that of the baseline. Across
all benchmark apps, only 64.9% of the recorded test cases
with TR worked correctly. This number corresponds to 51.6%
of the NLTCs. The 49 test cases classified as not working
could not replicate at least one of the interactions from their
corresponding NLTCs. Users made 11 mistakes using TR. In
the majority of these cases (6), the user entered the wrong
resource ID when recording an assertion. In the case of ETR,
only 38.9% of the recorded tests worked correctly. 121 test
cases did not work because of the following reasons: (1)
the UI reference generated by the tool could not identify
the corresponding UI element (75 test cases), (3) the tool
generated additional actions that changed the behavior of the
test case (30 test cases), and (3) the tool did not generate test
case actions for certain user interactions (16 test cases). Users

Table V: Results of test case execution: T(#) = number of executed
test cases; W(#) = number of working test cases; NW(#) = number
of test cases that did not work due to a problem with the tool; and
M(#) = number of test cases that did not work due to a user mistake.

ID TR ETR BARISTA
T(#) W(#) NW(#) M(#) T(#) W(#) NW(#) M(#) T(#) W(#) NW(#) M(#)

A1 15 8 6 1 15 6 9 0 15 15 0 0
A2 4 3 1 0 15 7 8 0 15 15 0 0
A3 9 5 4 0 13 6 7 0 14 14 0 0
A4 9 3 5 1 14 8 6 0 14 12 0 2
A5 12 10 0 2 14 9 5 0 14 13 1 0
A6 6 4 2 0 13 5 8 0 13 13 0 0
A7 11 9 2 0 13 3 6 4 14 11 0 3
A8 11 8 2 1 14 8 6 0 14 14 0 0
A9 11 11 0 0 12 3 8 1 12 12 0 0
A10 13 9 4 0 14 6 9 0 15 15 0 0
A11 12 8 4 0 15 0 15 0 15 15 0 0
A12 15 12 3 0 15 7 7 1 15 15 0 0
A13 13 1 9 3 15 4 11 0 15 15 0 0
A14 15 9 5 1 11 4 7 0 15 15 0 0
A15 15 11 2 2 14 5 9 0 15 15 0 0
Total 171 111 49 11 208 81 121 6 215 209 1 5

made six mistakes using ETR. In all cases, users altered an
assertion making the test case fail.

Overall, BARISTA nearly doubles the percentages of work-
ing test cases compared to TR and ETR. Based on these
results, we can answer RQ3 as follows: there is evidence
that test cases generated by BARISTA work correctly, and that
BARISTA can outperform TR and ETR in this respect.

RQ4: To answer the part of RQ4 on BARISTA’s cross-
device compatibility, we executed the test cases recorded using
BARISTA on seven (physical) devices: LG G FLEX (D1),
MOTOROLA MOTO X (D2), HTC ONE M8 (D3), SONY
XPERIA Z3 (D4), SAMSUNG GALAXY S5 (D5), NEXUS 5
(D6), and LG G3 (D7). (We acquired these devices in early
2015 with the goal of getting a representative set in terms of
hardware and vendors.) We executed all the test cases that
did not contain a user mistake, and among those, 206 test
cases worked on all devices. Overall, the average compatibility
rate across all apps and devices was 99.2%. Two test cases
(from A13) did not work on D7 because that device adds
additional space at the bottom of a TableLayout element.
The additional space moves the target element of an action
out of the screen, preventing BARISTA from successfully
interacting with that element. (The two test cases work on
D7 by adding a scroll action to the test cases.) Also, one test
case (from A13) did not work on D1, D5, and D7 because
these devices display an additional element in a ListView
component. For this reason, an interaction in the test case
selects the previous to last element instead of the last element.

To answer the second part of RQ4, which involves compar-
ing cross-device compatibility of test cases generated using
BARISTA with respect to the baseline, we executed on the
seven devices considered the test cases (that did not contain
a user mistake) recorded using TR and ETR. For TR, 108
tests worked on all devices, and the average compatibility rate
across all apps and devices was 68.3%. Many of the failing
tests also failed on the device on which they were recorded. In
addition, TR generated three test cases that did not work on
D5: one test (from A9) failed to identify the target element

of an interaction based on the x and y coordinates stored in
the test case; two tests (from A15) used an index to select
the target element of an interaction that was not valid on the
device. For ETR, 62 tests worked on all devices, and the
average compatibility rate across all apps and devices was
37.3%. Also in this case, many tests failed on the device on
which they were recorded as well. In addition ETR generated
2 tests that did not work on D1, 1 test that did not work
on D2, 19 tests that did not work on D4, 3 tests that did not
work on D5, and 14 tests that did not work on D7. 37 of these
failures were caused by the UI reference generated by the tool.
The remaining two failures were caused by an unsatisfiable
constraint in the test. Finally, it is worth noting that, whereas
for the three BARISTA-generated tests that are not cross-device
compatible, the corresponding TR- and ETR-generated tests
are also not cross-device compatible, the opposite is not true;
that is, for the TR- ETR-and generated tests that are not cross-
device compatible, the corresponding BARISTA-generated tests
are cross-device compatible.

Based on these results, we can conclude that tests generated
using BARISTA can run on different devices in a majority of
cases, and that BARISTA generated a greater number of cross-
device-compatible tests than TR and ETR.

D. Developers Feedback

We recently publicly released BARISTA and also directly
contacted several developers in various companies to introduce
our tool and ask them to give us feedback in case they used
it. Although this is admittedly anecdotal evidence, we want to
report a few excerpts from the feedback we received, which
echo some of our claims about BARISTA’s usefulness. Some
feedback indicates the need for a technique such as BARISTA:
“I have been looking for something like BARISTA to help me
get into automation for a while”. Other feedback supports
the results of our empirical evaluation on the efficiency of
BARISTA: “Overall, a very interesting tool! For large-scale
production apps, this could save us quite some time by
generating some of the tests for us”. Finally, some other
feedback points to aspects of the technique that should be
improved and that we plan to address in future work: “There
are a few more assertions I’d like to see. For example, testing
the number of items in a ListView”. We are collecting further
feedback and will make it available on the BARISTA’s website.

E. Threats To Validity

There are both internal and external threats to validity
associated with the results of our empirical evaluation.

In terms of internal validity, the participant of the user study
were not familiar with the apps they generated test cases,
which may not be the case in real-world situations. However,
it is not uncommon for testers to test someone else’s software.

In terms of external validity, our results might not generalize
to other apps. To mitigate this threat, we used randomly
selected real-world apps. Our results might also not gener-
alize to other devices. To mitigate this threat, we selected a
representative set of devices in terms of hardware and vendors.

VI. RELATED WORK

In the domain of desktop apps, there is a large body
of techniques that focus on GUI test automation using a
record/replay approach [20]–[24]. BARISTA can be related to
MARATHONITE [24] and ABBOT [20] in that they all work
at a higher level of abstraction recording semantic actions and
they identify elements using their delineating properties rather
than using their coordinates. However, BARISTA differs from
the two techniques in that they use dynamic code instrumen-
tation while our technique uses the accessibility infrastructure
offered by the Android framework.

There is also a rich set of techniques for GUI test automation
through record/replay in the web app domain [8], [25]–[30].
BARISTA can be related to SELENIUM IDE in that they
both record semantic actions and offer the opportunity to
express oracles in the recording process. However, SELENIUM
IDE has direct access the AUT while BARISTA can access
the AUT only upon receiving certain accessibility events,
this difference makes the recording task of our technique
more challenging. Furthermore, SELENIUM IDE runs with
heightened privileges [31].

In the domain of mobile apps, there are techniques that fo-
cus on GUI test automation through record/replay [2]–[6] and
techniques that focus mainly on the record/replay task [14]–
[16], [32]. TESTDROID RECORDER [2] is a tool, implemented
as an Eclipse plugin, that records interactions from a connected
device running the AUT. BARISTA is similar to TR in that they
both record interactions at the application layer, however the
approach used by TR presents some limitations. First, TR uses
identifiers that do not reliably identify elements in the GUI.
Second, generated tests rely on sleep commands, which make
tests slow and unreliable. Third, the tool does not suitably
instrument the UI of the AUT to process user inputs leading
to missed interactions in recorded test cases.

ESPRESSO TEST RECORDER [2] is part of Android Studio
and generates test cases by recording user interactions from a
connected device running the AUT. Similarly to BARISTA, the
tool generates Espresso test cases. However, the tool support
for defining oracles is limited and generated test cases use
references to UI elements that tend to be inaccurate.

ACRT [4] is a research tool that, similarly to TR, generates
ROBOTIUM tests from user interactions. ACRT is based on an
app instrumentation approach that modifies the layout of the
AUT to record user interactions and adds a custom gesture
to certain element of the GUI to allow the user to definition
oracles. The support for interactions and oracles is limited
and the technique does not consider how to uniquely identify
elements in the GUI.

SPAG [5] uses SIKULI [33] and ANDROID SCREEN-
CAST [34] to create a system in which the screen of the AUT
is redirected to a PC and the user interacts with AUT using
the PC. SPAG�C [6] extends SPAG using image comparison
methods to validate recorded oracles. The approach for oracle
definition presented in SPAG and SPAG�C is minimally
invasive, as it does not modify the AUT. However, expressing

oracles for a specific element in the GUI is a practical
challenge and the image comparison approach can miss small
but significant differences. MOBIPLAY [32] is a record/replay
technique based on remote execution. The technique is similar
to BARISTA in that inputs to the AUT are collected at
the application layer. However, MOBIPLAY input collection
approach requires modifications in the Android software stack.
In addition, MOBIPLAY records inputs based on their screen
coordinates, while BARISTA collects them so that they are
platform-independent. Finally, MOBIPLAY does not support
the definition of oracles.

RERAN [14] records low level system events by lever-
aging the Android GETEVENTS utility and generates a re-
play script for the same device. The low level approach
presented by RERAN is effective in recording and replaying
complex multi-touch gestures. However, generated scripts are
not suitable for replay on different devices because recorded
interactions are based on screen coordinates. VALERA [15]
redesigns and extends RERAN with a stream-oriented record-
and-replay approach. MOSAIC [16] extends RERAN to over-
come the device fragmentation problem. The technique ab-
stracts low-level events into an intermediate representation be-
fore translating them to a target system. RERAN, VALERA,
and MOSAIC are powerful techniques for record and replay.
However, they do not support oracle definition, which consti-
tute a fundamental aspect of GUI testing.

VII. CONCLUSION

We presented a new technique for helping testers create
(through recording), encode (using a standard format), and
run (on multiple platforms) test cases for Android apps.
One distinctive feature of our technique is that it allows for
adding oracles to the tests in a visual and intuitive way. We
implemented our technique in a freely available tool called
BARISTA. Our empirical evaluation of BARISTA shows that it
can be effective in practice and improve the state of the art.

There are a number of possible directions for future work.
We will extend our current evaluation by (1) performing an
additional user study with a large number of experienced
Android developers and (2) running the generated test cases
also on different versions of the Android OS. We will study
ways to factor out repetitive action sequences, such as app
initialization, so that testers do not have to repeat them
for every test. We will investigate how to add sandboxing
capabilities to BARISTA, so that it can generate tests that are
resilient to changes in the environment. Based on feedback
from developers, we will extend the set of assertable properties
that testers can use when defining oracles. We will investigate
the use of fuzzing for generating extra tests by augmenting
those recorded, possibly driven by specific coverage goals. We
will study ways to help developers fix broken test cases during
evolution (e.g., by performing differential analysis of the app’s
UI). Finally, we will investigate the use of our technique to
help failure diagnosis; a customized version of BARISTA could
be provided to users to let them generate bug reports that allow
developers to reproduce an observed failure.

ACKNOWLEDGMENTS

We thank the students who kindly participated in our
user study. This work was partially supported by the Na-
tional Science Foundation under grants CCF-1453474, CCF-
1564162, CCF-1320783, and CCF-1161821, and by funding
from Google, IBM Research, and Microsoft Research.

REFERENCES

[1] OpenSignal, “Android Fragmentation Visualized,” https://opensignal.
com/reports/2014/android-fragmentation/.

[2] J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala, “Testdroid: automated
remote UI testing on Android,” in Proceedings of the 11th International
Conference on Mobile and Ubiquitous Multimedia, 2012.

[3] Google, “Espresso Test Recorder,” https://developer.android.com/studio/
test/espresso-test-recorder.html.

[4] C. H. Liu, C. Y. Lu, S. J. Cheng, K. Y. Chang, Y. C. Hsiao, and W. M.
Chu, “Capture-Replay Testing for Android Applications,” in Computer,
Consumer and Control (IS3C), 2014 International Symposium on, 2014.

[5] Y.-D. Lin, E.-H. Chu, S.-C. Yu, and Y.-C. Lai, “Improving the accuracy
of automated GUI testing for embedded systems,” Software, IEEE, 2014.

[6] Y.-D. Lin, J. Rojas, E.-H. Chu, and Y.-C. Lai, “On the Accuracy,
Efficiency, and Reusability of Automated Test Oracles for Android
Devices,” Software Engineering, IEEE Transactions on, 2014.

[7] J. Annuzzi Jr, L. Darcey, and S. Conder, Advanced Android Application
Development. Pearson Education, 2014.

[8] SeleniumHQ, “Selenium IDE,” http://docs.seleniumhq.org/projects/ide/.
[9] W3C, “XML Path Language,” https://www.w3.org/TR/xpath-30/.

[10] Google, “Espresso,” https://google.github.io/
android-testing-support-library/.

[11] Square, “JavaPoet,” https://github.com/square/javapoet.
[12] ——, “Spoon,” http://square.github.io/spoon.
[13] H. Zadgaonkar, Robotium Automated Testing for Android. Packt

Publishing Ltd, 2013.
[14] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing-

and Touch-sensitive Record and Replay for Android,” in Proceedings of
the 2013 International Conference on Software Engineering, 2013.

[15] Y. Hu, T. Azim, and I. Neamtiu, “Versatile yet Lightweight Record-
and-replay for Android,” in Proceedings of the 2015 International
Conference on Object Oriented Programming Systems Languages &
Applications, 2015.

[16] M. H. Y. Zhu, R. Peri, and V. J. Reddi, “Mosaic: Cross-Platform User-
Interaction Record and Replay for the Fragmented Android Ecosystem,”
in Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on, 2015.

[17] F-Droid, “F-Droid,” https://f-droid.org.
[18] Google, “Google Play,” https://play.google.com/store.
[19] ——, “Automating User Interface Tests,” http://developer.android.com/

tools/testing-support-library/index.html.
[20] Abbot, “Abbot Java GUI Test Framework,” http://abbot.sourceforge.net/

doc/overview.shtml.
[21] Jacareto, “Jacareto,” http://sourceforge.net/projects/jacareto.
[22] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “jRapture: A

Capture/Replay Tool for Observation-Based Testing,” in Proceedings of
the 2000 International Symposium on Software Testing and Analysis,
2000.

[23] Pounder, “Pounder,” http://pounder.sourceforge.net.
[24] MarathonITE, “marathonITE Powerful Tools for Creating Resilient Test

Suites,” http://marathontesting.com.
[25] J. Mickens, J. Elson, and J. Howell, “Mugshot: Deterministic Capture

and Replay for JavaScript Applications,” in Proceedings of the 7th
USENIX Symposium on Networked Systems Design and Implementation,
2010.

[26] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A Selective
Record-Replay and Dynamic Analysis Framework for JavaScript,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013.

[27] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive Record/Re-
play for Web Application Debugging,” in Proceedings of the 26th Annual
ACM Symposium on User Interface Software and Technology, 2013.

https://opensignal.com/reports/2014/android-fragmentation/
https://opensignal.com/reports/2014/android-fragmentation/
https://developer.android.com/studio/test/espresso-test-recorder.html
https://developer.android.com/studio/test/espresso-test-recorder.html
http://docs.seleniumhq.org/projects/ide/
https://www.w3.org/TR/xpath-30/
https://google.github.io/android-testing-support-library/
https://google.github.io/android-testing-support-library/
https://github.com/square/javapoet
http://square.github.io/spoon
https://f-droid.org
https://play.google.com/store
http://developer.android.com/tools/testing-support-library/index.html
http://developer.android.com/tools/testing-support-library/index.html
http://abbot.sourceforge.net/doc/overview.shtml
http://abbot.sourceforge.net/doc/overview.shtml
http://sourceforge.net/projects/jacareto
http://pounder.sourceforge.net
http://marathontesting.com

[28] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM Invariants
for Web 2.0 Application Robustness Testing,” in Proceedings of the
IEEE 21st International Symposium on Software Reliability Engineering,
2010.

[29] S. Andrica and G. Candea, “WaRR: A Tool for High-Fidelity Web
Application Record and Replay,” in Proceedings of the International
Conference on Dependable Systems and Networks, 2011.

[30] M. Grechanik, Q. Xie, and C. Fu, “Creating GUI Testing Tools Using
Accessibility Technologies,” in Proceedings of the 2009 IEEE Inter-
national Conference on Software Testing, Verification, and Validation
Workshops, 2009.

[31] SeleniumHQ, “Selenium Heightened Privileges Browsers,” http://www.
seleniumhq.org/docs/05_selenium_rc.jsp.

[32] Z. Qin, Y. Tang, E. Novak, and Q. Li, “MobiPlay: A Remote Execution
Based Record-and-Replay Tool for Mobile Applications,” in Proceed-
ings of the 2016 International Conference on Software Engineering,
2016.

[33] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using GUI Screenshots
for Search and Automation,” in Proceedings of the 22Nd Annual ACM
Symposium on User Interface Software and Technology, 2009.

[34] Android Screencast, “Android Screencast,” https://code.google.com/p/
androidscreencast/.

http://www.seleniumhq.org/docs/05_selenium_rc.jsp
http://www.seleniumhq.org/docs/05_selenium_rc.jsp
https://code.google.com/p/androidscreencast/
https://code.google.com/p/androidscreencast/

