
Automated Support for Mobile Application
Testing and Maintenance

Mattia Fazzini

Georgia Institute of Technology

Altanta, Georgia, USA

mfazzini@cc.gatech.edu

ABSTRACT
Mobile applications are an essential part of our daily life. In fact,

they can be used for tasks that range from reading the news to

performing bank transactions. Considering the impact that mobile

applications have in our lives, it is important for developers to test

them and gain confidence that they behave as expected. However,

testing mobile applications proves to be challenging. In fact, mobile

companies report that they do not have enough time and the right

methods to test. In addition, in the case of Android applications,

the situation is further complicated by the “fragmentation” of the

ecosystem. Developers not only need to ensure that an application

behaves as expected but also need to make sure that the application

does so on a multitude of different devices. Finally, because it is

virtually impossible to release a bug free application, developers

also need to quickly react to bug reports and release a fixed version

of the application before customer loss. The research plan proposed

in this paper, aims to provide novel techniques to automate the

support formobile application testing andmaintenance. Specifically,

it proposes techniques to: test apps more effectively and efficiently,

tackle the problems caused by the “fragmentation” of the Android

ecosystem, and help developers in quickly handling bug reports.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Mobile apps, automated testing, differential testing, debugging

ACM Reference Format:
Mattia Fazzini. 2018. Automated Support for Mobile Application Testing

and Maintenance. In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3236024.3275425

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00

https://doi.org/10.1145/3236024.3275425

1 INTRODUCTION
Mobile devices

1
are becoming the prevalent form of computation

and the most popular way of accessing digital media content [6].

Mobile applications (or simply apps) perform an essential role in

the success story of mobile devices and have fundamentally im-

pacted our lives. In fact, apps can be used to facilitate many of our

daily activities, such as shopping, banking, social networking, and

traveling. It is therefore not a surprise that apps result to be the

type of software that is principally used on mobile devices [15].

Apps, similarly to all other software applications, must be tested

to gain confidence that they behave as expected. This is especially

important in the context of mobile apps where they are part of a

highly competitive market and a failure in an app can result in a loss

of reputation and ultimately customers. In fact, an astonishing 88%

of app users would consider abandoning an app if they encountered

bugs or glitches [3]. At the same time, app testing shows to be

increasingly challenging. A study [4] involving 1660 companies

from 32 different countries reports that: 52% of them do not have

enough time to test, 47% of them do not have the right testing

process or method, 46% of them do not have the right tools to test,

42% of them do not have mobile testing experts, 41% of them do

not have in-house testing environment, and 40% of them do not

have testing devices readily available. Therefore is necessary for the

software engineering community to investigate and propose novel

mobile app testing techniques in order to overcome the current

challenges faced by companies and their developers.

In the case of Android apps, the task of establishing whether

an app behaves as expected is further complicated by the “frag-

mentation” of the ecosystem. Given the open source nature of the

Android system and vendors’ intent to satisfy different market

needs, Android devices are often customized (in terms of both their

hardware and software) leading to a multitude of devices concur-

rently available in the field. For instance, the number of distinct

devices in the year 2015 was 24,093 [19]. Different device prop-

erties can distinctively affect the execution of an app, leading to

compatibility issues for the app on some devices. There can be

different types of compatibility issues. First, different values in the

size, the resolution, or the pixel density of screens can affect how

the app is displayed. This characteristic can lead to have an app

that is not properly displayed on some devices. Second, apps exe-

cute on devices that can run different versions or customizations

of the operating system. Because certain system APIs can execute

differently across versions or customizations of the system, apps

using such APIs can receive unexpected inputs from the system

leading to issues in their execution. Third, because devices come

1
The term device is used to refer both to its hardware and operating system.

932

https://doi.org/10.1145/3236024.3275425
https://doi.org/10.1145/3236024.3275425

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mattia Fazzini

from different manufactures, they tend to have different hardware

components, which can lead different devices to have different ca-

pabilities. For this reason, apps might not execute as expected on

devices where a certain hardware component is missing. Given

the “fragmentation” of the Android ecosystem, a developer of an

Android app not only needs to gain confidence that an app behaves

as expected but also needs to determine whether the app does so

across different devices. For this reason, new techniques that focus

on the “fragmentation” of the ecosystem are required to provide the

necessary confidence to developers that apps behave as intended.

At the same time, because app development is driven by de-

manding time to market constraints [21] and because software

verification techniques have inherent limitations, it is virtually im-

possible for developers to identify all bugs before releasing apps.

Consequently, it is possible for users to experience failures. In or-

der to quickly address such failures, companies provide automated

or manual mechanisms that users can utilize to send bug reports

directly to developers. Bug reports contain information describ-

ing a failure and developers analyze them to try to understand

and fix the bug causing a failure. Considering that the number of

bug reports can be significantly high and that bug reports come

with possibly incomplete information [1, 2], these tasks show to

be time consuming and expensive [22]. A particular aspect of mo-

bile apps, is the availability of a high number of natural language

bug reports [17, 20]. Having automated techniques that are able

to analyze such bug reports and help developers in task of fixing

bugs, would allow developers to quickly release a fixed version of

the app and avoid possible loss of reputation and users.

The objective of the research proposed in this paper is to design

novel techniques to address the challenges presented above.

2 PRELIMINARY RESEARCH
The research proposed in this paper is inspired by promising re-

sults from preliminary research. First, we developed an app testing

technique [7] that generates device independent test cases so that

developers can be more effective and efficient in testing apps. Sec-

ond, we designed a technique [8] that identifies screen compatibility

issues caused by the “fragmentation” of the ecosystem so that such

issues can be addressed before app release. Finally, we proposed

a technique [9] that automatically translates bug reports into test

cases so that developers can promptly start repairing bugs.

2.1 Test Case Generation
In the first part of our preliminary research, we designed a tech-

nique that records, encodes, and runs device independent test cases

for Android apps [7]. The technique is characterized by the follow-

ing aspects. First, the technique implements the record once-run

everywhere principle. In fact, developers can record their tests on

one device and rerun them on other devices. Second, the technique

allows developers to create oracles in an intuitive way by interact-

ing with the GUI of the app under test (AUT). Finally, the technique

is minimally intrusive as it does not require any modification to

the device on which the AUT is running.

The technique consists of three main phases. In the test case
recording phase, the developer interacts with the AUT with the

objective of testing its functionality. In this phase, the technique

records user interactions and offers an interface to define assertion-

based oracles. The technique is able to record interactions and

oracles by leveraging the accessibility subsystem of the Android

framework. The technique encodes interactions and oracles into

a trace. For interactions, the technique encodes: the type of in-

teraction, the GUI element exercised by the interaction, and the

properties of the interaction. For oracles, the technique encodes:

the type of oracle, the GUI element checked by the oracle, and the

properties of the oracle. To execute interactions and check oracles

on devices different from the one in which they were defined, the

technique uses the concept of selector. A selector uniquely identifies

an element in the GUI and is independent from the size, the reso-

lution, and the pixel density of the screen. A selector is computed

by analyzing: identifiers, XPaths, and properties of GUI elements.

At the end of the recording phase, the technique enters its test case
encoding phase, which extracts recorded interactions and oracles

from the trace and translates them into test cases. Finally, in the test
case execution phase, the technique executes test cases on multiple

devices and summarizes test results in a report.

2.1.1 Results. We implemented the technique in a tool and per-

formed a user study to evaluate expressiveness, efficiency, and

ultimately usefulness of the technique. The study compares the

technique to a baseline made by two other test case recording

techniques: Testdroid Recorder (TR) [14] and Espresso Test

Recorder (ETR) [10]. Based on the results of the study, we conclude

that the technique can record test cases, and is more expressive and

efficient than the baseline. Furthermore, test cases recorded using

the technique can run on different devices in the majority of cases.

2.2 Compatibility Issue Analysis
In the second part of our preliminary research, we developed a

technique based on differential testing that automatically identi-

fies compatibility issues generated by the “fragmentation” of the

Android ecosystem [8]. The technique finds issues caused by the

“fragmentation” in the size, resolution, and density of device screens.

The technique is composed by four main phases and takes as

inputs: the AUT, a reference device, and a set of test devices. In

its first phase, the technique dynamically generates inputs on the

reference device with the objective of testing the app’s functionality.

Before exercising the app with an input, the technique encodes the

current state of the GUI into a model called the window model. The
model is composed of a tree abstraction and a screenshot of the

GUI. The technique logs inputs and window models into a trace,

which is the input to the following phase. In its second phase, the

technique creates a UI model for the reference device by extract-

ing window models contained in the trace and translates inputs

from the trace into a device independent test case. The test case

also captures window models before providing test inputs to the

AUT. The third phase runs the test case on the set of test devices

and creates a UI model for each device. The fourth phase identifies

compatibility issues by comparing the UI model of the reference

device with the UI model of test devices. Specifically, the technique

identifies two types of compatibility issues: structural compatibil-
ity issues and visual compatibility issues. Structural compatibility

issues are identified by comparing a GUI tree from the reference

device with the corresponding GUI tree from a test device. The

933

Automated Support for Mobile Application Testing and... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

comparison is based on a node matching algorithm. The technique

identifies visual compatibility issues by comparing the visual repre-

sentation of a GUI element in the reference device with the visual

representation of the corresponding GUI element in a test device.

The comparison is performed using a decision tree classifier. Finally,

identified compatibility issues are reported to the developer.

2.2.1 Results. We evaluated the technique using five real-world

apps and 147 different devices. Across all apps and devices, the

technique identified six structural compatibility issues and 89 vi-

sual compatibility issues while reporting 16 false positives. The

technique is able to analyze a single app overnight. By manually

analyzing issues reported, we found that the devices that are most

problematic are the ones with small screen size and low resolution.

However, simply analyzing such devices would have not allowed

the technique to identify all issues reported.

2.3 Bug Reports Analysis
In the third part of our preliminary research, we devised a tech-

nique to automatically translate bug reports into test cases [9]. The

technique focuses on natural language reports describing how to

reproduce a bug in terms of GUI actions. The test case generated by

the technique can be used by a developer to debug and fix the app.

The technique is characterized by threemain phases: the ontology
extraction phase, the bug report analysis phase, and the GUI actions
search phase. In the first phase, the technique takes as input the

relevant app associated with the report, and extracts a description

of GUI elements used in the app. This description is stored in the

ontology for the app and is used by the second phase of the technique
to create a mapping between the vocabulary used in the bug report

and the GUI elements of the relevant app. The second phase of

the technique analyzes the bug report to extract a list of abstract
steps. Abstract steps encode actions described in the bug report.

In this phase, the technique analyzes clauses in the report using

their dependency tree representation [5, 13]. For each clause, the

technique extracts the action to be performed on the GUI, the

target GUI element of the action, and the properties of the action.

The technique recognizes a GUI element in the description of the

report by comparing the text of the report with the content of

the ontology using an approach based on word embeddings. The

third phase of the technique dynamically explores the relevant

app looking for a sequence of GUI actions that match abstract

steps. The exploration uses backtracking to account for the fact

that there could be multiple candidate GUI elements as the target of

an abstract step. The exploration also uses random input generation

to account for the fact that a report might not list all steps necessary

to reproduce the bug. The final output of the technique is a test

case that can be used to debug and fix the app.

2.3.1 Results. To evaluate the effectiveness of the technique, we

applied its implementation to a set of randomly selected bug reports.

The technique was able to translate 59.7% of the reports (19.4% of

the reports was trivial to translate as it required to simply open the

app). Among these reports, the technique was also able to translate

bug reports that had missing steps necessary to reproduce the bug.

Finally, when successful, the technique could translate any single

report in less than 30 minutes. This execution time suggests that

the technique could be used to monitor bug reports and generate

test cases throughout the day, as opposed to overnight only.

3 PROPOSED RESEARCH
Our preliminary research made initial steps toward addressing the

challenges presented in Section 1. The positive results encourage

us to extend our preliminary research into a research program that

we detail in this section.

3.1 Test Case Generation
In the first part of our research plan, we will extend different aspects

of our work on test case generation [7].

First, we plan to add sandboxing capabilities to our record and

replay technique. In this way, developers can run recorded test

cases independently from external dependencies. Sandboxing is

particularly important in the context of mobile devices as certain

bugsmanifest only under specific conditions. For instance, a bug can

appear when the user of an app moves around and the connection

type of the device changes. To develop sandboxing capabilities,

we will take advantage of the insights from related work [12] and

create a technique that does not require any modification to the

underlying operating system. This characteristic is important for

the adoption of the technique considering the number of devices

present in the field [19]. Second, we plan to use fuzzing, guided by

developer defined coverage goals, for generating extra tests starting

from the ones already recorded. Finally, we plan to create a version

of our record and replay technique that can be used to perform

on-device bug reporting. With such a technique, users could report

executable test cases reproducing the bug directly to developers.

3.2 Compatibility Issue Analysis
In the second part of our research plan, we will extend our work [8]

on the “fragmentation” of the Android ecosystem to consider addi-

tional types of compatibility issues. We will also design techniques

to automatically repair apps that exhibit compatibility issues.

First, we plan to investigate compatibility issues generated by

different versions and customizations of the Android operating

system. Specifically, we plan to analyze how the behavior of oper-

ating system APIs from different devices can affect the execution

of Android apps. Related work [23] manually analyzes a set of re-

ported issues and proposes a static analysis to detect such issues.

In our work, we plan to have a more general technique based on

differential testing that identifies differences in the expected be-

havior of an API and reports them to developers. Specifically, we

will investigate ways to automatically exercise APIs used by an app

under different inputs and conditions, encode the answer from APIs

into a model, and compare the model generated from a reference

device with the models extracted from a set of test devices. Second,

we plan to design a technique that is able to identify whether an

app behaves as expected when executing on a device that does not

offer an hardware component used by the app. Finally, we plan to

develop a technique that is able to automatically update outdated

or deprecated APIs. Related work [11, 16] is able to automatically

identify when an app is using an API that would generate an issue

when invoked on a certain version of the operating system. In our

934

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mattia Fazzini

work, we plan to automatically repair such API usages by analyzing

examples from other apps that have already fixed such API usages.

3.3 Bug Reports Analysis
In the third part of our research plan, wewill extend our work on the

analysis of bug reports [9]. Specifically, we will focus our attention

on helping users to write better reports and assist developers in

quickly triaging bug reports.

First, we plan to design a technique that helps users in writing

natural language bug reports and at the same time automatically

generates a test case for the report. On the user side, the tech-

nique will work as a content assist and will suggest actions to be

performed on GUI elements while the user is typing the report.

Actions and GUI elements are suggested to the user by running the

app affected by the bug in the background, replicating the actions

provided by the user, and analyzing the information displayed by

the GUI. This technique differs from related work [18] as it is able

to explore the app while the user is typing the report. This charac-

teristic can lead to a high accuracy for generated test cases. Second,

we plan to develop a technique able to help developers in triag-

ing bug reports. The technique will translate bug reports written

in natural language into test cases and then perform differential

testing to observe whether two test cases lead to the same crash.

If this is the case, the technique will report them as duplicate bug

reports. The same technique can also be used to prioritize bug re-

ports by looking at coverage information for all bug reports. Finally,

we plan to extend our technique that translates bug reports into

test cases to handle operations that are semantically related to the

functionality of the app but do not explicitly mention GUI actions.

(e.g., “browse through the folders of the app”). This technique will

leverage an existing test suite associated with an app and map test

input sequences to semantic operations by looking at the name of

app methods exercised by the inputs.

4 EXPECTED CONTRIBUTIONS
The research plan proposed in this paper aims to provide novel

techniques and tools for testing and maintaining mobile apps. The

techniques will help developers in testing apps more effectively

and efficiently, give developers mechanisms to tackle the “fragmen-

tation” of the Android ecosystem, and quickly handle bug reports.

We foresee our research to have an impact both in the research and

industry communities. In fact, we plan to open source the imple-

mentation of the techniques (similarly to what we have done in

preliminary research) to foster additional contributions from the

research community. Second, we plan to directly involve developers

into the evaluation of the techniques to gather feedback from real

world scenarios. Finally, we will help developers to integrate our

techniques in their development processes.

ACKNOWLEDGMENTS
The author is advised by Dr. Alessandro Orso. The research work

described in this paper was partially supported by the NSF under

grants CCF-1453474, CCF-1564162, CCF-1320783, CCF-1161821, and

CCF-1563991, and by funding from Amazon, Google, IBM Research,

and Microsoft Research.

REFERENCES
[1] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,

and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, New York, NY, USA, 308–318.

[2] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Ko-

duru. 2013. An Empirical Analysis of Bug Reports and Bug Fixing in Open

Source Android Apps. In 17th European Conference on Software Maintenance and
Reengineering. IEEE Computer Society, Washington, DC, USA, 133–143.

[3] David Bolton. 2017. 88% Of People Will Abandon An App Because Of

Bugs. Retrieved June 29, 2018 from https://www.applause.com/blog/

app-abandonment-bug-testing

[4] Capgemini 2018. World Quality Report 2017-18. Retrieved June 29, 2018 from

https://www.capgemini.com/service/world-quality-report-2017-18

[5] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.

2006. Generating Typed Dependency Parses from Phrase Structure Parses. In

Proceedings of the Fifth International Conference on Language Resources and Evalu-
ation. European Language Resources Association (ELRA), Genoa, Italy, 449–454.

[6] Darrell Etherington. 2016. Mobile internet use passes desktop for the first time,

study finds. Retrieved June 29, 2018 from https://techcrunch.com/2016/11/01/

mobile-internet-use-passes-desktop-for-the-first-time-study-finds

[7] Mattia Fazzini, Eduardo Noronha de A. Freitas, Shauvik Roy Choudhary, and

Alessandro Orso. 2017. Barista: A Technique for Recording, Encoding, and Run-

ning Platform Independent Android Tests. In 2017 IEEE International Conference
on Software Testing, Verification and Validation. IEEE Computer Society, Wash-

ington, DC, USA, 149–160.

[8] Mattia Fazzini and Alessandro Orso. 2017. Automated Cross-Platform Inconsis-

tency Detection for Mobile Apps. In Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering. IEEE Computer Society,

Washington, DC, USA, 308–318.

[9] Mattia Fazzini, Martin Prammer, and Marcelo d’Amorim Alessandro Orso. 2018.

Automatically Translating Bug Reports into Test Cases for Mobile Apps. In

Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, New York, NY, USA, 141–152.

[10] Google 2016. Create UI tests with Espresso Test Recorder. Retrieved June 29,

2018 from https://developer.android.com/studio/test/espresso-test-recorder

[11] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.

2018. Understanding and Detecting Evolution-induced Compatibility Issues in

Android Apps. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, New York, NY, USA, 167–177.

[12] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet Lightweight

Record-and-Replay for Android. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. ACM, New York, NY, USA, 349–366.

[13] Dan Jurafsky and James H Martin. 2014. Speech and language processing. Pearson
Education, London, UK.

[14] Jouko Kaasila, Denzil Ferreira, Vassilis Kostakos, and Timo Ojala. 2012. Testdroid:

automated remote UI testing on Android. In 11th International Conference on
Mobile and Ubiquitous Multimedia. ACM, New York, NY, USA, 28–31.

[15] Adam Lella and Andrew Lipsman. 2017. The 2017 U.S. Mobile App Re-

port. Retrieved June 29, 2018 from https://www.comscore.com/Insights/

Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report

[16] Li Li, Tegawendé F. Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:

Automating the Detection of API-related Compatibility Issues in Android Apps.

In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, New York, NY, USA, 153–163.

[17] Walid Maalej and Hadeer Nabil. 2015. Bug Report, Feature Request, or Simply

Praise? On Automatically Classifying App Reviews. In International Requirements
Engineering Conference. IEEE Computer Society, Washington, DC, USA, 116–125.

[18] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, and Denys Poshy-

vanyk. 2015. Auto-Completing Bug Reports for Android Applications. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, New York, NY, USA, 673–686.

[19] OpenSignal 2015. Android Fragmentation. Retrieved June 29, 2018 from https:

//opensignal.com/reports/2015/08/android-fragmentation

[20] Dennis Pagano and Walid Maalej. 2013. User Feedback in the AppStore: An

Empirical Study. In 21st IEEE International Requirements Engineering Conference.
IEEE Computer Society, Washington, DC, USA, 125–134.

[21] Avinash Sharma. 2018. 8 Quick Tips to Speed Up Android App De-

velopment. Retrieved June 29, 2018 from https://appinventiv.com/blog/

8-quick-tips-speed-android-app-development

[22] Gregory Tassey. 2002. The Economic Impacts of Inadequate Infrastructure for

Software Testing. National Institute of Standards and Technology 7007.011 (2002).

[23] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-

tion: Characterizing and Detecting Compatibility Issues for Android Apps. In

Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, New York, NY, USA, 226–237.

935

https://www.applause.com/blog/app-abandonment-bug-testing
https://www.applause.com/blog/app-abandonment-bug-testing
https://www.capgemini.com/service/world-quality-report-2017-18
https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds
https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds
https://developer.android.com/studio/test/espresso-test-recorder
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
https://opensignal.com/reports/2015/08/android-fragmentation
https://opensignal.com/reports/2015/08/android-fragmentation
https://appinventiv.com/blog/8-quick-tips-speed-android-app-development
https://appinventiv.com/blog/8-quick-tips-speed-android-app-development

	Abstract
	1 Introduction
	2 Preliminary Research
	2.1 Test Case Generation
	2.2 Compatibility Issue Analysis
	2.3 Bug Reports Analysis

	3 Proposed Research
	3.1 Test Case Generation
	3.2 Compatibility Issue Analysis
	3.3 Bug Reports Analysis

	4 Expected Contributions
	References

