
Use of Test Doubles in Android Testing:
An In-Depth Investigation

Mattia Fazzini∗, Chase Choi∗, Juan Manuel Copia†, Gabriel Lee∗,
Yoshiki Kakehi‡, Alessandra Gorla†, Alessandro Orso‡

∗University of Minnesota, Minneapolis, MN, USA; mfazzini@umn.edu, choix698@umn.edu, gnlee@umn.edu
†IMDEA Software Institute, Madrid, Spain; juanmanuel.copia@imdea.org, alessandra.gorla@imdea.org
‡Georgia Institute of Technology, Atlanta, GA, USA; yoshikikakehi@gatech.edu, orso@cc.gatech.edu

ABSTRACT

Android apps interact with their environment extensively, which
can result in flaky, slow, or hard-to-debug tests. Developers often ad-
dress these problems using test doubles—developer-defined objects
that replace app or library classes during test execution. Although
test doubles are widely used, there is limited understanding of how
they are used in practice. To bridge this gap, we present an in-depth
empirical study that aims to shed light on how developers create
and use test doubles in Android apps. In our study, we first analyze
a dataset of 1,006 apps with publicly available test suites to identify
which frameworks and approaches developers most commonly use
to create test doubles. We then investigate several research ques-
tions by studying how test doubles defined using these popular
frameworks are created and used in the ten apps in the dataset that
define the highest number of test doubles using these frameworks.
Our results, based on the analysis of 2,365 test doubles that replace
a total of 784 classes, provide insight into the types of test doubles
used within Android apps and how they are utilized. Our results
also show that test doubles used in Android apps and traditional
Java test doubles differ in at least some respect. Finally, our results
show that test doubles can introduce test smells and even mistakes
in the test code. In the paper, we also discuss some implications of
our findings that can help researchers and practitioners working in
this area and guide future research.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Test mocking, mobile apps, software environment
ACM Reference Format:

Mattia Fazzini∗, Chase Choi∗, Juan Manuel Copia†, Gabriel Lee∗,, Yoshiki
Kakehi‡, Alessandra Gorla†, Alessandro Orso‡. 2022. Use of Test Doubles in
Android Testing: An In-Depth Investigation. In 44th International Conference
on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510175

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510175

1 INTRODUCTION

Most Android apps have rich interactions with their environment.
Android devices, for instance, provide built-in motion, location
information, and position sensors that apps can use to offer a rich
set of features to users. In general, apps interface with external web
services, the underlying Android system, third-party libraries, as
well as content providers exposed by the device. Such extensive
interactions complicate the testing of an app, as exploring specific
behaviors may require complex configurations of the environment,
and test execution may become slow and result in flakiness.

To mitigate these issues, developers can rely on test doubles
(TDs)—classes that mimic the structure of other classes but offer
alternative implementations that are fully controlled by the devel-
oper for the purpose of testing. In the context of Android apps, TDs
can replace classes defined in the app itself, classes from the Java
library, classes defined in third-party libraries, and classes from the
Android framework. Furthermore, depending on their purpose, TDs
may be classified as follows: (i) dummies, which are often used to
simply fill-in parameters that are meaningless for a specific test; (ii)
stubs, which are simple objects that return hard-coded values when
their methods are invoked; (iii) mocks and spies, which are more
complex objects that can verify interactions with other classes; and
(iv) fakes, which consist of partially working implementations that
are more efficient than the actual class(es) they are replacing.

Because creating and maintaining TDs can involve considerable
manual effort, researchers have started investigating techniques to
support developers in this task (e.g., [1–5]). Unfortunately, however,
there is limited understanding of how TDs are used in practice,
which hinders our ability to define effective techniques in this space.
Several previous empirical studies aimed to identify general testing
practices in the development of Android apps [6–11], but they either
ignored or did not specifically focus on TDs. Other related studies
analyzed how Java developers use mocks when testing traditional
(i.e., non-mobile) software [12–14]. However, some of their findings
may not directly apply to Android apps, or new findings might
arise from the peculiarities of the Android platform.

To bridge this gap, we present an in-depth study of how develop-
ers create and use TDs when developing and testing Android apps.
Specifically, the goal of our study is to get a better understanding
of (1) how TDs are used in the Android ecosystem, and (2) whether
TDs developed for Android apps differ from traditional TDs.

In our study, we first analyzed a dataset of 1,006 apps with pub-
licly available test suites to collect information on the frameworks
and approaches used to create TDs. This analysis shows that Mock-
ito and Mockito-Kotlin are the most popular frameworks for cre-
ating TDs, with 33.5% of the apps in the dataset using either one

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

of these two frameworks. We then investigated several research
questions by studying how TDs defined using these popular frame-
works are created and used in the ten apps in the dataset that define
the highest number of TDs using these frameworks.

Our results, based on the analysis of 2,365 TDs that replace a
total of 784 classes, provide insight on the types of TDs used within
Android apps and how they are utilized. In particular, they show
that developers create TDs to replace both classes in the app and
external classes, and that different kinds of TDs are indeed cre-
ated, including stubs, mocks, and dummies. Our results also show
that TDs used for testing apps differ in at least some respect from
TDs used in traditional Java software. Specifically, our study found
that there are different categories of TDs that are prevalent in this
context, namely, TDs replacing classes in the Android framework,
configuration classes, and GUI components. Whereas the first cate-
gory is not surprising, the latter two provide evidence that, within
Android apps, configurations are more common and classes are
more tightly coupled with GUI elements than in traditional Java
software. Finally, our results show that TDs can introduce test
smells and even mistakes in test code, which motivates developing
techniques to detect and eliminate these problems.
Contributions and Significance. To the best of our knowl-
edge, this is the first study that classifies how developers use TDs,
categorizing them based on their purpose and through both qualita-
tive and quantitative analyses.We believe that our findings and their
implications can inform future research in this area and help define
automated or semi-automated techniques for better supporting
developers in creating and maintaining TDs, ultimately improv-
ing the process of testing Android apps. Furthermore, our study
infrastructure and experimental data are publicly available [15].

2 BACKGROUND

Android apps and their tests are mainly written in the Java or Kotlin
programming languages [10]. These tests can run on either the
JVM (JVM tests) or a device (device tests). Generally, JVM tests can
include unit and integration tests, while device tests can include
unit, integration, system, and GUI tests [10, 16]. Both JVM and
device tests can use TDs to facilitate testing activities1. We define a
TD as a developer-defined object that provides a (possibly partial)
replacement for a class in the app or in an external library during
testing. Within Android apps, TDs can replace classes defined in
the app, classes from the Java library, classes defined in third-party
libraries, and classes from the Android framework. Based on the
functionality that the TDs provide to the test code, they can be
classified [17, 18] into five main types: (i) dummies, (ii) stubs, (iii)
mocks, (iv) spies, and (v) fakes. App developers can create TDs
using test mocking2 frameworks or by extending/implementing
classes/interfaces. Among the frameworks that allow for creating
TDs, there are both generic (e.g., Mockito [19], Mockito-Kotlin [20],
PowerMock [21]) and specialized (e.g., OkHttp [22], Retrofit [23],

1In this work, we discuss TDs of JVM and device tests, as this grouping is readily
available through the source code of Android apps—generally, JVM tests are in the
test folder and device tests are in the androidTest folder. We leave as future work
the analysis of TDs in relation to how JVM and device tests can be divided into unit,
integration, system, and GUI tests.
2Although these frameworks are informally called mocking frameworks, developers
actually use the frameworks to create different types of TDs.

Android Test Mock [24]) test mocking frameworks. The former
allow for replacing classes of varying functionality, while the latter
target classes offering a specific functionality (e.g., classes that
connect to a web server). We now describe how developers can use
generic test mocking frameworks to create TDs and then summarize
the characteristics of the different types of TDs.

2.1 Generic Test Mocking Frameworks

When developers create a TD using a generic test mocking frame-
work, they must first specify the class being replaced by the TD. To
this end, developers can use initialization methods or annotations
provided by the framework API (e.g., the mock method from the
Mockito API [25]). After this step, developers can define stubbed
method implementations for the TD and specify which method calls
made to the TD should be verified during test execution. To stub
a method, developers must specify (i) the method that should be
stubbed, (ii) the arguments to which the stubbed method should re-
spond, and (iii) the value/exception returned by the stubbed method.
Generic test mocking frameworks offer API methods that can be
combined to implement this functionality. For example, developers
can use when(td.m(arg)).thenReturn(val) (based on the Mockito
API) to specify that the TD td should return val when the method
m is called with argument arg on the object. Developers can also
use the framework API to specify the method calls that should be
verified. For example, developers can use verify(td).m(arg) (based
on the Mockito API) to check that (1) method m was called during
test execution on the object td and (2) the argument passed to the
method was arg. Finally, developers can use the APIs of these frame-
works to create different types of TDs. In our work, the type of a
TD is not identified by the API method used to create it (e.g., mock
in Mockito), but rather by the functionality it provides.

2.2 Test Doubles Types

This section reports the definitions we use to characterize the dif-
ferent types of TDs, as formulated in related work [17, 18]. Due to
space limitations, we do not provide here code examples for the
different types but make them available in our online appendix [15].
Dummy: A dummy is an object that a test uses to exercise the
component under test (CUT) but such that neither the test code nor
the CUT access the object’s state during test execution. Tests tend
to use dummies to provide method parameters that are irrelevant
for a specific test.
Stub: A stub is an object providing hard-coded (i.e., stubbed) an-
swers when its callers invoke the object’s methods during test
execution. A stub might provide hard-coded answers only for some
of its methods, and the answers are often specific to the intent of
the particular test using the stub.
Mock: A mock is an object that offers a replacement for a class
and such that some of the interactions with the object are verified
during test execution. The verification task is defined in the test
code but carried out within the mock object. A mock object might
also provide hard-coded answers for some of its methods.
Spy: A spy is similar to a mock object in that some of the interac-
tions with the object are verified during test execution. However,
differently from a mock object, the primary operations for verifying
the behavior of the spy are defined in the test code, rather than

Use of Test Doubles in Android Testing:
An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

within the TD. Usually, these operations are encoded as developer-
defined assert statements. As in the case of a mock object, a spy
might also provide hard-coded answers for some of its methods.
It is worth noting that this definition is consistent with related
work [17, 18] but differs from the use of the term within Mock-
ito [19]. Specifically, in Mockito, a spy is an object for which real
method implementations are invoked during test execution unless
they are stubbed. Because the two definitions focus on different
aspects, our findings should not be directly mapped to Mockito’s
spies and should be instead interpreted based on the functionality
provided by the TD.
Fake: A fake is an object that provides a working implementation
for some of its methods but such that the implementation is made
more efficient through “shortcuts” not suitable for production.

3 METHODOLOGY

To shed light on how Android developers create and use TDs, we
investigated the following research questions (RQs):
• RQ1: Which frameworks and approaches are most com-

monly used to create TDs? This RQ aims to identify the most
commonly used frameworks and approaches for creating TDs in
the domain of Android apps. We use the findings from this RQ
to scope the analyses of the remaining RQs.

• RQ2:What types of classes do developers replace with TDs?

The goal of this RQ is to categorize the types of classes that are
commonly replaced by TDs. In the RQ, we also provide a detailed
analysis of the Android framework classes that are replaced by
TDs.

• RQ3: What TD types do developers create? This RQ investi-
gates the types of TDs used in the context of Android app testing.
This RQ also analyzes whether developers use different types of
TDs for different types of classes.

• RQ4: How do tests use TDs? While RQ2 and RQ3 characterize
TDs through a manual inspection of the code associated with
TDs, this RQ aims to characterize the runtime properties of TDs.
Specifically, it investigates how tests use stubbed methods and
how often interactions with TDs are verified.

• RQ5: What problems can TDs introduce? Because TDs are
usually manually-created, they may introduce test smells or even
errors in the test code. This RQ investigates issues emerging from
the use of TDs.
The overall goal of these RQs is to inform researchers and prac-

titioners and provide insights that can guide them in developing
techniques and tools for creating, using, and maintaining TDs. To
answer our RQs, we divided our study into two parts. First, we
identified which frameworks and approaches developers most com-
monly use to create TDs (RQ1). Then, we studied how the TDs
defined with the most popular frameworks and approaches are
created and used (RQ2, RQ3, RQ4 and RQ5). The rest of this section
describes the qualitative and quantitative analyses we performed
to answer the RQs.

3.1 Frameworks and Approaches for TDs

In this section, we describe our methodology for answering RQ1.
Specifically, we describe the dataset we used, the frameworks and
approaches we considered, and the analysis we performed.

3.1.1 Dataset. To answer RQ1, we needed a dataset containing
Android apps with a publicly available test suite. To the best of our
knowledge, the dataset released by Lin and colleagues [10] is the
most recent one satisfying this requirement, as it contains 1,002
apps with tests. These apps were mined from GitHub, and each app
is available on at least one of 16 app markets (including the Google
Play store [26]). When we cloned the app repositories, 972 of the
1,002 apps were still available on GitHub. To ensure our dataset
does not include possibly trivial apps, we further filtered the dataset
to only contain apps available on the Google Play store. After this
step, the dataset contained 886 apps.

We performed a sanity check to verify that the apps have tests in
their test and androidTest directories, which are the default loca-
tions used to store JVM and device tests [16], respectively. For this
purpose we built an automated analysis on top of JavaParser [27]
and ktlint [28] to traverse the abstract syntax tree (AST) of the
test files looking for methods annotated with @Test, @SmallTest,
@MediumTest, @LargeTest, or @UiThreadTest; we classified a test as
any method having any of these annotations. Note that, by op-
erating at the AST level, the analysis avoids considering tests in
commented code. The analysis also excludes tests automatically
created by Android Studio, which can be identified based on the
name convention used by the IDE. Our analysis identified some
apps without any meaningful test. Manual inspection confirmed
that, at the time we retrieved them, those apps had no tests at all,
had tests that had been commented out, or only had tests automat-
ically created by Android Studio. After removing these apps, 833
apps remained in the dataset.

After manually inspecting the list of remaining apps, we ob-
served that certain widely used apps, such as AnkiDroid [29, 30]
(over five million downloads), were not present in the dataset de-
spite being available in the curated list of open-source apps provided
by F-Droid [31], whichwas considered in [10].We noticed that these
apps have multiple AndroidManifest.xml files [32], and that apps
with these characteristic were excluded by Lin and colleagues [10].
Therefore, to avoid missing relevant apps, we decided to add apps
(i) listed on F-Droid, (ii) available on GitHub, (iii) present on the
Google Play store, and (iv) having meaningful tests. This resulted
in the addition of 173 apps to the dataset, for a total of 1,006 apps.
We used this dataset to answer RQ1.

3.1.2 Frameworks and Approaches Considered. In RQ1, we investi-
gated how often developers create TDs (1) using either generic or
specialized test mocking frameworks, or (2) extending/implement-
ing classes/interfaces. To ensure we considered a comprehensive
set of relevant frameworks, we performed a Google search using
“android test mocking”3 as the search terms and analyzed the first
100 results. Our online appendix [15] contains the complete search
results. Based on the search results, we considered the generic test
mocking frameworks EasyMock [33], jMock [34], Mockito [19],
Mockito-Kotlin [20], MockK [35], and PowerMock [21], which all
allow for creating TDs as described in Section 2.

We also considered Android Test Mock [24], MockServer [36],
OkHttp [22], Retrofit [23], Robolectric [37], and RxAndroidBle [38]
as additional, specialized frameworks. Android Test Mock provides

3We used the word “mocking” because developers and the documentation of multiple
frameworks use this term to refer to test doubles in general.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

stubs and mocks for ten specific classes of the Android framework.
MockServer, OkHttp, and Retrofit support the creation of TDs for
classes communicating with a web server. Robolectric allows for
running tests interacting with the Android framework on the JVM
by using a large set of classes that offer a simplified implementation
of Android framework classes. Robolectric also allows app develop-
ers to implement their own replacements for Android framework
classes; these developer-defined replacement classes are those we
consider in this study. Finally, RxAndroidBle is a library that facili-
tates Bluetooth communications and offers support for replacing
the framework’s classes during testing.

3.1.3 RQ1: Which frameworks and approaches are most commonly
used to create TDs? — Analysis. To identify the general and spe-
cialized test mocking frameworks used by a certain app, we first
identified all the relevant import statements for each framework
(e.g., org.mockito for Mockito), and then checked the import state-
ments in the ASTs of the app’s test files; if a test file used an import
statement of a certain framework, we considered the app as using
that framework. In that case, the analysis also computed the num-
ber of test files using that framework, so as to provide an indicative
measure of the extent to which the framework was used by the
project. It is worth noting that this measure could be computed
differently, and possibly in a more accurate way (e.g., by consid-
ering all the API methods in the frameworks and identifying calls
to these methods in the test code). However, we believe that this
approximation is sufficient, as (1) we use this information only as
a secondary measure, with the primary one being the number of
apps using the framework, and (2) this measure does not affect the
main findings of the study. To determine whether an app extend-
s/implements classes/interfaces for creating TDs, we analyzed the
ASTs of the app’s test files and looked for classes that (i) contain
“Dummy”, “Stub”, “Mock”, “Spy”, or “Fake” in their name, (ii) have
a name that does not end with “Test” or “Tests”, and (iii) are part
of a file that does not use the import statements from the general
and specialized frameworks we considered. This strategy is in line
with an approach previously used in related work [13]. If an app
had such a class, we considered the app as extending/implementing
classes/interfaces for creating TDs.

3.2 Detailed Analysis of TDs

After investigating which frameworks and approaches developers
use to create TDs, we identified Mockito and Mockito-Kotlin as the
most popular frameworks for creating TDs in Java and Kotlin code
(see details in Section 4). Consequently, we focused the remaining
part of our study on these two frameworks. This part includes both
manual, qualitative analyses and automated, quantitative analyses.
We now describe our methodology to select the ten apps and detail
the analyses we performed to answer the remaining RQs.

3.2.1 Apps. Our qualitative analysis focused on the ten apps with
the highest number of TDs created usingMockito orMockito-Kotlin
and whose tests are maintained. We focused on ten apps due to
the significant amount of manual effort involved in this part of
the study, for both preparing the apps and performing the analysis.
For example, even simply building the apps can be extremely time-
consuming [39–41]. As for the analysis, there are many tasks that

involve a significant manual work, including classifying the types
of classes replaced by TDs and manually identifying the types of
TDs. Although focusing on a smaller set of apps may hinder the
generalizability of our results, as we also discuss in Section 6, it
allowed us to perform a detailed analysis of how developers create
and use TDs and get valuable insights.

To identify the number of TDs in an app, we (1) analyzed the
Mockito and Mockito-Kotlin APIs [20, 25], (2) identified API meth-
ods (e.g., mock) and annotations (e.g.,@Mock) that can be used to
create TDs, (3) parsed the ASTs of the test files in the app to collect
the locations using such methods or annotations, and (4) counted
the number of such locations. To identify whether an app’s tests
were maintained, we analyzed the app’s repository, counted the
number of commits of the test files in the year preceding the be-
ginning of our study (August 2020), and considered the tests to be
maintained if the app had one commit per month on average on the
test files. The rationale for using this second criterion is that tests
that are maintained are more likely to be relevant. Table 1 reports
the ten apps we selected based on this strategy. For each app, the
table provides an identifier (IDA), the app’s name (Name), the app’s
category as listed on the Google Play store (Category), the app’s
version considered (Version), the lines of code (in KLOC) for the
app’s source files (SL(K)), the lines of code (in KLOC) for the app’s
test files (TL(K)), and the number of TDs in the app created using
Mockito or Mockito-Kotlin (Total under the Test Doubles header).
It is worth noting that six of the ten apps also use additional test
mocking frameworks beside Mockito or Mockito-Kotlin. Specifi-
cally, six apps (A02, A04, A06, A08, A09, and A10) create 12 class
replacements using Robolectric, two apps (A08 and A09) create 30
TDs using Powermock, and one app (A06) creates one TD using
OkHttp. Since our analysis is based on 2,365 Mockito/Mockito-
Kotlin TDs, we believe that considering the few TDs created using
other frameworks would impact the results only marginally.

3.2.2 RQ2: What types of classes do developers replace with TDs?
— Analysis. To answer RQ2, we performed four analyses. First, we
characterized the functionality provided by the classes. Second, we
identified whether the classes belonged to the app, the Java library,
third-party libraries, or the Android framework. Third, we studied
the dependencies of those classes that are defined in the app. Finally,
we performed a categorization of the classes that are replaced by
TDs and are part of the Android framework.

The first one is a qualitative analysis that combines deductive,
inductive, and axial coding [42, 43]. Deductive coding is a systematic
approach for manually coding (i.e., labeling) textual content starting
from an already available set of codes (i.e., labels). Inductive coding
derives new codes based on a systematic analysis of the text data.
Axial coding relates codes to one another and finds higher-level
codes that represent abstractions of the original codes.

In our analysis, a code is a label that categorizes the functionality
provided by a class, which we inferred by analyzing the source code
and the documentation of the class. We also analyzed any class
dependencies that may help clarify the class functionality and the
code of the TD replacing the class. Specifically, we first looked at
the test code using the TD to identify the part of the app being
tested. We then focused on the class being replaced by the TD and
inspected the name of the class, imported dependencies, declared

Use of Test Doubles in Android Testing:
An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Characteristics of the ten apps (and their tests) considered in the second part of our study.

IDA Name Category Version SL (K) TL (K) Test Doubles PC Analysis TDT Analysis Tests
Total 𝐽 VM Device Total CB Sample CB Total 𝐽 VM Device

A01 andFHEM Personalization 6.0.2 25.2 5.6 70 70 0 28 10 60 10 587 585 2
A02 AnkiDroid Education 2.13 52.8 7.0 60 60 0 32 11 53 7 341 274 67
A03 AnySoftKeyboard Tools 1.1 28.7 21.6 166 166 0 53 17 117 23 1,038 1,038 0
A04 Nextcloud Productivity 3.12.1 65.1 6.5 116 108 8 57 19 90 16 1,142 1,032 111
A05 OpenSRP Medical 1.0.14 19.7 2.5 153 153 0 85 29 110 22 56 56 0
A06 StreetComplete Travel & Local 21.2 27.4 8.0 179 166 13 63 20 123 25 770 664 106
A07 Travel Weather Travel & Local 1.5.1 3.2 1.9 104 104 0 55 19 83 15 128 128 0
A08 WiFi Analyzer Tools 2.1.2 8.0 10.7 193 193 0 78 25 129 28 706 706 0
A09 Wikimedia Commons Photography 2.13 24.3 4.3 222 222 0 81 26 141 31 270 246 24
A10 WordPress Productivity 15.2.1 135.3 31.3 1102 1098 4 252 83 286 154 1,514 1,396 118

2,365 2,340 25 784 259 1,192 331 6,553 6,125 428

methods, used variables, and provided code comments. We also
used the same procedure to inspect the classes used by the class in
the case that this operation was necessary to better understand the
functionality provided by the class.

Overall, we analyzed 784 classes. Table 1 reports the number of
classes analyzed for each app (column Total under the PC Analysis
header). These are all the classes associated with the TDs we con-
sidered, which we identified by statically analyzing the compiled
code of the tests. Specifically, we compile the tests, retrieve the
locations where developers initialized TDs (e.g., where developers
use the mock method), and extract the class types associated with
the objects. We built this analysis on top of Soot [44].

Our qualitative analysis is divided into three parts and performed
by two raters, which are two of the paper authors. In the first part
of the analysis, the two raters analyzed a sample of 259 classes to
define the analysis codebook—a document detailing, for each code,
the set of rules specifies the characteristics that should be observed
to assign a code to a class. The set of rules also includes typical
examples of classes having a specific code. The sample size used to
create the codebook was created using stratified random sampling
and is statistically significant with a 95% confidence level (CL) and
a 5% margin of error (ME). Table 1 reports the sample sizes we used
to create the codebook (column CB under the PC Analysis header).

The two raters used the categories identified by related work [12,
13, 45] as the initial set of codes for the codebook (deductive coding).
In the process of analyzing the classes in the sample, the raters
increased the number of categories to 28 (inductive coding) and
then grouped the categories into five main groups (axial coding).
This iterative part of the analysis took the raters around two person-
months to complete. Table 2 reports the codes produced by this
part of the analysis. The entire codebook we used is available in our
online appendix [15]. Our analysis produced two categories that
are not present in related work: configuration and GUI component.
We believe that these new categories emerged because the software
domain we target is characterized by aspects (e.g., GUI components)
that are not a key part of the software domains analyzed in related
work [12, 13, 45]. Conversely, our codebook does not include some
of the categories identified in relatedwork—java library and external
dependencies—because we distinguish between classes in the app,
the Java library, third-party libraries, or the Android framework
later in an orthogonal categorization. Finally, our codebook contains
category generic, for classes whose functionality did not fall into a
big enough category during the axial coding analysis. This category
includes classes labeled as domain objects in related work [12, 13,

Table 2: Codes used to categorize the classes replaced by TDs.

Code Summary Description

Configuration Class used to manage the app’s settings.
Database Class that performs database operations.
GUI Component Class that is part of the app’s GUI.
Networking Class that perform network operations.
Generic Class that provides a functionality not falling

in the other categories.

45] and can also include classes from the Android framework or
external libraries that can be considered as domain objects when
the framework or libraries are considered in isolation.

After creating the codebook, the two raters analyzed 10% of the
remaining classes using the codebook (i.e., they used the codebook
rules to categorize the classes), and we measured their inter-rater
reliability (i.e., the degree of agreement among raters in the anal-
ysis) using the Krippendorff’s alpha coefficient [46, 47]. Based on
the codes assigned by the two raters, the alpha value was 0.88,
which indicates high reliability. After discussing and resolving mis-
matching codes, the two raters proceeded with the last part of the
analysis and coded the remaining classes. Given the high value of
their inter-rater reliability, they equally split the remaining classes
and coded them independently.

After finishing the coding process, the raters also identified
whether each analyzed class belonged to the app, the Java library,
a third-party library, or the Android framework. Then, for each of
the classes in the app, we identified whether the class was directly
coupled with the Android framework by checking its dependen-
cies using an AST parser that analyzes the import statements in
the class. Finally, we identified the most recurring classes from
the Android framework replaced by TDs and performed a detailed
categorization based on their containing package.

3.2.3 RQ3: What TD types do developers create? — Analysis. To
characterize the types of TDs that appear in the test code, we con-
ducted a qualitative analysis based on deductive coding, where the
code indicates a type of TD. To assign a code to a TD, we studied the
functionality of the TD by inspecting the test code, by focusing on
the methods in the Mockito API and on assertion statements. For ex-
ample, if the test code only creates the TD object without specifying
any additional behavior for it, we would classify the TD as a dummy.
As another example, if the test code creates the TD object and stubs
one of its methods (e.g., using the when(x.m()).thenReturn(y) con-
struct from Mockito), we would classify the TD as a stub. Because
different tests might define a different behavior for the same TD

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

Table 3: Codes used to categorize the types of TDs.

Code Summary Description

Dummy The behavior of the test double is not stubbed nor verified.
Stub The test double offers stubbed method implementations.
Mock The interactions with the test double are verified.
Spy The test verifies the test double’s interactions using assertions.
Fake The test double provides a simplified implementation.

object (e.g., when the TD is created as a test class attribute), our
analysis might assign multiple codes to the same object.

We split this coding process into three parts, as we did for the
qualitative analysis of RQ2, and the same two authors that per-
formed the analysis of RQ2 performed this analysis as well. In the
first part of the analysis, the raters analyzed a statistically signifi-
cant sample (CL=95% and ME=5%) of 331 TDs to define the analysis
codebook. Table 1 reports the sample sizes we used to create the
codebook (column CB under the TDT Analysis header). Table 3
reports the codes used in our codebook and their summary descrip-
tions. The entire codebook is available in our online appendix [15].

After creating the codebook, the two raters labeled a statistically
significant (CL=95% and ME=5%) sample of TDs for each app, ex-
cluding samples already labeled when creating the codebook, for
a total of 1,192 TDs. The sample sizes per app are reported in Ta-
ble 1 (Sample column). We analyzed statistically significant samples
instead of the whole dataset because the effort required to do so
would be considerable (estimated at around four person-months).
In the second part of the analysis, the raters coded 10% of the TDs in
the samples, and we measured their inter-rater reliability. Based on
the coding results, the Krippendorff’s alpha value was 0.97, which
indicates high reliability. As for RQ2, after discussing and resolving
mismatching codes, the two raters split the remaining TDs and
coded them independently.

After categorizing the types of TDs, we combined the results
from RQ2 and this RQ to understand how the types of TDs relate
to the type of class they replace.

3.2.4 RQ4: How do tests use TDs? — Analysis. To further char-
acterize key properties of TDs, we analyzed how tests use TDs
by running the tests of the apps with an instrumented version of
Mockito4 while collecting various data. As the tests ran, our in-
strumentation logged the calls made to the methods of the TDs,
identified which calls were made to stubbed methods, and recorded
how many of these calls were being verified during test execution.
The instrumentation also computes various properties of these
methods: how many unique methods were being stubbed, the loca-
tion in which these methods were stubbed, and whether methods
return hard-coded values or intended exceptions. Table 1, in the
Tests section on the right, reports the number of executed tests,
both overall (Total) and grouped by test type (JVM or Device tests).

3.2.5 RQ5: What problems can TDs introduce? — Analysis. To an-
swer RQ5, our analysis identified unnecessary stubs—stubbedmethod
never called during test execution—and mismatched stubs—stubbed
methods called with arguments that differ from those specified for
the stub (e.g., a stub td specified as when(td.m(2)).thenReturn(3)
and then called by a test as td.m(4)). Although these issues might
4Because Mockito-Kotlin internally relies on Mockito, our Mockito instrumentation
worked for it transparently.

Table 4: Frameworks and approaches considered in our study

together with their occurrences in our dataset of 1,006 apps.

Type Framework/Approach Name Apps Occurrences

Generic
Test

Mocking
Frameworks

EasyMock 2 3
jMock 0 0
Mockito 323 2123
Mockito-Kotlin 55 605
MockK 17 108
PowerMock 41 148

Specialize
Test

Mocking
Frameworks

Android Test Mock 18 24
MockServer 0 0
OkHttp 42 137
Retrofit 4 5
Robolectric 29 87
RxAndroidBle 0 0

Extend/Implement
Classes/Interfaces - 68 146

not lead to test failures, these problems often indicate potential
issues in the underlining test code. Unnecessary stubs, in particular,
may indicate superfluous, dead, or outdated code in the tests. Fur-
thermore, both unnecessary and mismatched stubs may indicate
tests that are not checking for the intended behavior of the CUT.
To identify these kinds of stubs, we ran the tests with the stubbing
hints option of Mockito enabled [48], by adding a test rule to the
tests. It is worth noting that the next major release of Mockito will
notify developers when these problems occur [49], which indicates
that they are perceived as potentially relevant issues.

4 RESULTS

In this section, we present the results of our study on how develop-
ers create and use TDs when testing Android apps.

4.1 RQ1: Which frameworks and approaches

are most commonly used to create TDs?

Table 4 shows how many of the 1,006 apps in our dataset use the
frameworks and approaches we considered. For each framework/ap-
proach, the table reports its name (Framework/Approach Name), the
number of apps with tests that use the framework/approach (Apps),
and the number of files using the framework/approach (Occur-
rences). For Robolectric and the approach based on extending/im-
plementing classes/interfaces, the number of occurrences identifies
the number of developer-defined TD classes. Of the 1,006 apps con-
sidered, 397 apps (39%) use either a framework or an alternative
approach to create TDs. (Adding the number of apps in Column
Apps results in a higher number because some apps use more than
one approach to create TDs, and thus appear in more than one row.)

Mockito is the most used framework, with 323 apps and 2,123
test files using it. This result is in line with the findings from related
work [50], which identified Mockito as the most popular framework
for Java-based projects. Our results also highlight that Mockito-
Kotlin finds a significant adoption in Android apps, with 55 apps and
605 test files using that framework. We believe that this result is due
to the fact that Kotlin is gaining popularity among the languages
used to develop Android apps [51–53]. The total number of apps
using either Mockito or Mockito-Kotlin is 337, which accounts for
33.5% of the apps in our dataset. After further analyzing the test code
of these apps we found that developers use the two frameworks

Use of Test Doubles in Android Testing:
An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

more frequently in JVM tests than in device tests. Specifically, we
observed that 39.1% of the 758 apps with JVM tests use one of the
two frameworks within these tests. This is in contrast with what
happens for the 562 apps with device tests, where only the 9.1%
of the apps have tests that use either one of the two frameworks.
Furthermore, among the apps using Mockito or Mockito-Kotlin,
there are 7,303 TDs defined across 18,747 JVM tests, and 315 TDs
defined across 3,524 device tests. This big gap seems to indicate that
TDs are a relevant aspect of JVM-based testing of Android apps,
whereas they play a smaller role in the context of device tests.

Our results also show that generic test mocking frameworks find
a wider adoption than specialized test mocking frameworks. Specif-
ically, 35.9% of the apps use a generic test mocking framework,
while only 6.2% of them use a specialized one. Note that, although
developers do not often use Robolectric to create manually-defined
TDs (only 2.8% of the apps defines such TDs), they use the TDs
already provided by the framework more extensively; 17.3% of the
apps in our dataset have tests that rely on those TDs. When we
analyzed apps with tests that create TDs by extending/implement-
ing classes/interfaces, we found that only 6.8% of the apps in our
dataset use this approach. Our analysis also revealed that 67.6% of
them also use a generic test mocking framework. This result seems
to suggest that, at least in some cases, developers find it necessary
to create ad-hoc TDs in addition to those they create using test
mocking frameworks, which may indicate the need for additional
features within these frameworks.

Finally, by comparing apps that use a framework or some alter-
native approach to create TDs and apps that do not, we observed
that the average number of tests for the apps in the former cate-
gory is 65.1 and the median is 22, while for the latter category the
average is 13.9 and the median is 5. A Mann-Whitney U test (95%
CL) shows the difference between the two groups to be significant.
As we further discuss in Section 5, we believe this is a potentially
interesting result that deserves further investigation.

RQ1 answer: Mockito and Mockito-Kotlin are the most widely
used frameworks, with 33.5% of the apps using either one of the
two frameworks. Furthermore, generic frameworks find a wider
adoption than specialized frameworks or approaches. Finally,
some apps use multiple approaches, which may indicate the
need for extending the individual approaches.

4.2 RQ2: What types of classes do developers

replace with TDs?

Figure 1, Figure 2, and Table 5 present the main results of the anal-
yses we performed to answer RQ2. Fig. 1 reports the categorization
for the types of classes replaced by TDs, showing the percentage
of each category for each app and the number of classes in each
category. For the apps we considered, the generic category includes
the highest number of classes replaced by a TD. This result is in
line with related work [12, 13, 45] (as we included domain objects
in this category) and is expected, as this category is the broader
category among those we considered.

The remaining categories account for 32.5% of the classes we
analyzed, with the GUI component category being the most fre-
quent and including 10.7% of the classes. All the classes in this

category were replaced by TDs in JVM tests. The remaining three
categories (database, networking, and configuration) include classes
that provide access to external resources. All the apps creating TDs
for either one of these categories do so for multiple classes (e.g.,
WordPress (A10) creates TDs for 31 classes accessing the network).

After analyzing the types of classes replaced by TDs, we investi-
gated whether those classes are defined in the app, the Java library,
third-party libraries, or the Android framework. Figure 2 illustrates
the results of this analysis. Across all apps, there is an approxi-
mately equal balance between the classes defined in the source
code of the apps and those defined in either third-party libraries
or the Android framework. Specifically, 54.6% of the classes that
are replaced by TDs are defined in the apps’ source code, and 43.5%
of them are defined in external dependencies. Our analysis also
revealed that 90% of the classes defined in the app’s source code
and replaced by TDs have external dependencies, and for 63.1%
of those, the dependencies involve the Android framework. This
result differs from related work analyzing mocking in traditional
Java programs [12, 45], where the percentage of classes replaced
by TDs and with external dependencies is lower than 60%5

Furthermore, 19.4% of the classes replaced by TDs belong to
the Android framework. Table 5 reports, for the ten most recur-
ring packages that contain those classes, the number of unique
classes from the packages (column Classes (#)) and the number of
times that those were replaced by a TD (column Occur. (#)). The
package containing the highest number of classes and occurrences
is android.content, which contains classes used to share content
between application components through the framework. For exam-
ple, classes android.content.Context and android.content.Intent

were replaced by TDs to allow test code to retrieve specific appli-
cation data during test execution. The top packages also include
android.location, which provides classes for location-based ser-
vices. The classes from this package that were replaced by TDs
provide specific location information or facilitate access to the in-
formation during testing.

Among the Android framework classes replaced by TDs, none
are from the android.hardware package, which contains camera and
sensor classes, even if three apps (A02, A06, and A10) use classes
from this package. We find this result interesting and believe that
suitably replacing those classes might help in producing better
test suites. We additionally observed that the six apps that use
Robolectric (A02, A04, A06, A08, A09, and A10) also replace classes
defined in the Android framework, suggesting that better Robolec-
tric models may be needed because either they do not include some
commonly used classes or, if they do, they are not used.

RQ2 answer: Developers replace classes that fulfill domain
logic (67.5%), model GUI components (10.7%), access the net-
work (8.7%), perform database operations (8.5%), and provide
app configurations (4.6%). In a large number of cases (90%) de-
velopers create TDs for classes that are external or coupled with
external dependencies. Developers also replace Android classes
to be able to access specific app data during testing.

5We computed this number by aggregating the results from RQ1 in [12].

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

0 20 40 60 80 100
Percentage (%)

A01

A02

A03

A04

A05

A06

A07

A08

A09

A10

22

17

44

41

56

31

36

45

57

180

6

2

4

20

9

26

9

10

6

2

10

31

6

3

4

2

6

7

8

6

9

1

25

7

24

5

7

Generic
Configuration

Database
GUI Component

Networking

Figure 1: Types of classes replaced by TDs.

0 20 40 60 80 100
Percentage (%)

A01

A02

A03

A04

A05

A06

A07

A08

A09

A10

22

8

31

18

17

50

36

35

53

158

2

1

1

1

2

2

6

1

7

7

18

52

10

5

9

13

67

5

15

14

20

15

1

14

34

13

21

App
Third Party Libraries

Java Library
Android Framework

Figure 2: Location of the classes replaced by TDs.

Table 5: Packages of classes from the Android framework

frequently replaced by TDs.

ID𝑃 Package Classes (#) Occur. (#)

P01 android.content 10 36
P02 android.widget 10 10
P03 android.view 7 15
P04 android.app 6 12
P05 androidx.lifecycle 6 9
P06 android.os 5 7
P07 android.location 4 5
P08 androidx.fragment.app 4 4
P09 android.net 3 9
P10 android.content.res 3 7

4.3 RQ3: What TD types do developers create?

Figure 3 shows the different types of TDs in the apps we consid-
ered. Figure 3 displays the relative frequency for each type and
is based on the statistically significant samples of Table 1 (TDT
analysis section). Across all apps, we identified 28 unused TDs (e.g.,
attributes annotated with @Mock but never used by any test), which
are not reported in Figure 3. For this reason, and because we might
assign more than one type to a single TD (e.g., when a TD is used
differently by different tests), the total number of types in the figure
might differ from the sample size reported in Table 1. Our results
show that the apps do use different types of TDs, and that dummies,
stubs, and mocks are the most prevalent types of TDs. Specifically,
39.9% of the TDs are dummies, 32.9% are stubs, 26% are mocks, and
only 1.2% are spies. Notably, our analysis did not identify any fakes
in the ten apps we considered. This result was expected, as these
apps rely on Mockito and Mockito-Kotlin, which do not support
the creation of fakes. Overall, these numbers show that developers
often define stubbed implementations for methods but also verify
interactions between components under test and the TDs.

To provide a different view on these data, the first part of Ta-
ble 6 reports the number of dummies, stubs, mocks, and spies for

each type of class identified in RQ2. A chi-squared test at a signifi-
cance level of 5% rejected the null hypothesis that TDs types are
independent from the types of classes. The second part of Table 6
presents TD types with respect to the classes grouped based on
where they are defined. Also in this case, a chi-squared test at a
significance level of 5% rejected the null hypothesis that TDs types
are independent from classes grouped by location.

Among the two categories that are not present in related work,
GUI component and configuration, the most frequent types of TDs
are mocks (40%) and stubs (38%), respectively. Mocks for the GUI
components are mostly used to verify interactions that should or
should not happen, whereas stubs for the configuration components
allow the tests to retrieve specific configuration values.

RQ3 answer: Dummies (39.9%), stubs (32.9%) and mocks (26%)
frequently occur in the tests of the Android apps we considered.
This seems to indicate that, although a large number of TDs are
trivial classes created simply to allow the tests to run, developers
also (1) make extensive use of stubbed implementations and (2)
frequently use TDs to verify interactions.

4.4 RQ4: How do tests use TDs?

Table 7 reports the results of the dynamic analysis described in
Section 3.2.4. The table shows the characteristics of the calls made
by the tests on both stubbed and verified methods. For each app, it
reports the following information: number of TDs whose methods
are called at least once by the tests (TD, for both stubbed and verified
methods), total number of calls to stubbed methods made by the
tests (SMC), total number of locations in the tests that make calls to
stubbed methods (CL), number of unique methods that are stubbed
at least once, whether they are called or not by the tests (SM),
number of different locations in which any method is stubbed
(SL), total number of stubbed methods returning values (VR), total
number of stubbed methods returning exceptions (ER), and total

Use of Test Doubles in Android Testing:
An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0 20 40 60 80 100

A01

A02

A03

A04

A05

A06

A07

A08

A09

A10

20

5

42

46

60

67

53

36

30

179

33

33

47

38

24

40

26

11

93

99

5

13

29

32

26

51

20

101

19

54

1

2

4

2

1

1

4

1

Dummy Stub Mock Spy

Figure 3: Types of TDs (percentages).

number of method calls verified (VMC). In total, the tests made
27,111 calls to stubbed methods. Analyzing the 1,493 code locations
making these calls and the 782 unique methods being called, we
noticed that tests tend to rely heavily on a small subset of the
stubbed methods. For example, for three of the apps (A01, A03, and
A04), a single stub accounts for over 50% of the calls to stubbed
methods. We also inspected the code defining and using the three
most called stubbed methods for each app and observed that the
majority of these methods are stubbed to improve test execution
performance (e.g., to avoid reading from configuration files).

Table 7 also shows that developers stubbed the same methods
at different code locations. Specifically, the 782 unique stubbed
methods are stubbed in 2,174 different locations, and 423 of these
methods are stubbed more than once, which seems to indicate
that tests use stubbed methods for different purposes. Furthermore,
although the majority of stubbed methods return values (column
VR), some of them return exceptions (column ER).

The numbers in the table for the verified methods show that
2,008 TDs were used to verify 3,492 method calls. Considering
that the total number of test execution is 6,553 (see Table 1), this
roughly correspond to one verified method call for every other test
execution (on average). This result further confirms our findings
from RQ3 that TDs are frequently used to verify interactions.

RQ4 answer: Tests perform a large number of calls to stubbed
methods (27,111 calls across 6,553 test executions). Many of these
calls involve stubs created to improve performance and speed up
test execution. Methods are often stubbed at multiple locations,
indicating that tests may stub the same method differently for
different purposes.

4.5 RQ5: What problems can TDs introduce?

The analysis we discussed in Section 3.2.5 revealed that all the
apps we considered contain unnecessary stubs. In many cases, this
happens because the test code that creates stubs is overly general,
and stubs are created also by tests that do not actually need them.
The most extreme example of this issue is in app andFHEM (A01),

Table 6: TD types for the different class types (abs. values).

Category Dummy Stub Mock Spy

Configuration 33 38 29 0
Database 47 63 40 0
GUI Component 55 37 64 4
Networking 65 56 40 1
Generic 501 369 257 15
App 493 369 288 9
Java 11 4 5 1
Third Party Lib. 26 69 16 1
Android 171 121 121 9

Table 7: Characteristics of the calls made by the tests on both

stubbed and verified TD methods.

IDA
Stubbed Verified

TD SMC CL SM SL VR ER TD VMC

A01 368 1557 47 35 84 84 0 5 5
A02 130 395 46 35 60 54 6 36 133
A03 596 11104 97 41 128 121 7 626 1445
A04 208 3779 55 37 76 74 2 139 236
A05 95 599 292 44 86 86 0 46 48
A06 405 711 79 64 210 181 29 180 206
A07 113 185 55 38 69 61 8 35 44
A08 406 659 230 144 404 393 11 497 781
A09 115 135 43 43 123 116 7 70 86
A10 1740 7987 549 301 934 932 2 374 508

4,176 27,111 1,493 782 2,174 2,102 72 2,008 3,492

in which a method in the test code defines a stub for each of the
767 resource strings [54] of the app and is called by 135 tests that
do not actually need the stubs. Overall, in the tests we considered,
106,545 unnecessary stubs are created at 624 test code locations. It
is worth noting that this problem can be seen as an instance of the
general fixture test smell [55].

Although not as prevalent as unnecessary stubs, our analysis
also revealed 19 issues related to mismatched stubs in 4 different
apps (A02, A07, A08, and A10). Mismatched stubs are problematic
because a test may exercise a behavior different from the intended
one and still pass. For example, in AnkiDroid (A02), a test meant
to exercise specific lines in the code never reaches them because
the call to a mismatched stub returns a value different from the
expected one, which causes the execution of a different control
flow without affecting the outcome of the test. We provide a full
discussion of this issue in our online appendix [15].

RQ5 answer: The 106,545 unnecessary and 19mismatched stubs
reported by our analysis provide evidence that TDs can lead to
test smells and to the testing of functionality that differs from
the intended one.

5 DISCUSSION AND ACTIONABLE INSIGHTS

In this section, we summarize the main findings of our study and
discuss some insight and actionable items derived from them.

Importance of TDs in Android testing. Before this study, it
was not known how frequently Android apps use a framework or
some alternative approach to create TDs. Our study shows that

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

a considerable percentage (roughly 40%) of the apps that contain
automated tests use at least one of those frameworks or approaches.
This result motivates the investigation and development of techniques
that support developers in creating and maintaining TDs. The study
also finds that these apps tend to have a larger test suite as com-
pared to apps that do not use TDs. We believe that it is worthwhile
to perform additional studies, possibly including interviews to de-
velopers, to assess whether this is just a correlation or it instead
indicates that extensive testing of an app is likely to require the
use of TDs. The latter would provide an even stronger motivation
for the development of techniques that support the creation and
maintenance of TDs.

Supporting Mockito and Mockito-Kotlin. Similar to what
was found by studies on Java projects [50], we identify that Mockito
and Mockito-Kotlin, which are used by one third of the apps in
our dataset, are the most frequently used frameworks. However,
comparing the adoption of these technologies between Android and
Java projects, our results show that these two frameworks are more
widely used within Android apps than Mockito within traditional
Java projects (23% adoption rate) [50]. One possible explanation for
this difference is that Android apps are more tightly coupled with
their external dependencies [5, 56–58], and it is therefore necessary
to account for these dependencies during testing. In fact, among the
ten apps we considered in our detailed analysis, a majority (90%) of
classes replaced by TDs either are defined in external dependencies
or use external dependencies. This is in contrast with what was
identified by related work [12, 45] in the domain of Java programs,
where this percentage was 60%. These results, in addition to moti-
vating the development of techniques for creating and maintaining
TDs, also indicate that the techniques would be mostly useful if they
would support Mockito and Mockito-Kotlin.

Helping developers create TDs.When creating tests, devel-
opers must decide which parts of a system to replace with TDs
and which TDs to use [12, 14, 45]. We believe that the results of
our study, and possibly further studies along similar lines, can help
guide the development of recommender systems that help develop-
ers identify classes that should be replaced by TDs.

As a first observation, our results show that Android developers
use different types of TDs, and that stubbed implementations and
mocks that verify interactions between code under test and TDs
are prevalent. As far as stubs are concerned, we observe recurring
patterns. In particular, developers stub methods for data communi-
cations that are hard to setup (e.g., communications with classes
in the android.content package) or for specific types of data (e.g.,
data associated with classes in the android.location package). De-
velopers also create stubs to improve test execution performance.
As for TDs that verify interactions between TDs and components
under test, we find that this is done for all the types of classes we
analyzed and that both interactions that should and should not
happen are verified. Based on the results, we believe that techniques
that support creating and maintaining TDs should focus on stubs—
helping developers identify which methods require stubbing and what
values should be returned by these stubs—but also on mocks—helping
developers also decide which interactions to verify.

Identification of which methods to stub could be done by ana-
lyzing how the data is generated within the method (e.g., whether
it is location dependent) or by examining the performance cost of

different methods called during testing. This latter case is partic-
ularly important to ensure that JVM tests run quickly, as that is
one of the goals of those tests [59]. As for the values (or excep-
tions) that should be returned by the created stubs, test carving
techniques [60–62] could be used to identify, record, and suggest
values flowing between the boundaries of tests and code under
test. Similarly, approaches that analyze the interactions between
tests and code under test could be used to identify interactions that
should and should not happen, create corresponding checks, and
suggest them to developers.

Android-specific TDs. An additional way in which our results
could be leveraged to develop techniques that support Android
developers is by analyzing the Android-specific TDs that are used
in the apps. Specifically, our analysis of the different types of classes
that are replaced by TDs identifies two categories of classes that are
characteristic of Android apps: configuration and GUI component.
Because configuration and GUI component classes are typically part
of the Android framework or inherit from classes therein, they can
be easily identified and proposed to the developer as possible candi-
dates for replacement by TDs. Furthermore, our study found that
a large percentage of classes replaced by TDs consists of classes
that either are external dependencies or use external dependencies,
and that this happens more frequently than for traditional Java pro-
grams [12, 45]. One possible explanation is that Android apps tend
to have a tighter coupling with their external dependencies [5, 56–
58]. Additional studies focused on the coupling information between
apps and their external dependencies may help identify which classes
should be replaced by TDs.

TDs in JVM and device tests. Android developers can use TDs
in both JVM and device tests [10, 16]. Our study identifies a notice-
ably larger number of TDs—in particular, Mockito and Mockito-
Kotlin TDs—in JVM tests as compared to device tests. Although this
is not surprising, as JVM tests are run without a complete Android
framework and might therefore need to account for the missing
elements (even when Robolectric is used as the library provides
a partial implementation of the Android framework [37, 63]), it is
interesting to observe such a large difference. Based on these find-
ings, we recommend prioritizing the design of automated techniques
for supporting the creation and integration of TDs in 𝐽VM tests, as
those are likely to find larger adoption in practice.

Furthermore, future work could investigate the reasons behind
these differences. Analyzing the 25 TDs in the device tests for the
10 apps in Table 1, in particular, we found that all of them occur
within integration tests, none is used within GUI tests, and 17 of
them are checking for interactions happening with the TDs. This
was less expected because, for instance, GUI tests would typically
interact with external services (e.g., a backend server or a database)
and would therefore benefit from the use of TDs. Based on these
preliminary data, we hypothesize that developers may prefer to
avoid TDs in device tests, in order to have higher-fidelity tests, and
only use them for specific purposes (e.g., verifying that some calls
happen during testing, rather than replacing components in the
system). Interviews with app developers may help confirm or refuse
these hypotheses and, more generally, shed light on why TDs are
less used in device tests.

Supporting debugging of TDs. Like all activities that involve
a considerable amount of manual effort, creating and maintaining

Use of Test Doubles in Android Testing:
An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

TDs in Android apps is error prone. In fact, our study identifies
cases of faulty TDs and instances of test code smells related to the
usage of TDs (see Section 4.5), which motivates the development
of techniques that support developers in debugging TDs. Based on
our results, a starting point could be the development of techniques
that identify obsolete TDs, which could be done by identifying TDs
that are not actually exercised during testing and by analyzing code
and tests co-evolution. It is worth noting that, although our study
highlights these issues in TDs for Android apps, they might also
appear in other types of software, so other application domains
could also benefit from these techniques.

6 THREATS TO VALIDITY

As it is the case for most empirical studies, there are threats to
validity associated with the results we presented. In terms of ex-
ternal validity, our results might not generalize to other Android
apps and corresponding tests. In RQ1, we mitigated this threat by
considering the largest (to the best of our knowledge) dataset of
apps with publicly available test suites in the literature, with apps
that vary widely in terms of size and category. For RQ2–RQ5, we
chose to perform our in-depth analysis based on the ten apps with
the highest number of TDs due to the significant manual effort
involved in preparing the apps for the analysis and performing the
analysis, as we discussed in Section 3.2.1. Although this allowed us
to perform a detailed investigation on over 2,000 TDs and carefully
inspect the results and the corresponding code, we acknowledge
that this part of the analysis is a case study. Additional studies based
on more apps, possibly selected using a different sampling strategy,
are needed to confirm the validity of our results and gather further
insights into how developers create and use TDs.

In terms of construct validity, our results might be affected by
errors in the implementation of the tools we used to perform our
analyses. To mitigate this threat, we extensively tested our tools
and manually inspected our results. Finally, we also performed
qualitative analyses, which might be characterized by divergent
understanding among the raters. We are confident in the reliabil-
ity of our analysis as the inter-rater reliability we measured was
considerably high.

7 RELATEDWORK

Other researchers performed empirical studies on Android app test-
ing [6–11]. Specifically, some work observed that developers use
testing frameworks such as JUnit, Robolectric, and Robotium [7].
Other work confirmed that most apps are still poorly tested, al-
though test automation and test quality are improving along with
the increasing success and wide adoption of mobile apps [8–10].
Yet other work showed that many apps had at least one flakiness
issue in their lifetime, and that the environment is one of the main
causes of flakiness together with concurrency [11]. None of this
body of work focuses on how Android developers use TDs within
their test suites.

Other researchers, however, have studied test mocking prac-
tices in non-mobile projects [12–14, 45, 50, 64]. Spadini and col-
leagues [12] analyze over 2,000 mocks objects in 4 Java projects and
report that the usage of mocks highly depends on the responsibility
of the class, and that developers frequently mock dependencies that

make testing difficult. Their study also shows that mocks tend to
exist since the very first version of the test class and tend to stay
for its whole lifetime. Pereira and Hora further explore this topic by
analyzing 12 popular Java software projects, distinguishing mock
objects from mock classes, and further classifying which classes
developers mock [13]. Similarly, Zhu and colleagues study over
10,000 tests in 4 open-source projects and propose a tool, Mock-
Sniffer, for identifying and recommending mocks for unit tests [14].
Additionally, the work from Trautsch and colleagues[64] focuses
on mocking practices in 10 Python projects. To the best of our
knowledge, none of the studies on mocking practices (1) differen-
tiates uses of TDs as we do in this paper, (2) focuses on mobile
apps, or (3) aims to identify possible issues with TDs. Our results
show, for instance, that Android apps replace types of classes that
were not categorized before and highlight that both stubbing and
operations to verify method calls are frequent and important. Our
study also shows the need for better techniques for debugging and
maintaining TDs.

Finally, related work also focused on generating, using, or main-
taining test mocks automatically [1–3, 5, 65–73]. Our paper provides
specific insights for researchers who want to define approaches
along these lines for in the context of Android.

ACKNOWLEDGMENTS

This work was partially supported by NSF, under grants CCF-
1563991 and CCF-0725202, Spanish Government’s SCUM grant
RTI2018-102043-B-I00, the Madrid Regional project BLOQUES,
DARPA, under contract N66001-21-C-4024, ONR, under contract
N00014-18-1-2662, DOE, under contract DE-FOA-0002460, and gifts
from Facebook, Google, IBM Research, and Microsoft Research.

8 CONCLUSION

In this paper, we presented an in-depth study aimed to understand
how developers create and use TDs in Android apps. Our results
showed that Mockito and Mockito-Kotlin are the most popular
frameworks for creating TDs. They also show that TDs are used to
replace both classes within the app and external dependencies, that
developers use different types of TDs, and that TDs can introduce
test smells and even errors in the test code.

Our results motivate further research in this area, justify the
development of techniques that can support developers in creating
and maintaining TDs, and identify several directions for future
work. As a first step, we will present our results to Android develop-
ers to gather their feedback, confirm or refuse our findings, and gain
further insights. We will also perform additional studies focused
on the coupling between apps and their external dependencies to
develop analysis techniques that can help identify which classes
should be replaced by TDs and which interactions between internal
and external code should be mocked and verified. A complementary
line of research we will pursue involves the development of tech-
niques for automatically or semi-automatically generating stubs
and mocks given a set of relevant classes and interactions. Finally,
we will keep performing empirical studies to confirm our results
and validate the new techniques we define.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

REFERENCES

[1] K. Taneja, Y. Zhang, and T. Xie, “MODA: automated test generation for database
applications via mock objects,” in ASE 2010, 25th IEEE/ACM International Con-
ference on Automated Software Engineering, Antwerp, Belgium, September 20-24,
2010, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM, 2010, pp. 289–292.

[2] A. Arcuri, G. Fraser, and R. Just, “Private api access and functional mocking in
automated unit test generation,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE Computer Society, 2017, pp.
126–137.

[3] T. Bhagya, J. Dietrich, and H. W. Guesgen, “Generating mock skeletons for light-
weight web-service testing,” in 26th Asia-Pacific Software Engineering Conference,
APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019. IEEE, 2019, pp. 181–188.

[4] N. Alshahwan, Y. Jia, K. Lakhotia, G. Fraser, D. Shuler, and P. Tonella, “AUTO-
MOCK: automated synthesis of a mock environment for test case generation,” in
Practical Software Testing: Tool Automation and Human Factors, 14.03. - 19.03.2010,
2010.

[5] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update for android apps,”
in Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis. New York, NY, USA: Association for ComputingMachinery,
2019, p. 204–215.

[6] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo, “Understanding
the test automation culture of app developers,” in 8th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2015, Graz, Austria, April
13-17, 2015. IEEE Computer Society, 2015, pp. 1–10.

[7] M. L. Vásquez, C. Bernal-Cárdenas, K. Moran, and D. Poshyvanyk, “How do
developers test android applications?” in 2017 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September
17-22, 2017. IEEE Computer Society, 2017, pp. 613–622.

[8] L. Cruz, R. Abreu, and D. Lo, “To the attention of mobile software developers:
guess what, test your app!” Empir. Softw. Eng., vol. 24, no. 4, pp. 2438–2468, 2019.
[Online]. Available: https://doi.org/10.1007/s10664-019-09701-0

[9] F. Pecorelli, G. Catolino, F. Ferrucci, A. D. Lucia, and F. Palomba, “Testing of
mobile applications in the wild: A large-scale empirical study on android apps,” in
ICPC ’20: 28th International Conference on Program Comprehension, Seoul, Republic
of Korea, July 13-15, 2020. ACM, 2020, pp. 296–307.

[10] J. W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-source an-
droid apps: A large-scale empirical study,” in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020, pp. 1078–1089.

[11] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in android apps,” in 2018 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29,
2018. IEEE Computer Society, 2018, pp. 534–538. [Online]. Available:
https://doi.org/10.1109/ICSME.2018.00062

[12] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “Mock objects for testing
java systems,” Empirical Software Engineering, vol. 24, no. 3, pp. 1461–1498, 2019.

[13] G. Pereira and A. Hora, “Assessing mock classes: An empirical study,” in 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
2020, pp. 453–463.

[14] H. Zhu, L. Wei, M.Wen, Y. Liu, S.-C. Cheung, Q. Sheng, and C. Zhou, “Mocksniffer:
Characterizing and recommending mocking decisions for unit tests,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2020, pp. 436–447.

[15] M. Fazzini, C. Choi, J. M. Copia, G. Lee, Y. Kakehi, A. Gorla, and A. Orso. (2022,
Feb.) An artifact for the article: "use of test doubles in android testing: An in-depth
investigation". [Online]. Available: https://doi.org/10.5281/zenodo.6000372

[16] (2021, Apr.) Fundamentals of testing. [Online]. Available: https://developer.
android.com/training/testing/fundamentals

[17] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Education, 2007.
[18] M. Fowler. (2021, Apr.) Testdouble. [Online]. Available: https://martinfowler.

com/bliki/TestDouble.html
[19] (2021, Apr.) Mockito. [Online]. Available: https://site.mockito.org
[20] (2021, Apr.) Mockito-kotlin. [Online]. Available: https://github.com/mockito/

mockito-kotlin
[21] (2021, Apr.) Powermock. [Online]. Available: https://powermock.github.io
[22] (2021, Apr.) Okhttp. [Online]. Available: https://square.github.io/okhttp
[23] (2021, Apr.) Retrofit. [Online]. Available: https://square.github.io/retrofit
[24] (2021, Apr.) Android test mock. [Online]. Available: https://developer.android.

com/reference/android/test/mock/package-summary
[25] (2021, Apr.) Mockito api. [Online]. Available: https://javadoc.io/doc/org.mockito/

mockito-core/latest/org/mockito/Mockito.html
[26] (2021, Apr.) Google play. [Online]. Available: https://play.google.com/store
[27] (2021, Apr.) Javaparser. [Online]. Available: https://javaparser.org
[28] (2021, Apr.) ktlint. [Online]. Available: https://github.com/pinterest/ktlint
[29] (2021, Apr.) Ankidroid. [Online]. Available: https://play.google.com/store/apps/

details?id=com.ichi2.anki
[30] (2021, Apr.) Ankidroid github. [Online]. Available: https://github.com/ankidroid/

Anki-Android
[31] (2021, Apr.) F-droid. [Online]. Available: https://f-droid.org/en

[32] (2021, Apr.) App manifest overview. [Online]. Available: https://developer.
android.com/guide/topics/manifest/manifest-intro

[33] (2021, Apr.) Easymock. [Online]. Available: https://easymock.org
[34] (2021, Apr.) jmock. [Online]. Available: http://jmock.org
[35] (2021, Apr.) Mockk. [Online]. Available: https://mockk.io
[36] (2021, Apr.) Mockserver. [Online]. Available: https://www.mock-server.com
[37] (2020, Apr.) Robolectric. [Online]. Available: http://robolectric.org
[38] (2021, Apr.) Rxandroidble. [Online]. Available: https://github.com/Polidea/

RxAndroidBle
[39] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for android

against real-world bugs,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. New York, NY, USA: Association for Computing Machinery, 2021,
p. 119–130.

[40] T. Wendland, J. Sun, J. Mahmud, S. M. H. Mansur, S. Huang, K. Moran, J. Rubin,
and M. Fazzini, “Andror2: A dataset of manually-reproduced bug reports for
android apps,” in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 600–604.

[41] J. Johnson, J. Mahmud, T. Wendland, K. Moran, J. Rubin, and M. Fazzini, “An
empirical investigation into the reproduction of bug reports for android apps,” in
Proceedings of the 29th edition of the IEEE International Conference on Software
Analysis, Evolution and Reengineering. IEEE Computer Society, 2022.

[42] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and procedures
for developing grounded theory. Sage publications, 2014.

[43] M. B. Miles, A. M. Huberman, and J. Saldaña, Qualitative data analysis: A methods
sourcebook. Sage publications, 2018.

[44] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot: A
java bytecode optimization framework,” in CASCON First Decade High Impact
Papers. USA: IBM Corp., 2010, p. 214–224.

[45] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “To mock or not to mock?
an empirical study on mocking practices,” in Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE Press, 2017, p. 402–412.

[46] K. Krippendorff, “Reliability in content analysis: Some common misconceptions
and recommendations,” Human communication research, vol. 30, no. 3, pp. 411–
433, 2004.

[47] ——, Content analysis: An introduction to its methodology. Sage publications,
2004.

[48] (2021, Apr.) Mockitohint. [Online]. Available: https://javadoc.io/static/org.
mockito/mockito-core/3.2.4/org/mockito/quality/MockitoHint.html

[49] (2021, Apr.) Mockito strictness documentation. [Online]. Avail-
able: https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/
quality/Strictness.html

[50] S. Mostafa and X.Wang, “An empirical study on the usage of mocking frameworks
in software testing,” in 2014 14th International Conference on Quality Software,
2014, pp. 127–132.

[51] B. G. Mateus and M. Martinez, “An empirical study on quality of android applica-
tions written in kotlin language,” Empirical Software Engineering, vol. 24, no. 6,
pp. 3356–3393, 2019.

[52] V. Oliveira, L. Teixeira, and F. Ebert, “On the adoption of kotlin on android
development: A triangulation study,” in 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020, pp.
206–216.

[53] (2021, Apr.) Update on kotlin for android. [Online]. Available: https://android-
developers.googleblog.com/2017/11/update-on-kotlin-for-android.html

[54] (2021, Apr.) String resources. [Online]. Available: https://developer.android.com/
guide/topics/resources/string-resource

[55] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
“On the distribution of test smells in open source android applications: An ex-
ploratory study,” in Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering. USA: IBM Corp., 2019, p. 193–202.

[56] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accurate two-
phase approach to android app clone detection,” in Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: Association for Computing Machinery, 2015, p. 71–82.

[57] H. Wang and Y. Guo, “Understanding third-party libraries in mobile app analy-
sis,” in Proceedings of the 39th International Conference on Software Engineering
Companion, ser. ICSE-C ’17. IEEE Press, 2017, p. 515–516.

[58] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability and
adoption in the android ecosystem,” in 2013 IEEE International Conference on
Software Maintenance. IEEE, 2013, pp. 70–79.

[59] (2021, Dec.) Build local unit testsk. [Online]. Available: https://developer.android.
com/training/testing/unit-testing/local-unit-tests

[60] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differential unit test
cases from system test cases,” in Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2006, p. 253–264.

[61] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and replaying
differential unit test cases from system test cases,” IEEE Transactions on Software

Use of Test Doubles in Android Testing:
An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Engineering, vol. 35, no. 1, pp. 29–45, 2009.
[62] A. Kampmann andA. Zeller, “Carving parameterized unit tests,” in 2019 IEEE/ACM

41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), 2019, pp. 248–249.

[63] (2020, Apr.) Robolectric. [Online]. Available: http://robolectric.org/extending
[64] F. Trautsch and J. Grabowski, “Are there any unit tests? an empirical study on

unit testing in open source python projects,” in 2017 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March
13-17, 2017. IEEE Computer Society, 2017, pp. 207–218.

[65] M. Islam and C. Csallner, “Generating test cases for programs that are coded
against interfaces and annotations,” ACM Trans. Softw. Eng. Methodol., vol. 23,
no. 3, pp. 21:1–21:38, 2014.

[66] A. Arcuri, G. Fraser, and J. P. Galeotti, “Generating TCP/UDP network data for
automated unit test generation,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, E. D. Nitto, M. Harman, and P. Heymans, Eds. ACM, 2015,
pp. 155–165.

[67] L. Gazzola, M. Goldstein, L. Mariani, I. Segall, and L. Ussi, “Automatic ex-vivo
regression testing of microservices,” in AST@ICSE 2020: IEEE/ACM 1st Interna-
tional Conference on Automation of Software Test, Seoul, Republic of Korea, 15-16
July, 2020. ACM, 2020, pp. 11–20.

[68] P. Zhang and S. G. Elbaum, “Amplifying tests to validate exception handling code:
An extended study in the mobile application domain,” ACM Trans. Softw. Eng.

Methodol., vol. 23, no. 4, pp. 32:1–32:28, 2014.
[69] G. Fourtounis, L. Triantafyllou, and Y. Smaragdakis, “Identifying java calls in

native code via binary scanning,” in ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020,
S. Khurshid and C. S. Pasareanu, Eds. ACM, 2020, pp. 388–400.

[70] L. Brutschy, P. Ferrara, O. Tripp, and M. Pistoia, “Shamdroid: gracefully degrading
functionality in the presence of limited resource access,” in Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, J. Aldrich and P. Eugster, Eds. ACM, 2015, pp. 316–331.

[71] B. Mariano, J. Reese, S. Xu, T. Nguyen, X. Qiu, J. S. Foster, and A. Solar-Lezama,
“Program synthesis with algebraic library specifications,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, pp. 132:1–132:25, 2019.

[72] X. Wang, L. Xiao, T. Yu, A. Woepse, and S. Wong, “An automatic refactoring
framework for replacing test-production inheritance by mocking mechanism,”
in Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2021, p. 540–552.

[73] M. Fazzini, A. Gorla, and A. Orso, “A framework for automated test mocking
of mobile apps,” in 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2020, pp. 1204–1208.

