
DARPA/I2O		
Transparent	Computing	Program	

		
THEIA: Tagging and Tracking of
Multi-Level Host Events for
Transparent Computing and
Information Assurance

Mattia Fazzini
Georgia Institute of Technology

Nov 3rd, 2017

Agenda

• Project overview
• Technical discussion

– THEIA-Panda
– THEIA-KI

• Future work

Project Team

Project Team

PI

Wenke
Lee

Project Team

PI

Wenke
Lee

Co-PI

Simon
Chung

Co-PI

Taesoo
Kim

Co-PI

Alessandro
Orso

Project Team

PI

Wenke
Lee

Co-PI

Simon
Chung

Co-PI

Taesoo
Kim

Co-PI

Alessandro
Orso

GTRI

Trent
Brunson

Project Team

PI

Wenke
Lee

Co-PI

Simon
Chung

Co-PI

Taesoo
Kim

Co-PI

Alessandro
Orso

Postdoc

Sangho
Lee

GTRI

Trent
Brunson

Project Team

PI

Wenke
Lee

Co-PI

Simon
Chung

Co-PI

Taesoo
Kim

Co-PI

Alessandro
Orso

Postdoc

Sangho
Lee

GTRI

Trent
Brunson

Ph.D
Student

Evan
Downing

Ph.D
Student

Mattia
Fazzini

Ph.D
Student

Yang
Ji

Ph.D
Student

Weiren
Wang

Ph.D
Student

Carter
Yagemann

Ph.D
Student

Joey
Allen

Data Breaches

Data Breaches

Data Breaches Trend

THEIA

• Objective:
– Tagging and tracking of multi-level host events for detection of
advanced persistent threats (APTs)

• Efficiency:
– Decouple analyses from runtime through record and replay

• Transparency:
– OS level

• Establish causality relationship between system operations
– Program level

• Identify relations between program instructions
– UI level

• Capture user’s intent to provide ground truth of intended behavior

THEIA

• Objective:
– Tagging and tracking of multi-level host events for detection of
advanced persistent threats (APTs)

• Efficiency:
– Decouple analyses from runtime through record and replay

• Transparency:
– OS level

• Establish causality relationship between system operations
– Program level

• Identify relations between program instructions
– UI level

• Capture user’s intent to provide ground truth of intended behavior

THEIA

• Objective:
– Tagging and tracking of multi-level host events for detection of
advanced persistent threats (APTs)

• Efficiency:
– Decouple analyses from runtime through record and replay

• Transparency:
– OS level

• Establish causality relationship between system operations
– Program level

• Identify relations between program instructions
– UI level

• Capture user’s intent to provide ground truth of intended behavior

Advanced Persistent Threats (APTs)

• Definition:
– Advanced persistent threats (APTs) take place over a long
period of time and can blend in with normal user and program
activities

Advanced Persistent Threats (APTs)

• Definition:
– Advanced persistent threats (APTs) take place over a long
period of time and can blend in with normal user and program
activities

Advanced Persistent Threats (APTs)

• Definition:
– Advanced persistent threats (APTs) take place over a long
period of time and can blend in with normal user and program
activities

Advanced Persistent Threats (APTs)

• Definition:
– Advanced persistent threats (APTs) take place over a long
period of time and can blend in with normal user and program
activities

Advanced Persistent Threats (APTs)

• Definition:
– Advanced persistent threats (APTs) take place over a long
period of time and can blend in with normal user and program
activities

DARPA Transparent Computing

TA1 THEIA

TA1…
… TA3

TA2

TA2

TA2

Tagging and Tracking Storage Forensics

TA1

Adversarial Scenario
TA4

Malware
TA5

DARPA Transparent Computing

TA1 THEIA

TA1…
… TA3

TA2

TA2

TA2

Tagging and Tracking Storage Forensics

TA1

Adversarial Scenario
TA4

Malware
TA5

DARPA Transparent Computing

TA1 THEIA

TA1…
… TA3

TA2

TA2

TA2

Tagging and Tracking Storage Forensics

TA1

Adversarial Scenario
TA4

Malware
TA5

DARPA Transparent Computing

TA1 THEIA

TA1…
… TA3

TA2

TA2

TA2

Tagging and Tracking Storage Forensics

TA1

Adversarial Scenario
TA4

Malware
TA5

DARPA Transparent Computing

TA1 THEIA

TA1…
… TA3

TA2

TA2

TA2

Tagging and Tracking Storage Forensics

TA1

Adversarial Scenario
TA4

Malware
TA5

DARPA Transparent Computing

TA1 THEIA

TA1…
… TA3

TA2

TA2

TA2

Tagging and Tracking Storage Forensics

TA1

Adversarial Scenario
TA4

Malware
TA5

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

THEIA-Panda Overview

Host

THEIA-Panda

Guest
FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Coarse-grained
Taint AnalysisSystem Call

Information

Process
Information

Record Replay

Record and Replay

• Record:
– Take a snapshot of the machine state
– Log non-deterministic inputs

• Data entering CPU on port input
• Hardware interrupts and their parameters
• Data written to RAM during direct memory operation from peripheral

• Replay:
– Replay activity (data) starting from snapshot of machine state

• Implementation:
– QEMU/PANDA* and 64-bit Linux Guest

*B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, R. Whelan. Repeatable Reverse Engineering with PANDA. 5th Program
Protection and Reverse Engineering Workshop, Los Angeles, California, December 2015

Record and Replay

• Record:
– Take a snapshot of the machine state
– Log non-deterministic inputs

• Data entering CPU on port input
• Hardware interrupts and their parameters
• Data written to RAM during direct memory operation from peripheral

• Replay:
– Replay activity (data) starting from snapshot of machine state

• Implementation:
– QEMU/PANDA* and 64-bit Linux Guest

*B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, R. Whelan. Repeatable Reverse Engineering with PANDA. 5th Program
Protection and Reverse Engineering Workshop, Los Angeles, California, December 2015

Record and Replay

• Record:
– Take a snapshot of the machine state
– Log non-deterministic inputs

• Data entering CPU on port input
• Hardware interrupts and their parameters
• Data written to RAM during direct memory operation from peripheral

• Replay:
– Replay activity (data) starting from snapshot of machine state

• Implementation:
– QEMU/PANDA* and 64-bit Linux Guest

*B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, R. Whelan. Repeatable Reverse Engineering with PANDA. 5th Program
Protection and Reverse Engineering Workshop, Los Angeles, California, December 2015

Record and Replay Implementation 
Example

static ssize_t
e1000_receive(VLANClientState *nc,
const uint8_t *buf, size_t size)
{

do {

 rr_record_handle_packet_call(
 RR_CALLSITE_E1000_RECEIVE_2, (void *)(
 buf + desc_offset + vlan_offset),
 copy_size, NET_TRANSFER_IOB_TO_RAM)

} while (desc_offset < total_size);

}
…

…

pci_dma_write(&s->dev, le64_to_cpu(desc.buffer_addr),
 (void *)(buf + desc_offset + vlan_offset), copy_size);

…

…

Record and Replay Implementation 
Example

static ssize_t
e1000_receive(VLANClientState *nc,
const uint8_t *buf, size_t size)
{

do {

 rr_record_handle_packet_call(
 RR_CALLSITE_E1000_RECEIVE_2, (void *)(
 buf + desc_offset + vlan_offset),
 copy_size, NET_TRANSFER_IOB_TO_RAM)

} while (desc_offset < total_size);

}
…

…

pci_dma_write(&s->dev, le64_to_cpu(desc.buffer_addr),
 (void *)(buf + desc_offset + vlan_offset), copy_size);

…

…

Record and Replay Implementation 
Example

static ssize_t
e1000_receive(VLANClientState *nc,
const uint8_t *buf, size_t size)
{

do {

 rr_record_handle_packet_call(
 RR_CALLSITE_E1000_RECEIVE_2, (void *)(
 buf + desc_offset + vlan_offset),
 copy_size, NET_TRANSFER_IOB_TO_RAM)

} while (desc_offset < total_size);

}
…

…

pci_dma_write(&s->dev, le64_to_cpu(desc.buffer_addr),
 (void *)(buf + desc_offset + vlan_offset), copy_size);

…

…

OS-level Transparency

• Goal:
– Capture events and dependencies of OS-level events

• Approach:
– Based on VM introspection

• Events analyzed:
– Process operations:

• clone,	fork,	execve,	exit, etc.
– File operations:

• open,	read,	write,	unlink, etc.
– Network operations:

• socket,	connect,	recvmsg, etc.
– Memory operations:

• mmap,	mprotect,	shmget, etc.

OS-level Transparency

• Goal:
– Capture events and dependencies of OS-level events

• Approach:
– Based on VM introspection

• Events analyzed:
– Process operations:

• clone,	fork,	execve,	exit, etc.
– File operations:

• open,	read,	write,	unlink, etc.
– Network operations:

• socket,	connect,	recvmsg, etc.
– Memory operations:

• mmap,	mprotect,	shmget, etc.

OS-level Transparency

• Goal:
– Capture events and dependencies of OS-level events

• Approach:
– Based on VM introspection

• Events analyzed:
– Process operations:

• clone,	fork,	execve,	exit, etc.
– File operations:

• open,	read,	write,	unlink, etc.
– Network operations:

• socket,	connect,	recvmsg, etc.
– Memory operations:

• mmap,	mprotect,	shmget, etc.

OS-level Transparency
Implementation Example

#ifdef TARGET_X86_64
void helper_syscall(int next_eip_addend
{

 panda_cb_list *plist;
 for(plist = panda_cbs[PANDA_CB_BEFORE_SYSCALL];
plist != NULL; plist = panda_cb_list_next(plist))
 {
 plist->entry.before_syscall(env);
 }
 …
}

OS-level Transparency
Implementation Example

#ifdef TARGET_X86_64
void helper_syscall(int next_eip_addend
{

 panda_cb_list *plist;
 for(plist = panda_cbs[PANDA_CB_BEFORE_SYSCALL];
plist != NULL; plist = panda_cb_list_next(plist))
 {
 plist->entry.before_syscall(env);
 }
 …
}

OS-level Transparency
Implementation Example

#ifdef TARGET_X86_64
void helper_syscall(int next_eip_addend
{

 panda_cb_list *plist;
 for(plist = panda_cbs[PANDA_CB_BEFORE_SYSCALL];
plist != NULL; plist = panda_cb_list_next(plist))
 {
 plist->entry.before_syscall(env);
 }
 …
}

Action History Graph (AHG)

• Goal:
– Represent causality across events

• Causality:
– Process->Process (e.g., fork)
– Process->File (e.g., write)
– File->Process (e.g., read)
– Process->Host (e.g., send)
– Host->Process (e.g., recv)

Action History Graph (AHG)

• Goal:
– Represent causality across events

• Causality:
– Process->Process (e.g., fork)
– Process->File (e.g., write)
– File->Process (e.g., read)
– Process->Host (e.g., send)
– Host->Process (e.g., recv)

Action History Graph (AHG)

• Goal:
– Represent causality across events

• Causality:
– Process->Process (e.g., fork)
– Process->File (e.g., write)
– File->Process (e.g., read)
– Process->Host (e.g., send)
– Host->Process (e.g., recv)

Action History Graph Example

Coarse-grained Taint Analysis

• Goal:
– Quickly capture the provenance of objects in the AHG

• Working mechanism:
– Runs while building AHG
– Processes have a provenance set
– Process operations:

• fork, clone: copy provenance of parent to child process
– File and network operations

• read, recv: associate provenance of object to process
• write, send: associate provenance of process to object

Coarse-grained Taint Analysis

• Goal:
– Quickly capture the provenance of objects in the AHG

• Working mechanism:
– Runs while building AHG
– Processes have a provenance set
– Process operations:

• fork, clone: copy provenance of parent to child process
– File and network operations

• read, recv: associate provenance of object to process
• write, send: associate provenance of process to object

Coarse-grained Taint Analysis

• Goal:
– Quickly capture the provenance of objects in the AHG

• Working mechanism:
– Runs while building AHG
– Processes have a provenance set
– Process operations:

• fork, clone: copy provenance of parent to child process
– File and network operations

• read, recv: associate provenance of object to process
• write, send: associate provenance of process to object

Fine-grained Taint Analysis

• Goal:
– Accurately capture provenance of objects in the AHG

• Working mechanism:
– Decoupled from program execution
– Instruction level propagation
– Taint tags at byte level granularity

• Optimizations:
– Trace-based dynamic taint analysis

Fine-grained Taint Analysis

• Goal:
– Accurately capture provenance of objects in the AHG

• Working mechanism:
– Decoupled from program execution
– Instruction level propagation
– Taint tags at byte level granularity

• Optimizations:
– Trace-based dynamic taint analysis

Fine-grained Taint Analysis

• Goal:
– Accurately capture provenance of objects in the AHG

• Working mechanism:
– Decoupled from program execution
– Instruction level propagation
– Taint tags at byte level granularity

• Optimizations:
– Trace-based dynamic taint analysis

Fine-grained Taint Analysis
Implementation

Guest
Basic Block

TCG
Basic Block

LLVM
Basic Block

Fine-grained Taint Analysis
Implementation

Guest
Basic Block

TCG
Basic Block

LLVM
Basic Block

Fine-grained Taint Analysis
Implementation

Guest
Basic Block

TCG
Basic Block

LLVM
Basic Block

Fine-grained Taint Analysis
Implementation

Guest
Basic Block

TCG
Basic Block

LLVM
Basic Block

Trace-based Taint Analysis

• Objective:
– Improve performance of fine-grained taint analysis

• Key intuition:
– Within a trace instruction sequences are executed multiple times

• Working mechanism:
– Based on the execution trace of the system/program
– Computes taint summaries for sequences of instructions
– Re-use taint summaries on the trace and possible across traces

• Implementation:
– Sequitur algorithm: recognizes a lexical structure in an execution
trace and generates a grammar where terminals are instructions

– Analyze grammar and reuse taint results when possible

Trace-based Taint Analysis

• Objective:
– Improve performance of fine-grained taint analysis

• Key intuition:
– Within a trace instruction sequences are executed multiple times

• Working mechanism:
– Based on the execution trace of the system/program
– Computes taint summaries for sequences of instructions
– Re-use taint summaries on the trace and possible across traces

• Implementation:
– Sequitur algorithm: recognizes a lexical structure in an execution
trace and generates a grammar where terminals are instructions

– Analyze grammar and reuse taint results when possible

Trace-based Taint Analysis

• Objective:
– Improve performance of fine-grained taint analysis

• Key intuition:
– Within a trace instruction sequences are executed multiple times

• Working mechanism:
– Based on the execution trace of the system/program
– Computes taint summaries for sequences of instructions
– Re-use taint summaries on the trace and possible across traces

• Implementation:
– Sequitur algorithm: recognizes a lexical structure in an execution
trace and generates a grammar where terminals are instructions

– Analyze grammar and reuse taint results when possible

Trace-based Taint Analysis Example

9

…
mov qword ptr [r12+rax*8], rdx
jmp 0x7f8c47a21b13
add rdx, 0x10
mov rax, qword ptr [rdx]
test rax, rax
jz 0x7f8c47a21b52
cmp rax, 0x21
jbe 0x7f8c47a21b08
lea rcx, ptr [rip+0x21ef29]
…

Execution Trace Grammar
mov qword ptr [r12+rax*8], rdx

jump 0x7f8c47a21b13

10

jz 0x7f8c47a21b52
476
8

add rdx, 0x10
43

mov rax, qword ptr [rdx]

test rax, rax

11 11

Trace-based Taint Analysis Example

9

…
mov qword ptr [r12+rax*8], rdx
jmp 0x7f8c47a21b13
add rdx, 0x10
mov rax, qword ptr [rdx]
test rax, rax
jz 0x7f8c47a21b52
cmp rax, 0x21
jbe 0x7f8c47a21b08
lea rcx, ptr [rip+0x21ef29]
…

Execution Trace Grammar
mov qword ptr [r12+rax*8], rdx

jump 0x7f8c47a21b13

10

jz 0x7f8c47a21b52
476
8

add rdx, 0x10
43

mov rax, qword ptr [rdx]

11 11

Fine-grained Taint Analysis

Fine-grained Taint Analysis

Case Study Overview

Case Study Overview

Case Study Overview

Case Study Overview

Case Study Overview

Case Study and AHG

bash execute

firefox

firefox

recv
from

execute

143.215.130.204

sh

sh

143.215.130.204

execute

wget

wget
recv
from

writescreen
grab

execute

screen
grab

recv
msg

X0

write s.png

execute

read

nc

nc

write

143.215.130.204

Process

Event

File

Network

Tag

Causality

Case Study and AHG

bash execute

firefox

firefox

recv
from

execute

143.215.130.204

sh

sh

143.215.130.204

execute

wget

wget
recv
from

writescreen
grab

execute

screen
grab

recv
msg

X0

write s.png

execute

read

nc

nc

write

143.215.130.204

Process

Event

File

Network

Tag

Causality

Case Study and AHG Step 1

1) Victim starts Firefox

bash

execute

firefox

firefox

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and AHG Step 2

2) Victim visits malicious.com (143.215.130.204) that runs shell process

firefox recv
from

execute

143.215.130.204

sh

sh

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and AHG Step 3

3) Attacker downloads and executes screengrab

sh
143.215.130.204

execute

wget

wget
recv
from

writescreen
grab

execute

screen
grab

recv
msg X0

write s.png

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and AHG Step 4

4) Screenshot is sent to attacker’s server

sh execute

read s.png

nc

nc

write

143.215.130.204

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread

libc.soread

wgetrcread

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread

wgetrcread

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread

wgetrcread

Process

Event

File

Network

Tag

CT1

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread CT2

wgetrcread

Process

Event

File

Network

Tag

CT1

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread CT2

wgetrcread

Process

Event

File

Network

Tag

CT1 CT2

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread CT2

wgetrcread CT3

Process

Event

File

Network

Tag

CT1 CT2

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread CT2

wgetrcread CT3

Process

Event

File

Network

Tag

CT1 CT2 CT3

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread CT2

wgetrcread CT3

CT4

Process

Event

File

Network

Tag

CT1 CT2 CT3

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread CT2

wgetrcread CT3

CT4

Process

Event

File

Network

Tag

CT1 CT2 CT3 CT4

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Coarse-grained Taint Analysis.

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread CT1

libc.soread CT2

wgetrcread CT3

CT4

CT5

Process

Event

File

Network

Tag

CT1 CT2 CT3 CT4

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Coarse Taint Set

Case Study and 
Fine-grained Taint Analysis

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread

libc.soread

wgetrcread

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and 
Fine-grained Taint Analysis

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread FT1

libc.soread

wgetrcread

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and 
Fine-grained Taint Analysis

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread FT1

libc.soread FT2

wgetrcread

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and 
Fine-grained Taint Analysis

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread FT1

libc.soread FT2

wgetrcread FT3

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and 
Fine-grained Taint Analysis

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread FT1

libc.soread FT2

wgetrcread FT3

FT4

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

Case Study and 
Fine-grained Taint Analysis

sh

143.215.130.204

execute

wget

wget

recv
from

write screen
grab

libssl.soread FT1

libc.soread FT2

wgetrcread FT3

FT4

FT5

Process

Event

File

Network

Tag

recv
from

recv
from

screen
grab

screen
grab

recv
msg

THEIA-Panda Overheads

TIME Bare Exec
Time

KVM Exec
Time

QEMU
Exec Time

Record
Exec Time

Replay
Exec Time

Bare Exec
Time

KVM Exec
Time

2.09 x

QEMU
Exec Time

6.19 x 2.96 x

Record
Exec Time

7.75 x 3.71 x 1.25 x

Replay
Exec Time

13.82 x 6.62 x 2.23 x 1.78 x

• Fine grained taint analysis:
– ~40x to ~300x compared to bare execution

• Space overhead:
– ~86 GB/day non det log data + ~1.3GB/day graph data

THEIA-Panda Overheads

TIME Bare Exec
Time

KVM Exec
Time

QEMU
Exec Time

Record
Exec Time

Replay
Exec Time

Bare Exec
Time

KVM Exec
Time

2.09 x

QEMU
Exec Time

6.19 x 2.96 x

Record
Exec Time

7.75 x 3.71 x 1.25 x

Replay
Exec Time

13.82 x 6.62 x 2.23 x 1.78 x

• Fine grained taint analysis:
– ~40x to ~300x compared to bare execution

• Space overhead:
– ~86 GB/day non det log data + ~1.3GB/day graph data

THEIA-Panda Overheads

TIME Bare Exec
Time

KVM Exec
Time

QEMU
Exec Time

Record
Exec Time

Replay
Exec Time

Bare Exec
Time

KVM Exec
Time

2.09 x

QEMU
Exec Time

6.19 x 2.96 x

Record
Exec Time

7.75 x 3.71 x 1.25 x

Replay
Exec Time

13.82 x 6.62 x 2.23 x 1.78 x

• Fine grained taint analysis:
– ~40x to ~300x compared to bare execution

• Space overhead:
– ~86 GB/day non det log data + ~1.3GB/day graph data

THEIA-Panda Overheads

TIME Bare Exec
Time

KVM Exec
Time

QEMU
Exec Time

Record
Exec Time

Replay
Exec Time

Bare Exec
Time

KVM Exec
Time

2.09 x

QEMU
Exec Time

6.19 x 2.96 x

Record
Exec Time

7.75 x 3.71 x 1.25 x

Replay
Exec Time

13.82 x 6.62 x 2.23 x 1.78 x

• Fine grained taint analysis:
– ~40x to ~300x compared to bare execution

• Space overhead:
– ~86 GB/day non det log data + ~1.3GB/day graph data

THEIA-Panda Overheads

TIME Bare Exec
Time

KVM Exec
Time

QEMU
Exec Time

Record
Exec Time

Replay
Exec Time

Bare Exec
Time

KVM Exec
Time

2.09 x

QEMU
Exec Time

6.19 x 2.96 x

Record
Exec Time

7.75 x 3.71 x 1.25 x

Replay
Exec Time

13.82 x 6.62 x 2.23 x 1.78 x

• Fine grained taint analysis:
– ~40x to ~300x compared to bare execution

• Space overhead:
– ~86 GB/day non det log data + ~1.3GB/day graph data

THEIA-Panda Observations

-Panda

THEIA-KI Overview

THEIA-KI-Analysis

FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Query InterfaceTHEIA-KI
+

OS

Record

Replay

System Call
Information

Process
Information

THEIA-KI Overview

THEIA-KI-Analysis

FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Query InterfaceTHEIA-KI
+

OS

Record

Replay

System Call
Information

Process
Information

THEIA-KI Overview

THEIA-KI-Analysis

FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Query InterfaceTHEIA-KI
+

OS

Record

Replay

System Call
Information

Process
Information

THEIA-KI Overview

THEIA-KI-Analysis

FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Query InterfaceTHEIA-KI
+

OS

Record

Replay

System Call
Information

Process
Information

THEIA-KI Overview

THEIA-KI-Analysis

FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Query InterfaceTHEIA-KI
+

OS

Record

Replay

System Call
Information

Process
Information

THEIA-KI Overview

THEIA-KI-Analysis

FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Query InterfaceTHEIA-KI
+

OS

Record

Replay

System Call
Information

Process
Information

THEIA-KI Overview

THEIA-KI-Analysis

FA

Fine-grained
Taint Analysis

Action History
Graph

Real-time

On-demand

Storage

Query InterfaceTHEIA-KI
+

OS

Record

Replay

System Call
Information

Process
Information

THEIA-KI

• Key features:
– Record/replay

• Kernel-based instrumentation
– Instruction level replay of the user space

• On top of Intel PIN
– Coarse-grained causality

• From system instrumentation and logging
– Fine-grained causality

• From dynamic taint tracking

• Threat model:
– Kernel is trusted

THEIA-KI

• Key features:
– Record/replay

• Kernel-based instrumentation
– Instruction level replay of the user space

• On top of Intel PIN
– Coarse-grained causality

• From system instrumentation and logging
– Fine-grained causality

• From dynamic taint tracking

• Threat model:
– Kernel is trusted

THEIA-KI

• Key features:
– Record/replay

• Kernel-based instrumentation
– Instruction level replay of the user space

• On top of Intel PIN
– Coarse-grained causality

• From system instrumentation and logging
– Fine-grained causality

• From dynamic taint tracking

• Threat model:
– Kernel is trusted

Record and Replay

• Record:
– Kernel instrumentation

• Order, return values and memory addresses modified by a system call
• Timing and values of received signals
• Sources of randomness

– Libc instrumentation
• synchronization of pthread

• Implementation:
– Arnold* with 32-bit Linux kernel

Process group
Thread 1 Thread 2

*David Devecsery, Michael Chow, Xianzheng Dou, Peter M Chen, Jason Flinn. Eidetic Systems. Proceedings of the 11th
USENIX Symposium on Operating System Design and Implementation (OSDI), October 2014.

Record and Replay

• Record:
– Kernel instrumentation

• Order, return values and memory addresses modified by a system call
• Timing and values of received signals
• Sources of randomness

– Libc instrumentation
• synchronization of pthread

• Implementation:
– Arnold* with 32-bit Linux kernel

Process group
Thread 1 Thread 2

*David Devecsery, Michael Chow, Xianzheng Dou, Peter M Chen, Jason Flinn. Eidetic Systems. Proceedings of the 11th
USENIX Symposium on Operating System Design and Implementation (OSDI), October 2014.

Record and Replay

• Record:
– Kernel instrumentation

• Order, return values and memory addresses modified by a system call
• Timing and values of received signals
• Sources of randomness

– Libc instrumentation
• synchronization of pthread

• Implementation:
– Arnold* with 32-bit Linux kernel

File

Socket

Randomness

External
Inputs

Process group
Thread 1 Thread 2

*David Devecsery, Michael Chow, Xianzheng Dou, Peter M Chen, Jason Flinn. Eidetic Systems. Proceedings of the 11th
USENIX Symposium on Operating System Design and Implementation (OSDI), October 2014.

Record and Replay

• Record:
– Kernel instrumentation

• Order, return values and memory addresses modified by a system call
• Timing and values of received signals
• Sources of randomness

– Libc instrumentation
• synchronization of pthread

• Implementation:
– Arnold* with 32-bit Linux kernel

File

Socket

Randomness

External
Inputs

Process group
Thread 1 Thread 2

Thread
Synchronization

*David Devecsery, Michael Chow, Xianzheng Dou, Peter M Chen, Jason Flinn. Eidetic Systems. Proceedings of the 11th
USENIX Symposium on Operating System Design and Implementation (OSDI), October 2014.

Record and Replay

• Record:
– Kernel instrumentation

• Order, return values and memory addresses modified by a system call
• Timing and values of received signals
• Sources of randomness

– Libc instrumentation
• synchronization of pthread

• Implementation:
– Arnold* with 32-bit Linux kernel

File

Socket

Randomness

External
Inputs

Process group
Thread 1 Thread 2

Thread
Synchronization

*David Devecsery, Michael Chow, Xianzheng Dou, Peter M Chen, Jason Flinn. Eidetic Systems. Proceedings of the 11th
USENIX Symposium on Operating System Design and Implementation (OSDI), October 2014.

Kernel Instrumentation 
Implementation Example

unsigned long arch_align_stack(unsigned long sp
{
 /* Begin REPLAY */
 if (!(current->personality & ADDR_NO_RANDOMIZE) &&
 randomize_va_space){
 unsigned int rand = get_random_int();
 if (current->record_thrd) {
 record_randomness(rand);
 } else if (current->replay_thrd){
 rand = replay_randomness();
}
 sp -= rand % 8192;
 }
 /* End REPLAY */
 return sp & ~0xf;
}

Kernel Instrumentation 
Implementation Example

unsigned long arch_align_stack(unsigned long sp
{
 /* Begin REPLAY */
 if (!(current->personality & ADDR_NO_RANDOMIZE) &&
 randomize_va_space){
 unsigned int rand = get_random_int();
 if (current->record_thrd) {
 record_randomness(rand);
 } else if (current->replay_thrd){
 rand = replay_randomness();
}
 sp -= rand % 8192;
 }
 /* End REPLAY */
 return sp & ~0xf;
}

Kernel Instrumentation 
Implementation Example

unsigned long arch_align_stack(unsigned long sp
{
 /* Begin REPLAY */
 if (!(current->personality & ADDR_NO_RANDOMIZE) &&
 randomize_va_space){
 unsigned int rand = get_random_int();
 if (current->record_thrd) {
 record_randomness(rand);
 } else if (current->replay_thrd){
 rand = replay_randomness();
}
 sp -= rand % 8192;
 }
 /* End REPLAY */
 return sp & ~0xf;
}

Query System Workflow

Reachability
& Pruning

Coarse-grained
Subgraph

Fine-grained
analysis

Fine-grained Tags

Triggering PointsAHG

Queries

Query System Workflow

Reachability
& Pruning

Coarse-grained
Subgraph

Fine-grained
analysis

Fine-grained Tags

Triggering PointsAHG

Queries

Query System Workflow

Reachability
& Pruning

Coarse-grained
Subgraph

Fine-grained
analysis

Fine-grained Tags

Triggering PointsAHG

Queries

Query System Workflow

Reachability
& Pruning

Coarse-grained
Subgraph

Fine-grained
analysis

Fine-grained Tags

Triggering PointsAHG

Queries

Query System Workflow

Reachability
& Pruning

Coarse-grained
Subgraph

Fine-grained
analysis

Fine-grained Tags

Triggering PointsAHG

Queries

Triggering Points and Queries

• Triggering points:
– Pre-defined policies

• Process writes to /etc/passwd

• Queries:
– From automated forensic analysis systems
– Human based analysis

• Analysis types:
– Backward:

• Where does this object come from?
– Forward:

• What is the impact of this object on the system?
– Point-to-point:

• Are these two objects related?

Triggering Points and Queries

• Triggering points:
– Pre-defined policies

• Process writes to /etc/passwd

• Queries:
– From automated forensic analysis systems
– Human based analysis

• Analysis types:
– Backward:

• Where does this object come from?
– Forward:

• What is the impact of this object on the system?
– Point-to-point:

• Are these two objects related?

Triggering Points and Queries

• Triggering points:
– Pre-defined policies

• Process writes to /etc/passwd

• Queries:
– From automated forensic analysis systems
– Human based analysis

• Analysis types:
– Backward:

• Where does this object come from?
– Forward:

• What is the impact of this object on the system?
– Point-to-point:

• Are these two objects related?

Point-to-point Query Example

1. Attacker tampers contract file ctct.csv
2. Employee creates seasonal report s1.csv using spreadsheet editor
3. Auto report program sends seasonal s1.csv report to archive server
4. Employee creates seasonal report s2.csv using spreadsheet editor
5. Template generator creates template t.doc
6. Employee creates half-year report h2.pdf using document editor

Point-to-point Query Example

1. Attacker tampers contract file ctct.csv
2. Employee creates seasonal report s1.csv using spreadsheet editor
3. Auto report program sends seasonal s1.csv report to archive server
4. Employee creates seasonal report s2.csv using spreadsheet editor
5. Template generator creates template t.doc
6. Employee creates half-year report h2.pdf using document editor

Point-to-point Query Example

1. Attacker tampers contract file ctct.csv
2. Employee creates seasonal report s1.csv using spreadsheet editor
3. Auto report program sends seasonal s1.csv report to archive server
4. Employee creates seasonal report s2.csv using spreadsheet editor
5. Template generator creates template t.doc
6. Employee creates half-year report h2.pdf using document editor

ctct.csv Spreadsheet
Editor

read write

s1.csv

Template
Generator t.doc

write
Document

Editor

read

read h2.pdf

writes2.csv

write

Spreadsheet
Editor

read

Auto
Report

archive
server

read send

Forward Reachability

1. Attacker tampers contract file ctct.csv
2. Employee creates seasonal report s1.csv using spreadsheet editor
3. Auto report program sends seasonal s1.csv report to archive server
4. Employee creates seasonal report s2.csv using spreadsheet editor
5. Template generator creates template t.doc
6. Employee creates half-year report h2.pdf using document editor

ctct.csv Spreadsheet
Editor

read write

s1.csv

Template
Generator t.doc

write
Document

Editor

read

read h2.pdf

writes2.csv

write

Spreadsheet
Editor

read

Auto
Report

archive
server

read send

Backward Reachability

1. Attacker tampers contract file ctct.csv
2. Employee creates seasonal report s1.csv using spreadsheet editor
3. Auto report program sends seasonal s1.csv report to archive server
4. Employee creates seasonal report s2.csv using spreadsheet editor
5. Template generator creates template t.doc
6. Employee creates half-year report h2.pdf using document editor

ctct.csv Spreadsheet
Editor

read write

s1.csv

Template
Generator t.doc

write
Document

Editor

read

read h2.pdf

writes2.csv

write

Spreadsheet
Editor

read

Auto
Report

archive
server

read send

Reachability Result

1. Attacker tampers contract file ctct.csv
2. Employee creates seasonal report s1.csv using spreadsheet editor
3. Auto report program sends seasonal s1.csv report to archive server
4. Employee creates seasonal report s2.csv using spreadsheet editor
5. Template generator creates template t.doc
6. Employee creates half-year report h2.pdf using document editor

ctct.csv Spreadsheet
Editor

read write

s1.csv

Template
Generator t.doc

write
Document

Editor

read

read h2.pdf

writes2.csv

write

Spreadsheet
Editor

read

Auto
Report

archive
server

read send

Runtime Overhead: SPEC CPU2006

3.22%

Runtime Overhead: I/O Operations

<50%

Pruning Efficiency

~94.2% reduction

None
RAIN

Information Flow Tracking Accuracy

~94.2% reduction

Coarse-level Fine-level

Storage Cost

~4GB per day

Future Work

• Hypervisor-based non-emulation R/R

• Differential Taint Analysis

• Running memory sanitizers on replay

• Multi-host support

• Porting from 32-bit to 64-bit

Future Work

• Hypervisor-based non-emulation R/R

• Differential Taint Analysis

• Running memory sanitizers on replay

• Multi-host support

• Porting from 32-bit to 64-bit

Future Work

• Hypervisor-based non-emulation R/R

• Differential Taint Analysis

• Running memory sanitizers on replay

• Multi-host support

• Porting from 32-bit to 64-bit

Conclusion

Conclusion

Conclusion

Conclusion

APT Demo

APT Demo

APT Demo

THEIA-Panda Demo

THEIA-Panda Demo

THEIA-Panda Demo

