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THEIA

• Objective: 
– Tagging and tracking of multi-level host events for detection of 
advanced persistent threats (APTs) 

• Efficiency: 
– Decouple analyses from runtime through record and replay 

• Transparency: 
– OS level 

• Establish causality relationship between system operations 
– Program level 

• Identify relations between program instructions 
– UI level 

• Capture user’s intent to provide ground truth of intended behavior
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Record and Replay

• Record: 
– Take a snapshot of the machine state 
– Log non-deterministic inputs 

• Data entering CPU on port input 
• Hardware interrupts and their parameters 
• Data written to RAM during direct memory operation from peripheral 

• Replay: 
– Replay activity (data) starting from snapshot of machine state 

• Implementation: 
– QEMU/PANDA* and 64-bit Linux Guest

*B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, R. Whelan. Repeatable Reverse Engineering with PANDA. 5th Program 
Protection and Reverse Engineering Workshop, Los Angeles, California, December 2015
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Record and Replay Implementation 
Example

static ssize_t 
e1000_receive(VLANClientState *nc, 
const uint8_t *buf, size_t size) 
{

do {

                    rr_record_handle_packet_call( 
    RR_CALLSITE_E1000_RECEIVE_2, (void *)( 
    buf + desc_offset + vlan_offset), 
    copy_size, NET_TRANSFER_IOB_TO_RAM)

} while (desc_offset < total_size);

}
…

…

pci_dma_write(&s->dev, le64_to_cpu(desc.buffer_addr), 
 (void *)(buf + desc_offset + vlan_offset), copy_size);

…

…
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OS-level Transparency

• Goal: 
– Capture events and dependencies of OS-level events 

• Approach: 
– Based on VM introspection 

• Events analyzed: 
– Process operations: 

• clone,	fork,	execve,	exit, etc. 
– File operations: 

• open,	read,	write,	unlink, etc. 
– Network operations: 

• socket,	connect,	recvmsg, etc. 
– Memory operations: 

• mmap,	mprotect,	shmget, etc.
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OS-level Transparency 
Implementation Example

#ifdef TARGET_X86_64 
void helper_syscall(int next_eip_addend 
{ 

 panda_cb_list *plist; 
 for(plist = panda_cbs[PANDA_CB_BEFORE_SYSCALL];   
plist != NULL; plist = panda_cb_list_next(plist)) 
 { 
  plist->entry.before_syscall(env); 
 } 
 … 
}
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• Goal: 
– Represent causality across events 

• Causality: 
– Process->Process (e.g., fork) 
– Process->File (e.g., write) 
– File->Process (e.g., read) 
– Process->Host (e.g., send) 
– Host->Process (e.g., recv)
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Coarse-grained Taint Analysis

• Goal: 
– Quickly capture the provenance of objects in the AHG 

•  Working mechanism: 
– Runs while building AHG 
– Processes have a provenance set 
– Process operations: 

• fork, clone: copy provenance of parent to child process 
– File and network operations 

• read, recv: associate provenance of object to process  
• write, send: associate provenance of process to object 
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Fine-grained Taint Analysis

• Goal: 
– Accurately capture provenance of objects in the AHG 

• Working mechanism: 
– Decoupled from program execution 
– Instruction level propagation 
– Taint tags at byte level granularity 

• Optimizations: 
– Trace-based dynamic taint analysis
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Trace-based Taint Analysis

• Objective: 
– Improve performance of fine-grained taint analysis 

• Key intuition: 
– Within a trace instruction sequences are executed multiple times 

• Working mechanism: 
– Based on the execution trace of the system/program 
– Computes taint summaries for sequences of instructions 
– Re-use taint summaries on the trace and possible across traces 

• Implementation: 
– Sequitur algorithm: recognizes a lexical structure in an execution 
trace and generates a grammar where terminals are instructions 

– Analyze grammar and reuse taint results when possible
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Trace-based Taint Analysis Example

9

… 
mov qword ptr [r12+rax*8], rdx 
jmp 0x7f8c47a21b13 
add rdx, 0x10 
mov rax, qword ptr [rdx] 
test rax, rax 
jz 0x7f8c47a21b52 
cmp rax, 0x21 
jbe 0x7f8c47a21b08 
lea rcx, ptr [rip+0x21ef29] 
…

Execution Trace Grammar
mov qword ptr [r12+rax*8], rdx

jump 0x7f8c47a21b13

10

jz 0x7f8c47a21b52
476
8

add rdx, 0x10
43

mov rax, qword ptr [rdx]

test rax, rax

11 11
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Case Study and AHG Step 1
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Case Study and AHG Step 2

2) Victim visits malicious.com (143.215.130.204) that runs shell process
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Case Study and AHG Step 3

3) Attacker downloads and executes screengrab
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Case Study and AHG Step 4

4) Screenshot is sent to attacker’s server
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Case Study and 
Fine-grained Taint Analysis
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THEIA-KI

• Key features: 
– Record/replay 

• Kernel-based instrumentation 
– Instruction level replay of the user space 

• On top of Intel PIN 
– Coarse-grained causality 

• From system instrumentation and logging 
– Fine-grained causality 

• From dynamic taint tracking 

• Threat model: 
– Kernel is trusted
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Record and Replay

• Record: 
– Kernel instrumentation 

• Order, return values and memory addresses modified by a system call 
• Timing and values of received signals 
• Sources of randomness 

– Libc instrumentation 
• synchronization of pthread 

• Implementation: 
– Arnold* with 32-bit Linux kernel
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Thread 1 Thread 2

*David Devecsery, Michael Chow, Xianzheng Dou, Peter M Chen, Jason Flinn. Eidetic Systems. Proceedings of the 11th 
USENIX Symposium on Operating System Design and Implementation (OSDI), October 2014. 
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Kernel Instrumentation 
Implementation Example

unsigned long arch_align_stack(unsigned long sp 
{ 
 /* Begin REPLAY */ 
 if (!(current->personality & ADDR_NO_RANDOMIZE) &&   
 randomize_va_space){ 
  unsigned int rand = get_random_int();   
 if (current->record_thrd) {     
 record_randomness(rand); 
  } else if (current->replay_thrd){    
  rand = replay_randomness();    
} 
  sp -= rand % 8192; 
 } 
 /* End REPLAY */ 
 return sp & ~0xf; 
}
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Triggering Points and Queries

• Triggering points: 
– Pre-defined policies 

• Process writes to /etc/passwd 

• Queries: 
– From automated forensic analysis systems 
– Human based analysis 

• Analysis types: 
– Backward:  

• Where does this object come from? 
– Forward: 

• What is the impact of this object on the system? 
– Point-to-point: 

• Are these two objects related?
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Point-to-point Query Example

1. Attacker tampers contract file ctct.csv 
2. Employee creates seasonal report s1.csv using spreadsheet editor 
3. Auto report program sends seasonal s1.csv report to archive server 
4. Employee creates seasonal report s2.csv using spreadsheet editor 
5. Template generator creates template t.doc 
6. Employee creates half-year report h2.pdf using document editor
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Forward Reachability

1. Attacker tampers contract file ctct.csv 
2. Employee creates seasonal report s1.csv using spreadsheet editor 
3. Auto report program sends seasonal s1.csv report to archive server 
4. Employee creates seasonal report s2.csv using spreadsheet editor 
5. Template generator creates template t.doc 
6. Employee creates half-year report h2.pdf using document editor
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Backward Reachability

1. Attacker tampers contract file ctct.csv 
2. Employee creates seasonal report s1.csv using spreadsheet editor 
3. Auto report program sends seasonal s1.csv report to archive server 
4. Employee creates seasonal report s2.csv using spreadsheet editor 
5. Template generator creates template t.doc 
6. Employee creates half-year report h2.pdf using document editor
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Reachability Result

1. Attacker tampers contract file ctct.csv 
2. Employee creates seasonal report s1.csv using spreadsheet editor 
3. Auto report program sends seasonal s1.csv report to archive server 
4. Employee creates seasonal report s2.csv using spreadsheet editor 
5. Template generator creates template t.doc 
6. Employee creates half-year report h2.pdf using document editor
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Runtime Overhead: SPEC CPU2006

3.22%



Runtime Overhead: I/O Operations

<50%



Pruning Efficiency

~94.2% reduction

None
RAIN



Information Flow Tracking Accuracy

~94.2% reduction

Coarse-level Fine-level



Storage Cost

~4GB per day



Future Work

• Hypervisor-based non-emulation R/R 

• Differential Taint Analysis 

• Running memory sanitizers on replay 

• Multi-host support 

• Porting from 32-bit to 64-bit
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