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Math 4567. Midterm Exam III (take home) Solutions

April 23, 2010

There are a total of 100 points and 6 problems on this take home exam.

Problem Score
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Total:




1. Chapter 5, page 113, Problem 2. (20 points). A solid body 40
cm in diameter, initially at 100° C throughout, is cooled by keeping its
surface at 0° C. Use the temperature formula for

1 2 2]{: 2 a
u(r,t) =->_ B, exp(—n T t) sin mrr” B, = 7/ rf(r) sin dr,
r = a a a Jo a

to show formally that

n?m’k

w(0+,t) =200 > (—1)"" exp(— 100

n=1

).

Find the approximate temperature at the center of the sphere 10 min
after cooling begins if (a) & = 0.15 cgs unit ; and (b) & = 0.005 cgs
unit. Make sure that your answer is accurate to within 1/10th of a
degree Celsius and justify your reasoning.

Solution: Here f(r) = 100° and a = 20 cm. Thus

nntr

1 20
anl—o/o rf(r)sin% dr =

10 N 9 20 nmr 200
—{—rcos — +/ cos —dr} = —(—=1)"".
mr{ 20 0 20 } nmw (=1)
We use the limit
sin x sin Bx sin Bx
lim =1, or lim = im =B
z—0+ r—0+ €T Bz—0+ Bx
Thus .
sin ™ nm
lim ¢ =
r—0+ r a

It follows that
n?m’k

400

u(0+,t) = 200 i%(—l)”Jrl exp(—

n=1

).

After 10 minutes=600 seconds

u(0+, 600) = 200 > (—1)"*! exp(—3n>*7’k/2).

n=1
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This is a convergent alternating series with monotonically decreasing
terms. Thus the partial sum of an odd number of terms will be too
large and the sum of an even number of terms will be too small, with
the difference between the odd and even sums decreasing monotonically
to 0.

(a) If £ = 0.15 then taking only the first term in the series gives 21.71
(to 2 decimal place accuracy). Taking the sum of the first two terms
gives the lower bound 21.68. Thus the temperature is 21.7° C to the
nearest tenth of a degree;

(b) If & = 0.005 we need to sum the first 10 terms to give a lower
bound of 99.98 (to 2 decimal place accuracy). Summing the first 11
terms gives an upper bound 100.01. Thus the temperature is 100° C
to the nearest tenth of a degree.



2. Chapter 5, page 117, Problem 1. (20 points) Solve the boundary
value problem

Up = Uz +ap(t), O0<z <1, t>0,

u(0,t) =0, u(l,t) =0, u(x,0)=0.

Use the expansion

2 > (=1 n+1
x:—z( ) sinnrr, 0<z <1,
TSN
to get
2. (—1)"*! t 2o
7t — : / —nm2(t—7) dr.
u(z,t) 7; o sinnmz | e p(T)dr

Why does this series converge?Why does this series converge?

Solution: Write
u(z,t) =Y B,(t)sinnrz dr,
n=1
so that .
B,(t) = 2/ u(x,t)sinnrr de, n=1,2,--
0
Then

1 1
Bl (t) = 2/ u(z,t) sinnrx dr = 2/ (U (x,t) + xp(t)) sinnrx dx
0 0

1 1
= Zp(t)/o xrsinnrx dr + 2/0 Uge (z,t) sinnme de =

2p(t)(_7112:+1

where we have integrated by parts twice and made use of the boundary
conditions. Thus

1
— 2n27r2/ u(z,t)sinnrz dr,
0

(_1)n+1

22
— B, (1).
=T Bu(t)

B, (t) = 2p(t)



The integrating factor for this first order linear differential equation is
n2n2t

e so we have
d 2 2t (_1)TL+1 2 2t
— (" "B, (t)) = 2p(t)————e" " ",
ST, (1) = 2p(t) L —e
Thus o(_qynsl
Bn(t) _ bn —n?r?t + ( ) / p(7)6n27r (7 t)dT
nmw 0
Now -
u(z,0) =0=">Y_ b,sinnmz,
n=1
so b, = 0. Thus

00 1 n+1 t
Z sin mr:zc/ e p(1)dr
— 0

To check convergence, let K = max;cjoa|p(t)| and let

-1 n+1

2 t 2.2

Cu(t) = ()sinmr:c/ e ™ (1) dr.
T n 0

Then

2K
m3n3

2 M
Ca(B)] < —e‘”2”2t/ TR dr =
0

o

—-n 7r2t(6n27r2M . 1)

for t > M, and

2 _ 2 t 9 9
7€nﬂt/€nﬂTKdT:
0

™

2K
m3n3

|Cu(®)] < (1=

for 0 <t < M. Thus for all ¢ > 0 there is a constant H > 0 such
that |C,(t)] < H/n?. The series for u(x,t) converges absolutely and
uniformly.



3. Chapter 8, page 215, problem 6. (10 points) Use the normalized
eigenfunctions in Problem 2, page 209 to derive

24+ h COS vy,
— 4h ina,r, 0<uz<l,
m(1—i-h ) Za%hchos?an)smax ’
where tan o, = —av,/h, a > 0.
Solution:

2+h s /
$(1+h—$) _;Cn% h+cos204n/ 1—|—h S smansds

Integrating by parts twice we find

Cp =

Tt hon (@ hyal ad

2h COS vy, hsin o, 5 (1 — cosay,)
h + cos? o, '

Then, making use of the identity —h sin v, = v, cos a,,, we find

2h 2h a’cosa,  ha,sina, L1 )
Cn = — — — cos ay,
h+cos?a,, a3(h+ cos?ay,) 1+h 1+h

_ 4h(1 —cosay,)
— a3(h+cos2ay,)’

which yields the desired result.



4. Chapter 8, page 215, problem 7. (10 points) Use the normalized
eigenfunctions in Problem 1, page 209 to derive

00 —1)"
sinwszwcost ( )

sinwp,z, 0<z <1,

2 _ 2
—wr—w?
where ( )
2n — )m
w, = ——, and w # w,, for any n.

2
Solution: The normalized eigenfunctions are
(2n — D)7

, n=1,2--
2

On(z) = V2sinw,z, w, =

and 0 < z < 1. Thus

00 1
sin wx = Z Cotn(z), 0<z <1, C,= / sinwz ¢p(z)dz.
n=1 0

Thus 1
C, = \/5/ sin wz sin w,x dz.
0
Since
2sin Asin B = cos(A — B) — cos(A + B).
we have
2sinwz sinw,r = cos(w — wy,)r — cos(w + wy, ),
SO
1 [sin(w—wy)zr,, sin(w+w,)z
Ch=—= |0 - |0 :
V2 W — Wy W+ w,
1 [sin(w—w,) sin(w+wy)
V2 W — Wy W+ wy,

. But cosw,, =0, sinw,, = (—=1)"*"'. Thus

1 (sin wCcosSw, — coswsinw,  sinw cosw, + cosw sin wn)

7 _

C, =
W — Wy w + wy
(—1)"( 1 N 1 )
= COS W
\/§ W— W, W+wy
_( 1)n\/§wcosw

2 _ 2
w? — w2

The result follows immediately from this.



5. Chapter 6, page 157, Problem 3. (20 points)

(a) Show that the function

0 when z < 0,
f(z) =13 exp(—z) when z > 0,
1

3 when x = 0,

satisfies the conditions of the Fourier integral pointwise conver-
gence theorem. Establish

da, —o0 <z < 00.

1 o cosazx + asinax
f(@) 7/0 1+ a?

(b) Verify this directly at the point x = 0.

™

Solution:

(a) f is piecewise continuous on every bounded interval and

/OO |f (x| dx:/ooexp(—x) dr =1 < oo,
—00 0
SO

fla+) -QF fla=) _ 71T/0°° /_‘: f(s) cosa(s — z) ds do,

at each = such that fr(z) and f;(z) exist, and these derivatives
exist at all x. Further, this function satisfies

for all z. Now
/oo f(s)cosa(s —x) ds = /Ooo exp(—s) cosa(s — x) ds,
and, integrating by parts twice,
/OOO exp(—s) cos a(s—x)ds = cos azx+asin az—a? /Ooo exp(—s) cos a(s—x)ds,

SO
COS QX + ' SIn r

1+ a?

/OO exp(—s) cosa(s — x)ds =
0
Thus

1 o cosax + asinax
Q.
0

f(:c):; 14 a?



(b) In the special case x = 0 we can evaluate the integral directly to
get

1 1 1 .
;/0 m da:;arctanafo :;*:*:f“))



6. (20 points) Use the real form of the Fourier transform pair for the
real-valued function f(z),

flz) = /Ooo [A() cos ax + B(a) sin ax] da,

Ala) = 71T/_OO f(t)cosat dt, B(a)= 71T/_OO f(t)sinat dt,

with Parseval formula
Lo (a2 2
—/ f(z) dx:/ (A (a)+ B (a)) da,
™ J—00 0

To derive the complex form of the transform pair for f(x):

flw) = [ fean,

=5 [ e as,

1 o) 9 (<< TN

= de = [ 1FO) ax,

| Payde= [ 1f)

The similar computation relating real and complex forms of the Fourier
series in problem 8, Chapter 2, page 42 should prove helpful. How

would the formulas change if f(z) was a complex valued function?
Solution: We define

F) = -

" or

(A(a) —iB(a))

DN | —

/OO f(x)e *de =

— 00

for A = a > 0 and

) = o [ Faedr = | (Ala) +iB(a)

")

for A = —a < 0. Then
/ T RN ePdN =

/0 - ; (A(a) +iB(a)) e da + O°° ; (A(a) — iB(a)) ¢°%da
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:/OOO [A(a) cos ax + B(a) sinazx] da = f(x).

Similarly,

| R dx =

/ooo[; (A() +1B(a)) ; (A(@) — iB(a))]da

715 (Ate) = iB(a) 5 (Al@) + iB(a)Jda
:;/()W[A2(a)+32(a)]da— ! /_O:Of2(x) dz.

T or

If f(z) is a complex valued function, then the squares in the formulas
above are replaced by absolute values squared:

f(z) = /OOO [A(ar) cos ax + B(a) sinax] da,

Ala) = /o; f(t)cosat dt, B(a)= 1/0; f(t)sinat dt,

™ ™

with Parseval formula

T @R dr = [T (A@F + B@)?) da,

™ J—o00

and

fe) = [ foerar,

— 00

1

f =5 [ faye e,
1

o [ If@Fdr= [ IfE ax
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