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It is shown that the Lauricella functions F;, in #n variables transform as basis vectors corresponding to irredu-
cible representations of the Lie algebra si(n + 3,C). Group representation theory can then be applied to derive

addition theorems, transformation formulas, and generating functions for the Fy,.

It is clear from this analysis

that the use of SL (m C) symmetry in atomlc and elementary particle physics w1ll lead inevitably to the re-

markable functions F

INTRODUCTION

In a recent paper,! Ciftan has shown that the Appell
function F; arises naturally from a study of the re-
presentation theory of the special linear groups. The
author proved in Ref. 2 that this was due to the fact
that SL(5,C) was the dynamical symmetry group of
F,. Here we generalize this observation by demon-
strating that SL(z + 3,C) is the dynamical symmetry
group of the Lauricella functions Fp in » variables
(Recall that F, is an F,, with n = 2). We further show
that exploitation of the SL(n + 3,C) symmetry yields
elegant and simple derivations of addition theorems,
transformation formulas, and generating functions
for the F,,. It follows from this analysis that the
implementation of SL (m, C) symmetry in atomic and
particle physics will necessarily lead to the func-
tions Fy,.

The methods employed in this paper are rather
straightforward generalizations of those employed
in Refs. 2 and 3.

1. THE DYNAMICAL SYMMETRY GROUP

The Lauricella function Fj, is defined by the series

FD(a;bp ...,bn,C x17 . "’xn)

B ozo; (@,my + -+ +m,)(by,my) -+ (b,,m,)
s e =0 (e,my + 2+ m)my 1 “m, !
Xxlml-"x”m“, (1.1)
convergent for |x,| <1,...,|x,|< 1.4.5
Here,
@@n)=a@+1)--(a+n—1)=(a),, (1.2)
and it is assumed thatc = 0,— 1,— 2,--., We de-

fine the following partial differential operators act-

ing on a space of functions of 2z + 2 complex vari-

ables, S,uy, ..., U, t, X1, .00, %,8

n
E, = s(}?1 xjaxj + sas>, EO‘B;,V = su,ld, ,

Eek =u, (xkax + ukauk),

Sl‘(]znj(l—x —sa>

=1

n
=t 2,x0. + 1, — 1)
(:El 7o ’

e

n
(2(1—;5 )9, + 19, — sa,

J

n
[

n
— D u.d
n

Eg, = upl(x,(1 — x,)0, +xk2(1—x)a

R
31(2 x)a + 13, — s0 -Ex]ujau>
i®l 4
n
+ 13, — x,59, — hzz‘iuhau),

EBkY = uyt (g, — 1)axk + ukauk),

n n
E,. = s—1t-1< 25 %(1 = %)3 — 250, + 10, — 1>,
7i=1 ji=1

n

E rppry =Szl fl(}ng(xj —1)3, — 13, + x,50,
+ 20 xu,0, — X, + 1>,
17k

E_%'_,y = uk-lt'1<xk(xk — l)a"k—f.]Z;k (xk_ 1) x"iax

+ x50, —t9, + 1),
Eﬂkrﬂp = uku;]-((xk - xp)axk + ukauk):
J, = sd,— Lo,

— 1 1
Jp, = Ud,, — 310, + ZE,"fauj’
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%
J}J =13, — %(sas +j§ujauj + 1), kp=1,2,...,n,
(1.3)

We define basis functionsfm@l,”_’ﬁn’y (S,05 000y,

t,%y,...,%,) in this space by

fa.ﬁl‘....ﬁn.y(sxulﬁ ceeslly, , MATRE ‘xn) :faBjy{s’uj’ t’x}')

=[Tly — a)T(@)/TO) Fpla; By e vy BisviXas o v vy %)

xsaubie . .ybrt? (1.4)

where y = 0,— 1,— 2,--- and I'(z) is the gamma

function.® The action of the above operators on the
basis functions is

Eafa,Bj,y = (')’ —a- l)fa+1’3j,)/;

Eupyrfaspy = Prlas1By iyt
Eﬁkfa.Bj,y = ka“'ﬁk Wy
E—yfoz.ﬂj.y =ly—a-— nfoc,ﬂj,y-l’

”
anfoz,Bj.y :(]}91 Bj - V)fwl,ej,wl’
n
Eyfa,ﬁj,y = (’}’ _JQ @]*)fa,ﬁj,'y‘?l’
E—afa.ﬁj’y =(a— 1)fa-1,ﬁj.)"
n
E‘kad,sj-.y = ('}/ —.].Z:}l Bj) f(x.‘ék Y
Eﬁkyfa.ﬁj.y = kaa.ék-)'*l 4
E—q;-yfa.ﬂj,y = (a - 1)fa-—1,ﬁ].,'y-1 ’
E—a.’ﬂk")’fa,ﬂj,y =Q1- Ol)f —1,Ek,7-1 ’

Eogyoyfusyy =@ =7+ Diag, yo1s

Eﬁk-'ﬁpfa,ej.y = kaa.a,.....ak+1,...,sp—1....,s,z.y s

1
Jafoc,ﬁj,y = (a — E'}/)fa,gj,y;

1 3
Jﬁkf“»ﬁja'f = (Bk Y + Elg ﬁi>ff1y5j~7 4

”n
Jufa.ﬁj’y = [’)’ - %(a +£z=)163 + 1)] fa’Bj_y b

k,p=1,2...,n. (1.5)
(Here the E operators and the J operators are inde-
pendent of the parameters a, 8;,y. The subscripts
merely indicate the action of these operators.) The
symbols 3, and 53, are defined by

Bk:-ﬁ:u ""Bk—lsﬁk + l,ﬁk+1,- c Py

Bp=Byre-rBr-10Br— LiBryy o 5By (1.6)

Relations (1. 5) can be verified by routine computa-
tion. Furthermore, it is straightforward to show that
the operators (1.3) form a basis for a simple Lie
algebra of dimension (n + 3)2 — 1, i.e.,a basis for
sln + 3,C).

To determine the group action of SL(n + 3,C) induced
by the operators (1. 3), we note that each of the trip-
lets
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g, -, g3t = {E,,
By Bp, d )

{Eotﬁky7

E—oa’ Ja},
{Ey) E—y’ J’y},

E Iy + g, + Jy},

o By iy Y

{Eo(,y’ E-(x,—'y!Ja + Jy}’ {Eﬁky’

k=1,...,n,1=<1<p=n,
1.7

E

-Bk’_y’ Jﬁk + Jy}’

{E

5,78, E-8,8,2 %, ~ Jo, 1>
1By T8y By B T By

satisfies the commutation relations

[F3,J¢] =+ J%, [J*,J]=2J3, (1.8)
and forms a basis for a subalgebra of si{z + 3,C)
isomorphic to si(2,C). Furthermore, each triplet
generates a local Lie subgroup of SL(z + 3,C) iso-
morphic to SL(2,C) and the subgroups so obtained
sx;fﬁce to generate the full group action of SL{x + 3,
C).

We pass from the Lie algebra action generated by
{J*,J°,J3} to the group action via the relation

T(A) = exp[— (b/d)J*] exp(— cd J") exp(rJ3),
eT/Z:d—l’ (1.9)
where

A:(“b
C

d

see Ref.7. We find that the triplet {E ,E_,J }
generates the group action

> € SL(2,C), ad—bc=1; (1.10)

Ty (AYF(S, 0y v eyttt Xy, 000y X,)
(as +c  wlas +¢) ts
= d+bs’as +c(1—x)as+c’

(1.11)

/\:7-8
@d +bs)las —cx; + ¢) )

and the triplet {EBkE_bk ,Jﬁk}

T2,k(A)f(s;uj:uks tsx}'sxk)
s(au, + ¢) u;
= (—(zuk+ C(l _ xk) ? 7‘;‘

u,t auyx; + c(x; — xp)

auy, + ¢

(auk + C),mu—k*,

au, + ¢’ au, +c(l—x) "’
Xplly

{d + buYau,— cx,+ c)>‘ (1.12)

In (1.11) the index j runs from 1 ton,but in (1.12})j
runs from 1 to7 excluding . The triplet {E, E,),,J),}
generates

T4 (A)f(s, 45,1, %)
- +
= (a +t£) 1f(S(d + bt),uj(d + bt), H’

[dx; — b(1 — x,.)](a + %)) ,

the triplet {E,; , E_, , Y’

(1.13)

By I, +dy, F Jr} generates

T4‘ k(A)f(s’ uj: uk: t’ xj’ xk)

c(l — xk)>‘1 cXy asu,l — cx,
=\t f(as—ﬂ;?’ui\asukt+c(xj~—xk))’

s
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au;, —

cx,, (asukt +c(1—xy) asu,t +c(l —x,)
st asu,t — cx, >’ (asukt + el — 1)’
(c,d — bsuut)a + ¢ — cxk)), (1.14)
the triplet {E oy B-arysdo F J,} generates

T5(A)f (s, 5,2, %)

c>‘1< s st ) c
=\*" s fd—bst’ast——cxj’a__g’

(dx; — bst)(ast — c)>
(ast — cx;)(d — bst) ’

(1.15)

the triplet {E, o7 gy, T Jy} generates

'Bk,")”
T6 k(A)f(sy ])ukJ t’ x:7'7xk)
c)‘l ( Suyl Uy
(a *ur f auyt + cx, ' d + bu,t’
¢ x(aupt +c) (dx,+ but)(au,t + c)>
u,’ auyt +cx, ’ (d + bud)au,t + cx,)/)’
(1.16)

and the triplet {Eﬁk-'ﬂ v Eop, 'Bp’JBk— Jﬁp} generates

at +

T7 k.p (A)f(sa ]7 up ’ t: xpxk;xp)

(s Uglty Uy Uy, ;
’ J’du +bu,’ auy, +cu,’

dxyu, +bxu, axu, + cxkup>
b

% du, +bu, ’ auy+ cu,

1=k<p=n. (1.17)
Let

Co=EB;, —Ey,E,, l=sk=n. (1.18)

It is straightforward to check that the solution f of
the simultaneous equations

4/ = (a _%'Y)f, Jgkf = (Bk“‘
J,f=[y—%<a +8+ 1)]f,
=1

iy +§ZB>f,
itk

C,f=0,k=1,...,n, (1.19)
analytic in a neighborhood of ¥, = x, = --- =x, =0
is

=Fp(@;81, v ey By ¥iXgs oo ,xn)s"‘ufl- cubn®, (1.20)

unique to within a multiplicative constant. In fact the
first » + 2 equations imply

f=F(x17 ..
and the last » imply
[(]Z_,;xjaxj + a> (3, + By —
=0, k:l,...,n

%,)s® ull "t7

n
2 3 +,—1)|F
xk(]zix] 5 Y )J

(1.21)

which are the partial differential equations for Fp.4
The operators C, do not commute with all the ele—
ments of s/(n + 3,C), but each such element maps a
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solutionf of C, f = 0, £ =1,...,n,into another solu-
tion. It follows that the operators T;(A) also map
solutions into solutions. Furthermore, it f(s,u;,t, %)
is a solutionof C,f =0, £ =1,...,n,which has a
Laurent expansion

f E | Gatyy ()" ute- et (1.22)

and 1ff is analytic atx; =x, = .-+ =x, = 0, then it
follows from the above remarks that

R(Biy) Fp(0; 81y« ooy B3 V3 X105 v o o5 %,), (1.23)

gaBj)'
where k(OlB-'y) is a constant.

Let @0,80,90, 1=j =n, be fixed complex numbers,
not mtegers and let @ = 00 +hy B=80 +n, y=
y% + m, where b,n;, m run over all 1ntegers The
basis vectors { faﬂ y} (1.4), and operators (1.3) de-

fine an infinite- d1mens1ona1 irreducible representa-
tion P(a0,89,99) of sl(z + 3,C). Using operators
(1.10)=(1.17), we can extend this Lie algebra repre-
sentation to a local group representation of SL{n +
3,C).

In order to compute the matrix elements of this
group representation with respect to the basis func-
tions {f }, it is useful to consider the following
simple rénlization of p(a9,80,19) in terms of differ-
ential operators inn + 2 complex variables: s,u,,
..s#,,t. The basis functions in this new model are

focB].y(s7u1’° 9 n,t) —sauil fnt)’ (1.24)

and the Lie derivatives are

E =s(t3,—sd, — 1), E B = su%tauk,

o

EBk = uia E = t'l(lfat — S0, — 1),

uk’ -7
n n
E,, = sl<jZ:)1 d,, — tat), E, = t(tat —j}:jl ujauj>,

E—a =s"1 (Sas-— 1),

n
E, =u;l (zat -2 u_,.auj),

Jj=1

EBk7 =ug 19, E, ., =sso,— 1),

E__ By = = s 17 1(1 — s3,),

E gy = uzlt-(sd, — to, + 1),

E =ulu s J, =53 — 10
ﬂk'_BP_ k%p uk’ a s 2%

1 1
—_ = + = U
Jp, = .9, — 319, zlsz} 19,

J, =10, — é(sas +27 ud, + 1). (1.25)

=1

As is simple to verify, these operators and basis
functions satisfy relations (1. 5), so that they deter-
mine a model of p(a®,39,70). We extend this model
to encompass the group action by computing the
operators T;(A4) analogous to (1.11)-(1.17):

T, (A)f (s, u;, t)
- (d——bs)‘1< —sf)_lf<as—bs, w, td — bs)>,
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au, +¢  tu,
*d +buy, *au, + ¢

TZ k(A)f(s, ]’uk’t) : (S . (a + o ¢ )
-1
Ty 1 (A) f(s, 2,1, 1)
¢ \-1 c u,
—_:(a +§1’Tk—t—> f(as +a‘;‘t‘ 3 uj;W,f),
:(a_ggi_)“lf(as —tﬁ,uj(d bst),d bst)

TG k(‘q)f(s; ]’uk) t)

e\ s osut U ¢
:(“ +ukt) f(c Faugt’ % TFbugr 0™ +sz‘)’

buk uﬁ -1
T7 kp(A)f(s tﬁauk:ups t) —(d - ""_) (a - C&;)
%
X f(s,u;, any— cu,,du, — buy, t), (1. 26)

The matrix elements corresponding to a representa-
tion T(A4) of SL(2,C) induced by a triplet {J*,J-,J3}
acting on a basis f,, according to the rule

Jitf,, = (—w tm)f, 4, J3f,=mf,

have been computed many times before.”? The result

is
T @ n F(w+m0+n+1)
wn(4) = T{w +my +n' +1)
B w—myg—n',—w +my +u;n—n'+ 1;bc/ad)
T —n" + 1)

weC, (1.27)

wrmpta’ wemgn  #-

°d

3
(1. 28)
where

o0
T(A)fm ry = E Tn'n(A)fm +nly n=0,+1,+2...,
L] n!=—oo0 0

(1.29)

and A is in a sufficiently small neighborhood of the
identity element. From this result it is easy to com-
pute the matrix elements of each of the operators
(1.11)-(1.17).

For more complicated group elements, however, the
model (1. 26) is very convenient. Consider the (2 +
3)-dimensional complex Lie algebra G with basis

{0,953, E,E, j=1,... ,n} and commutation
relations

[73,d¢] = = J*, [, J}=2J8,
[J*, B ]=— B, [J, B =— E,
[V E]=[J Ej"] =0,

[J:ssl’;‘i] = i%Ej*’[E;,E;;] =0,
[E, Exl=[E} , E;]= 0,

j,k:l’,,,,n, (1.30)

This is the Lie algebra of the group G of (n +2) X
{n + 2) matrices

A4 1 gW,...,g®
g} =| ———t-——mmmmmm ,
0 | E

A € SI{2,C), gl(k)ec,

{A, g(l)’ ety
(1.31)
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and multiplication law

{‘4) g(j)}{A,} g’ (j)} = {AA";AgI @+ g(j)} .

Here g = {g ij)’ géj)} is a column 2-vector and E, is

the # X # identity matrix. The Lie algebra § is rela-
ted to G by the expression

{A,g(.?)} exp(g(l)
x exp|— (b/d)J"] exp(— cdJ ) exp(rd°),
2 _qt, (1.33)

(1.32)

+ gzl)E ) - - exp(gl(n}E,: + gz(n)E~ )

(3

The Lie algebra§ can be embedded as a subalgebra
of si(n + 3,C) in many distinct ways, but for purposes
of illustration we consider only the example {J*,J,
J3,E;,E} = {E,, E_,J,, B,y , Ey y}. Using this

oSy (xB ¥?
embedding, we compute the act1on of G in our (r + 2)-
variable model:

TA, g(’)) (5,%,t) = exp(g PV E 5, + 55 B, )
-+ exp(giE,, |+ E, ) T (A)f

— @ —bs)™ (a —gc)'lf(zi_%z—,

S, td — bs)).

_J (1.34)
1—gPust — gy ujt

Applying T{4, g(f)} to the basis vectors f,m m{S: 5, 1)

o0+ +
=5 hufl 1. B Hagr® " we obtain
T{x‘l,g(j)}fh.n_m = E T(A g(’)):;n,ﬁm fhlnlml’
J h’n,’a,m:—oo &
(1.35)
or
T(4,g 7N = 0
n
unlessn/=m;, j=1,...,7, andm’ —m=2, @ n),
ji=1
(1. 36)
T4, g(J))?z*k mptipmttly ( 13(1)l" ”1) ces (— Bnol_ ”n)
1 n

ril—%— 0_p ) ’
I("(]. —_ QOC_I__ n) ) [—gél)]ll ses {_gz(n)]ln a® ;|_dy a1
—%qz—q—)—jpp(l—k—-ﬂ‘—ll,-..,—ln,a_,y.{._l;
)
“gl(l) gin be

11—k L =0,

g;l) IERE) g(n)a 3 ad)’

The group property (1.32) leads immediately to the
addition theorem

T{AB,Ah(f) + g(j)}:;f"f;m' - E T{A,g")}’& rpm'
J HNM

x T{B,hw}gi;s,f (1.37)

for the Fp,.

Equation (1. 35) with matrix elements (1.36) is also
valid for the (2n + 2)-variable model. In this case
the basis functions are given by (1.4) and the opera-
tor T{A,g@} by
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i as + ¢
T{A! g ]}f(s;ujy t)x]) :f<gﬂﬁ‘;)

wlas +c) ts

as(1 ——g2(j)ujt)+ c(l—x —g{j)sujt " as +c’
sQg + gy)sz,ljt - géj)ujt) )
d +bs)as(1 — géj)ujt) +te(l—x— g§j)sujt )]
(1.38)
A variety of addition theorems for the F,, can be
obtained from (1. 35) and (1. 38) by specialization of

the group parameters. Since this is routine, we give
no examples.

2. TRANSFORMATION FORMULAS AND
GENERATING FUNCTIONS

We next show that the transformation formulas for
the F;, are consequences of the SL{z + 3,C) sym-
metry. Let

19 Desteon CRY
Expressions (1.4) and (1.11) imply
Ty us,y = & ™7 [Tl — @)T(@)/TR)]
X Fpy (05 857, %/ (% — 1)1 — x) P1- -
X(l~xn)'5"s’w’u151---uf"t7. 2.2y

However, T, (7) fup,y 1S a simultaneous eigenfunction
7

Of Ty 5 - -

Thus,

TI(I)faB]_Y = kFply — o j;y;xj)s*"‘wufl. . .uf"ty . (2.3)

"Jﬁn’Jy’ analyticatx; = .-« =x, = 0.

Setting x; = -+ =%, = 0in (2. 2) and (2.3), we can
evaluate the constant 2 and obtain the transformation
formula

(1) P (1= 2, By (@385 55,/ (x; — 1)
=Fply — &;8;5v;%).4  (2.4)

Similarly, T, ,(I)f,s , yields the formulas
i
1— xk)‘“ D(OZ;BJ-, B vs %, — x])/(xk - 1),xk/(xk - 1))
n
=Fp<a;@,7-251;7;99,xk)a k=1,...,n.
=
(2. 5)

The remaining transformation formulas for the Fj,
can be obtained by composition from (2, 4) and (2. 5).

Computing T;(7)/,p ,, we find that
J

FplasBra + 258~y + 151 —x) (2.6)
7

is a solution of Egs. (1. 21), analyticatx; = - = x,
= 1. Computing T;() faﬁ‘y’ we see that
7

RSN AL Ql)'es —y +1;8; 4?3181 o+l Xj_l)

2.7
is another solution of (1.21). Similarly, Ty (1) /.5 4
yields the solution /

g (a3 8,0 —y + 10— B, + 1;x/%,,1/x,).  (2.8)
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For A close to the identity in SL(2,T) the expres-
sions T; ,(A) fasﬂ can be expanded by use of the

matrix elements (1, 28). However, for A far from the
identity, say A = I, these expansions are no longer
valid. For example,

s x, + cst
_ vi
(eXpCan)f(S7uj! t)'x:;) _f<1 + CSt ’uj9 t, 1 + Cst).
2.9)
For c| small we find
Py
h

A Y
(eXPCan)foszy =27 fa+k,Bj.7+h ch,

r=0
i.e.,

= » 3 -XA+C ~ Z;Bt—'y
@ serenfim 1), (7, )

(@) iy :
x(—’}/‘)—;FD(a +h)B}!7 +h,x}»)ch,

Ifc =1and [7]| <1,where 7 = s71"1,then (expE,,)
fwjy isnotanalyticat x; = -+ - =x, =7=0. However,

we can apply expE_, to the solution (2.6) and use
(1.22), (1. 23) to obtain

(1 +7)yaFpa; 850 + 258, —y + 71 —x)/(1 + 7))

=2 CiFpl=hiBiy — o —hyx)r®. (2.11)

le] <1. (2.10)

x = 0:

To evaluate the constants C,, we setx; = -+ x,

(1 +7)"°‘FD(a,Bj;a +ZZ)BZ—~y + 1;7/(1 +171))

= (1 +7)‘°‘2F1(a,lEBl;a +Zl)ﬁg—— y+1L;7/(1 +7))

Ch:(”ka) ZFl(mh,Z?Bl;a +ZZ}31—7, +1;1)

:<——oz> (¢ —y + 1),

b )@ tnh =y + ), (2.12)

from Ref. 7, p. 211, and Vandermonde's theorem.

Expanding T,(4)/,, , as a power series in7 = s,
we obtain /

a*EBl-y ~a -8
aaﬁyb_“(l +§I> (1 .p.d._T) (1 +_c_"r(_1_£_xl)_) '

b
-8
X ... (1 + M) "
a
%7
X F o; By '
D( Y B aha F ol = xj)])
o0
= Eok,, Fy (= h; By mht", (2.13)
Setting x; = - -+ = x, = 0 and using identity (5.124),
Ref. 7, p. 206, we find
o —_
By :(5‘5) a‘?“"c’( ;’) o F (= h,a;y;~— 1/b¢),

ad —bc = 1. (2.14)
Ifa=d =05 =1 and ¢ = 0, the identity becomes
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X7
(1 +7)*F), (‘133]';7; T+—T>

£

and,ifa = ¢ = 1,b = —w"1, it reduces to

— I B]"}” )Th; |Tl < 1, (2.15)

(7)1 4 —w)T]_ale [1+ 1 —x)y]™

—x]'rw
X ("’ BT a-wr[l +(1—xj)7])
= EO<—;ZY) 2F1(-' h,a;‘}/;W)FD(—— h;Bj;'y;xj)Tk’

7] < min(1, |1 —x|-1, |1 — w|-1), (2.16)

More generally, we can derive generating functions
for the F;, through the characterization of a solution
fof Gf =0, j=1,...,n,by the requirement that f is
a simultaneous eigenfunction of » + 2 independent
operators constructed from si(z + 3,C). Such a
characterization of faﬂﬂ is given by (1.19).

As an example we compute the solution f of the
simultaneous equations

Eaf=f> Jﬁkf =<Bk+%%‘%8j'—%'}’>f;

i

W, + 3 :(%y ~1D8- 1)1,

C,f=0,k=1...,n, (2.17)

which is analytic at x; = -+« = x, = 0. The firstn + 2
equations have the general solution

f=hte/s,...,x,/s)exp(— s"l)ug1 .- -uf"ty,
where % is an arbitrary function. Substitution of this
expression into C,f =0, 1=k = n,yields
ROyy oo ey %) = @By e vy B ¥sXes o v ey Xy)
f} (ﬁl)ml...(Bn)m” X' K

myeom, =0 (V)mlh “m mylo..om,!

x
= hm FD( o; B3 a)

unique up to a constant multiple. Expanding T,(A)f as
a power series in 7 = s~1, we obtain

dr +b By -
I g Y — B
expl: Cﬂ + c'r>] @ +er) 1511 [a + et —x)]

x]-'r

% (E(BJ';Y; (@ +em)a +ct(1—x)]
= Z} v Fpl— k;Bj;'y;xj)Tk, ad —bc =1,

Settmg x1 = =x, = 0 and using the generating
function for Laguerre polynomials {(5.101), Ref. 7,
p. 190], we find

——— m(a) LoD <a1c>

where L“)(x) is a generalized Laguerre polynomial.
Ifb =c =0, a =d = 1, the identity simplifies to

Fp(— k3 B3 v3 %) T%.
(2.21)

n

(2.18)

(2.19)

(2. 20)

" _°° (= 1)
exp(—r)é(ﬁj,y,xjﬂ-go %
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fa=c=d=w2 b=0,we find

eXp<1_-1:) >(1 )P (- )

XWT
x[1+7(1—x

8, .o
2 <I>(B,~, T T x,-)]>
=7, L?-D (W) Fpl— k;Bj;'y;xj)Tk,

I71 < min(1, |, — 1]-2). (2.22)
Ifb =—c =1, a=d=0,then T,(4)f becomes
-8 -8 %S
es(l -xl) ... (l—xn) ns?q’@];yl————xj>
xupt,, ufnt?,

Expanding this function in powers of s, we obtain
- s
e*(1—x) P (1 —x,) P (,,%1—%-7>
J

% k
=2 miboly tE By, (2.23)

Although the derivation of these generating functions
is completely routine, an exhaustive classification of
such generating functions awaits the classification
of all algebraically irreducible representations of
sl(n + 3,C).

The various confluent forms of the functions F), have
symmetry algebras corresponding to contractions of
the algebra gl(n + 3,C) = sl(n + 3,C)® (§). For
example, consider the confluent function

°0
VICTY: U TV S D))
my, ...,mm:0
(')’)m+ . tmy, ) ) xlml...xn"'"
(’V)m .. By v+ s My myl. . on,!

Xn
= 6£1§20FD<0[;B]" ey Pp-1s Bn;y;xj[: cees Xy 1o B;)'
(2. 24)

To obtain the symmetry algebra, we introduce new
operators

_1 ;4 b1
Einy =3 Eanyr P = Fap B =73 F
' 1 7 —_— l
E_Bk:—B: E‘ﬂk, k zn, EBny _B:Eﬂﬂy’
1
é -Bp — B_' Eﬂn.—Bk’

Ji =(1/8,)J, and E/ = E, for all other elements of
n n
sife +3,C).

Formally letting 8, > «, we obtain a contracted Lie
algebra not 1somorph1c to sl(z + 3,C). The opera-
tors which raise and lower %, are now redundant.
Dropping these operators, we are left with an (n +
2)2-dimensional non-semi-simple Lie algebra, the
symmetry algebra of Y. This algebra can be used
to derive identities for the ¢ functions in a manner
analogous to that for F,
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Vilenkin's method of integral transforms and the
(n + 2)-variable model (1.26) can be used to derive
Mellin-Barnes integral identities for F, and its con-
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fluent forms. The procedure is completely analogous
to that given in Refs. 8, 2, and 3, but the details are
complicated.
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It is shown that a parametrization of the orthogonal and unitary groups due to Hurwitz can be used to evaluate
averages of components of random unit vectors for those two spaces. Explicit results are given for moments
which are general enough to include most cases of interest in applications.

1. INTRODUCTION

Several years ago, Ullah developed a method for eval-
uating averages of components of random unit vec-
tors.! The technique is applicable for an N-dimen-
sional orthogonal, unitary, or symplectic space.2 How-
ever, the method as given is restricted to the even
moments of a single vector for the unitary and sym-
plectic spaces and is restricted to moments involving
at most two orthogonal unit vectors for the orthogonal
space. Unfortunately, it does not seem possible to
extend the method to averages which involve a larger
number of vectors.

A possible alternative to Ullah's method is the expli-
cit parametrization of the group of transformations
involved. The advantage to this approach is that in
principle there is no restriction on the number of
vectors involved.

It would appear that the major obstacle is the para-
metrization itself. That is, one must parametrize the
group in such a way that the calculation is tractable.
In particular, one must be able to express any ele-
ment of the rotation matrix explicitly in terms of the
parameters, and one must be able to determine the
corresponding volume element in the parameter
space.

Fortunately, such a parametrization for the orthogonal
and unitary groups is known. These parametrizations
are due to Hurwitz.3

We shall show that these parametrizations are indeed
satisfactory for the explicit evaluation of averages
which involve any number of vectors.

2. THE GENERAL ROTATION MATRIX

The general rotation matrix for an N-dimension orth-
ogonal or unitary space can be built up out of succes-
sive two-dimensional rotations as follows. Let the

N X N matrices ¢,(s) be defined as

[av(S)]ij = 6ij}
= aNSf)'r 5]'7 + bN'('fz'r 6]'1'+1:
= CN'(iszr 0, + dN(—i)—r 8 pi1s

iZzr,r+1,
i=7

i=7'+1, (1)

where s=1,2,...,N—landr=N—s,N—s5 —
,...,N— 1L

The matrix a(s) is a rotation in the corresponding
two-dimensional subspace. For the orthogonal space
aldals) = 1, and for the unitary space afs)ols) =1,
These matrices will be parametrized below for the
orthogonal and unitary spaces.

Next we define the matrices E(s) ag

5@ =Ll o), 8
where m means that successive factors are to the
left. It follows easily from mathematical induction
that

I, .. 0
E(s):':N51 J, (3)
0 T(s)

where Iy _; is the (N —s — 1) X (N — s — 1) unit
matrix, and T¢s) is the (s + 1) X (s + 1) matrix with
elements

Ty, = als, (4)
(s) _ () s-1 (s) .

le - as_j r=s-j+l1 b’ ’ J = 2’ (5)
(s) ( .

T,y = asi)i dgs—)m, i =2, (6)
() __ ) 8% L

T,]s) = a(ss—)jdsii-rl stl:[j+1 bT(S)’ j >4 ) 2, (7)

T, = P, iz2, (8)

T&j') =0, i>j+1. (9)

In the above equations a_; = 1.

Finally, the general rotation matrix 4 is given by

E (s)’ (10)

where l’l\{[ means that successive factors are to the
right. It follows easily from the definition of T (&) that
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