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Abstract

This paper is part of a series that lays the groundwork for a struc-
ture and classification theory of second-order superintegrable systems,
both classical and quantum, in real or complex conformally flat spaces.
Here we consider classical superintegrable systems with nondegenerate
potentials in three dimensions. We show that there exists a standard
structure for such systems, based on the algebra of 3 X 3 symmetric
matrices, and that the quadratic algebra always closes at order 6. We
show that the spaces of truly 2nd, 3rd, 4th and 6th order constants
of the motion are of dimension 6, 4, 21 and 56, respectively, and we
construct explicit bases for the 4th and 6th order constants in terms
of products of the 2nd order constants.



1 Introduction and examples

The goal of this series of papers, [1, 2], is a structure and classification the-
ory of second-order superintegrable systems, both classical and quantum,
in conformally flat spaces. An n-dimensional Riemannian space is confor-
mally flat if and only if it admits a set of local coordinates z1, - - -, z, such
that the contravariant metric tensor takes the form g = 6 /\(x). In other
words, the metric is ds?> = \(x)(37_, dz?). A classical superintegrable sys-
tem H = 3 g"p;pj + V(x) on the phase space of this manifold is one that
admits 2n — 1 functionally independent generalized symmetries (or constants
of the motion) S, k =1,---,2n —1 with §; = H. That is, {H,Sc} =0
where

{f7g} = Z(awjfapjg - apjfawjg)
j=1

is the Poisson bracket for functions f(x, p), g(x, p) on phase space [3, 4, 5, 6,
7, 8,9, 10]. Note that 2n —1 is the maximum possible number of functionally
independent symmetries and, locally, such symmetries always exist. (In this
paper n = 3 so we have 5 functionally independent symmetries.) The main
interest is in symmetries that are polynomials in the p; and are globally
defined, except for lower dimensional singularities such as poles and branch
points. Many tools in the theory of Hamiltonian systems have been brought
to bear on superintegrable systems, such as R-matrix theory, Lax pairs, exact
solvability, quasi-exact solvability, and the Jacobi metric, [11, 12, 13, 14, 15].
However, the most detailed and complete results are obtained from separation
of variables methods in those cases where they are applicable. Standard
orthogonal separation of variables techniques are associated with second-
order symmetries, e.g., [16, 17, 18, 19, 20, 21] and multiseparable Hamiltonian
systems provide numerous examples of superintegrability. In these papers we
concentrate on second-order superintegrable systems, that is those in which
the symmetries take the form & = Y a”(x)p;p; + W (x), quadratic in the
momenta.

There is an analogous definition for second-order quantum superinte-
grable systems with Schrodinger operator

1 g
H=A+V(x), A=—) 0,(,/997)0x,,
\/EZJ

the Laplace-Beltrami operator plus a potential function, [16]. Here there are
2n — 1 second-order symmetry operators
1

Sk - Zazz(\/gagc))az] +W(k)(X), k= 1,"',2”—1
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with Sy = H and [H, Sy] = HSy, — Sy H = 0. Again multiseparable systems
yield many examples of superintegrability, though not all multiseparable sys-
tems are superintegrable and not all second-order superintegrable systems are
multiseparable. There is also a quantization problem in extending the results
for classical systems to operator systems. This problem turns out to be not
difficult to solve for the nondegenerate systems that we study in this paper.

Superintegrable systems can 1) be solved explicitly, and 2) they can be
solved in multiple ways. It is the information gleaned from comparing the
distinct solutions and expressing one solution set in terms of another that is
a primary reason for their interest.

We give a few simple 3D examples to illustrate some of the main features
of superintegrable systems. (To make clearer the connection with quantum
theory and Hilbert space methods we shall, for these examples alone, adopt
standard physical normalizations, such as using the factor —% in front of the
free Hamiltonian.) Consider the Schrédinger eigenvalue equation HV = EW¥
or (h=m=1,21 =2,00 =Yy, 23 = 2)

1 ( 0? 0? 02

Y= ox?  oOy?> 022

The generalized anisotropic oscillator corresponds to the 4-parameter poten-
tial

Viz,y,z) =

2 1[E — ¢ k3 —1
%($2+y2+4(z+p)2)+§l 1x24+ 2y24] (2)
(This potential is “nondegenerate” in the precise sense that we will explain in
Section 3.) The corresponding Schrédinger equation has separable solutions
in five coordinate systems: Cartesian coordinates, cylindrical polar coordi-
nates, cylindrical elliptic coordinates, cylindrical parabolic coordinates and
parabolic coordinates. The energy eigenstates for this equation are degen-
erate and important special function identities arise by expanding one basis
of separable eigenfunctions in terms of another. A second order symmetry
operator for this equation is a second order linear differential operator S such
the [H,S] = 0 where [A, B| = AB — BA. A basis for these operators is

k21 k21
M1 = 82 - w2x2 + 71322 4, M2 = 85 - w2y2 - 2y2 4, (3)
1. y? 1,22 1
— 92 2 2 72 2 2
P_az_4w (Z+p): L_L12_(k1_1)ﬁ_(k2_1)ﬁ_§a (4)



1 ki -3
S = —E(aleg, + L130,) + pd2 + (2 + p) <w2x2 — 1302 4) ,

1 k2 1
Sy = —5(81/[/23 + Lo30y) + Paj + (2 +p) <w292 - 2y2 4) ’ (5)

where L;; = xiawj —2;0,,. Remarkably, these symmetries generate a “quadratic
algebra” that closes at level six. Indeed The nonzero commutators of the
above basis are

[My, L] =L, My] = Q, [L,S1]=1[Sy L] =B, [M;,S]=4; [PS]=-A4:.

Nonzero commutators of the basis symmetries with @) (4th order symmetries)
are expressible in terms of the second order symmetries:

[M;, Q] = [@Q, My] = 4{ My, M>} + 16w’L,  [S1,Q] = [Q, S5] = 4{ My, M}

[L, Q) = 4{My, L} — 4{M>, L} + 16(1 — ki) My — 16(1 — k3) M.
There are similar expressions for commutators with B and the A;. Also the

squares of @, B, A; and products such as {Q, B}, (all 6th order symmetries)
are expressible in terms of 2nd order symmetries. For example:

Q= §{L, M, Mo} + 8w*{L, L} = 16(1 — k3) M7 — 16(1 — k3) M;

64 128
+§{M1, My} — 7w2L —128w?(1 — k2)(1 — k3)

(Q BY =~ {My, L, Sy} =5 (M, L, §;}+16(1-kD) [My, S:}+16(1-K3) My, 1)

64 64
_?{Mla S?} - ?{M% Sl}

Here {C},---,C;} is the completely symmetrized product of operators
Ci,---,C;. (For complete details of all the possible products and commu-
tators, see [22].) The point is that the algebra generated by products and
commutators of the 2nd order symmetries closes at order 6.

Another example in Euclidean space is given by the Schrodinger equation
with 3-parameter extended Kepler-Coulomb potential:

[ ZAV AN L\ O 2\ 201 K2 -1 21
2F — 142 _4)11y=0.
(am2'+ ay2'+ 322>_%l + G ( oy "

This equation admits separable solutions in the four coordinates systems:
spherical, sphero-conical, prolate spheroidal and parabolic coordinates. Again
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the bound states are degenerate and important special function identities
arise by expanding one basis of separable eigenfunctions in terms of another.
However, the space of second order symmetries is only 5 dimensional and,
although there are useful identities among the generators and commutators
that enable one to derive spectral properties algebraically, there is no finite
quadratic algebra structure. The key difference with our first example is,
as we shall show later, that the 3-parameter Kepler-Coulomb potential is
degenerate and it cannot be extended to a 4-parameter potential.
An example on the three-sphere is given by

99 = 652 — zizj, 1<4,7<3.
Then det(g¥) = g7' = 212023(1 — 2) where z = z; + 2, + 23 and

1 (Sij

Yii =1, 2

Thus ds? = Z?,j:l gijdz;dz;. To identify this space we introduce Cartesian
coordinates xg, x1, T2, x3 in 4 dimensional Euclidean space and restrict these
coordinates by the conditions

2 _ 2 _ 2 _ 2 _
To=1—2, x]=2, T3==2, I3=2.

Note that 2 + 22 + 22+ 12 = 1. Defining a metric ds? by ds? = Y3 _,(dz,,)?
we find
13 1 8ij

dsQZZZ(——l—

i1 1—2 %

)dZide.

Thus the space corresponds to a portion of the 3-sphere S™. The Schrédinger
equation is

3 .
(AWLZEJ%“’4 )xp:E\p

=1 i -z
where A is the Laplace-Beltrami operator. This is a nondegenerate potential.
The 6 second order operators

Sij = 42’12](6% - 8Zj)2 + 4(gzz] - g]ZZ)(azl — 6zj) = Sji: 1 S 1 <j S 3,

Soi = 4zi(1 — 2)07. + 4[gi(1 — 2) — goz]0., = Sip, 1<4 <3,

forg; =1+ %\/1 — 16y; form a basis for the space of second order symmetries.
In particular

8H = Z Sij +2280i-

ij=1 i=1



This equation separates in 6 coordinate systems on the three-sphere. Further
it can be shown that the quadratic algebra generated by the second order
symmetries closes at order 6.

For our last example we take the space with metric

ds> = \(A, B,C, D, E,x)(dz? + dy*® + dz?)

where
) 3 Ny Z 3 1 . 3z )
A = A(z+iy)+B (Z(.T +1iy)* + Z)+C ((x +1y)° + E(LE —1y) + Z(JJ + zy))
5 22 1 3z
D|— ) 4+ =+ = (2 )+ = y)? | + E.
+ (16(a:+2y) +16+16(a: +y°) + 8(a:+zy)>+

the nondegenerate potential is V = A(«, 5,7, 9,¢,x)/N(A, B,C, D, E,x). If
A = B = (C = D = 0 this is a superintegrable system on complex Eu-
clidean space. The quadratic algebra always closes, and for general values of
A, B,C, D, E the space is not of constant curvature. This is an example of
a superintegrable system that is Stéckel equivalent to a system on complex
Euclidean space. We will take up the study of such systems in the next paper
in this series.

Observed common features of superintegrable systems (and features that
we make precise and verify in these papers) are that they are usually mul-
tiseparable and that the eigenfunctions of one separable system can be ex-
panded in terms of the eigenfunctions of another. This is the source of non-
trivial special function expansion theorems [23]. The symmetry operators
are in formal self-adjoint form and suitable for spectral analysis. Also, the
quadratic algebra identities allow us to relate eigenbases and eigenvalues of
one symmetry operator to those of another. Indeed the representation theory
of the abstract quadratic algebra can be used to derive spectral properties of
the second order generators in a manner analogous to the use of Lie algebra
representation theory to derive spectral properties of quantum systems that
admit Lie symmetry algebras, [23, 24, 25, 26]. (Note however that for super-
integrable systems with nondegenerate potential, there is no first order Lie
symmetry.)

Another common feature of quantum superintegrable systems is that they
can be modified by a gauge transformation so that the Schrodinger and sym-
metry operators are acting on a space of polynomials, [27]. This is closely
related to the theory of exactly and quasi-exactly solvable systems, [13, 28|.
The characterization of ODE quasi-exactly solvable systems as embedded in
PDE superintegrable systems provides considerable insight into the nature
of these phenomena.



The classical analogs of the above examples are obtained by the replace-
ments 0,, — p;;. Commutators go over to Poisson brackets. The operator
symmetries become second order constants of the motion. Symmetrized op-
erators become products of functions. The quadratic algebra relations sim-
plify: the highest order terms agree with the operator case but there are
fewer nonzero lower order terms.

Many examples of 3D superintegrable systems are known, although they
have not been classified, [29, 30, 31, 32, 33, 34]. Here, rather than focus on
particular spaces and systems, we employ a theoretical method based on in-
tegrability conditions to derive structure common to all such systems, with a
view to complete classification, at least for nondegenerate potentials. In this
paper we consider classical superintegrable systems on a general 3D confor-
mally flat spaces, real or complex, and uncover their common structure. We
show that for systems with nondegenerate potentials there exists a standard
structure based on the algebra of 3 x 3 symmetric matrices, and that the
quadratic algebra closes at level 6. For 2D nondegenerate superintegrable
systems we can show that the 3 functionally independent constants of the
motion are (with one exception) also linearly independent, so at each regular
point we can find a unique constant of the motion that matches a quadratic
expression in the momenta at that point. However, for 3D systems we have
only 5 functionally independent constants of the motion and the quadratic
forms span a 6 dimensional space. This is a major problem. However, for
nondegenerate potentials we can prove the “5 = 6 Theorem” to show that
the space of second order constants of the motion is in fact 6 dimensional:
there is a symmetry that is functionally dependent on the symmetries that
arise from superintegrability, but linearly independent of them. With that
result established, the treatment of the 3D case proceeds in analogy with the
nondegenerate 2D case treated in [1]. Though the details are quite compli-
cated, we show that the spaces of truly 2nd, 3rd, 4th and 6th order constants
of the motion are of dimension 6, 4, 21 and 56, respectively. Finally we con-
struct explicit bases for the 4th and 6th order constants in terms of products
of the 2nd order constants. These bases are our principal result. They guar-
antee closure of the quadratic algebra and provide a means for analyzing its
structure. This paper is a major advance toward one of our goals: to obtain
a demonstrably complete list of 3D superintegrable potentials.

In the next paper in this series we will show that all 3D superintegrable
systems with nondegenerate potential are multiseparable. We will study
the Stéckel transform, or coupling constant metamorphosis, [35, 36], for 3D
classical superintegrable systems. This is a conformal transformation of a
superintegrable system on one space to a superintegrable system on another
space. We will prove that all nondegenerate 3D superintegrable systems are
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Stackel transforms of constant curvature systems We will also extend our
results to the quantum analogs of 2D and 3D classical systems.
2 Conformally flat spaces in three dimensions

We assume that there is a coordinate system x,y, z and a nonzero function
Az, y,z) = exp[G(z,y, z)] such that the Hamiltonian is

P2+ P2+ p2

H= 3

+Viz,y,2). (6)

A quadratic constant of the motion (or generalized symmetry)
S= 3 a*i(z,y, 2)prp; + W (2, y,2) = L+ W, o/* = a¥ (7)
k,j=1

must satisfy {#, S} = 0. The conditions are thus

a? = —Gia" — Gya® — Gza®
2a + af = —Gia" —Gya¥ —Gsa¥, i#j
aff + " +al* = 0, i,k distinct (8)
and 3
Wi =AY a*V,, k=1,2,3. )
s=1

(Here a subscript j denotes differentiation with respect to z;.) The require-
ment that 0,,W; = 0, Wy, £ # j leads from (9) to the second order Bertrand-
Darboux partial differential equations for the potential.

i [VijAa®t = Vigha®? + V; ((Aa*®); — (Aa®),)] = 0. (10)

s=1

For second order superintegrabilty in 3D there must be five functionally
independent constants of the motion (including the Hamiltonian itself). Thus
the Hamilton-Jacobi equation admits four additional constants of the motion:

3
Sn= 2" apprpi+ Way = Lo+ Wy,  h=1,---,4  (11)
Jik=1
We assume that the four functions &) together with H are functionally
independent in the six-dimensional phase space, i.e., that the differentials
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dSy, dH are linearly independent. (Here the possible V' will always be as-
sumed to form a vector space and we require functional independence for
each such V and the associated W), This means that we also require that
the five quadratic forms £y, H, are functionally independent.) We say that
the functions are weakly functionally independent if dSy,, dH are linearly in-
dependent for nonzero potentials, but not necessarily for the zero potential.

3 Functional linear independence

We first shed some light on the relationship between functional independence
and functional linear independence for the set {H, Sy, -+, S4}

Theorem 1 The functionally independent set {#H,Si,---,S4} is also func-
tionally linearly independent in the sense that if the relation Y5_o ¢ (z) Ly, =
0 holds in an open set, then ¢ (x) = 0 for all h.

PROOF: Suppose that the set is functionally linearly dependent. Then we
can express one of the quadratic parts of the constants of the motion £y as a
linear combination of a linearly independent subset {L£q,---,L,, 1 <r < 4}:

Ly = Zc(z) (z) L.
=1

Taking the Poisson bracket of both sides of this equation with (pf+p3+p3)/A
and using the fact that each of the Sy, is a constant of the motion, we obtain
the identity

r 3
N (awkc(e))azé)p,’pjpk = 0. (12)
{=145=1
It is straightforward to check that this identity can be satisfied if and only if

> (0ncNafyy =0, 1<, 5k <3

=1

Since the set {/31, e ,ﬁT}, is linearly independent, we have 0,,c®) = 0 for
1 <k<3,1<¢<r. Hence the ¢'¥ are constants, which means that

[:0 - Z C(E)ﬁg =C,
=1

where c is a constant. Thus the set {Ho, L1, -, L4} is functionally depen-
dent. This is a contradiction! Q.E.D.



Corollary 1 The weakly functionally independent set {H = So, S1,---,S1}
1s also functionally linearly independent in the sense that if the relation
Si_o ™ (2)S, = 0 holds in an open set, then ™ (x) = 0 for all h.

PROOF: Suppose that the set is functionally linearly dependent. Then we
can express one of the constants of the motion Sy as a linear combination of
a linearly independent subset {Si,---,L,, 1 <r < 4}:

So = > (2)S,.
=1

Taking the Poisson bracket of both sides of this equation with (pf + p5 +
p3)/A+V and using the fact that each of the S}, is a constant of the motion,
we obtain the identities

>0z, Nagy =0, D0, Wy,  1<4d,5,k <3,

=1 =1

Since the set {31,---,3T}, is functionally linearly independent, we have
awkc“) =0forl1 <k <3, 1< /¢ <r. Hence the c® are constants, which
means that

g() — Z C(e)gg =0.
=1

Thus the set {Sy, -+, S4} is functionally dependent. This is a contradiction!
Q.E.D.

We can write the system of Bertrand Darboux equations in the matrix
form Cv = 5DV; + 5@V, + 53V, or

Vis — V;
0 a12 0,11 _ a22 0,31 _a32 sz o Vi
a13 0 _a23 CL21 all _ a33 V12 (13)
32 —CL32 _a13 a22 _ CL33 a12 %2
Va1
1 ()\a12)1 _ ()\all)g 1 (AG,ZQ)l _ (Aa21)2 1 ()\a32)1 _ ()\a31)2
= X ()\a31)1 — ()\all)g V1+X (/\a32)1 — (/\a12)3 ‘/2+X ()\a33)1 — ()\a13)3 VE),
()\031)2 _ ()\CL21)3 ()\a32)2 _ ()\a22)3 ()\a33)2 _ ()\a23)3

Corollary 2 Suppose the set {H,S1,---,84} is functionally independent.
Then for general x the 4 X 5 matriz

A=| TN BT M % o
T Gy e Ty T
Q) = Oy Qa) — Arays Gy Q(a)r g



has rank 4, where the functions az&) (x) are given by (11).

There are four sets of equations (13), one for each of the functionally
independent symmetries (in addition to the Hamiltonian). We can write
them as a single matrix equation Bv = b where B is 12 x 5, b is 12 x 1 and

Vaz — Vi
Voo — Viu
Via
Vg
Va1

v =

Lemma 1 If the set {H,S, -
B has rank 5.

-, 84} is functionally independent, the matriz

PROOF: In the neighborhood of a general point (xg, 3o, 2p) the matrix A of
Corollary 2 has rank 4. Thus the possible Reduced Row Equivalence Forms
(RREF) for A at (zo,yo, 20) are

1, 0, 0, 0, « 1, 0, 0, o, O
o 10 0 8 o 1o 80
o 0010 0, 4 g 0,1, 7, 0

0, 0, 0, 1, ¢ 0, 0, 0, 0, 1

1, 0, a, 0, O 1, a, 0, 0, O
) 0, 1, 5, 0, 0 ) 0, 0, 1, 0, O

I 0, 0,0 0, 1, O v : 0, 0, 0, 1, O

0, 0,0 0, 0, 1 0, 0, 0, 0, 1

0, 1, 0, 0, 0

0, 0, 1, 0, O
V: 0, 0, 0, 1, 0 |°

0, 0, 0, 0, 1

For each canonical form it is straightforward to check that the associated
12 x 5 matrix B has rank 5. Q.E.D.
By choosing a rank 5 minor of B we can solve for v and obtain a solution

of the form

Voo = Vi1 + A®Vi+ B2V, + C??V;,
Vis. = Vi + APV + B¥V, 4+ C¥V,
Vi = A2Vi + B2V, + C'2V; (14)
V13 — AlsV1 + Bls‘/:‘z + 013‘/3
V23 _ A23V'1 + B23V'2 + 023%
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If the augmented matrix (B, b) has rank 7' > r then there will be 7' —r addi-
tional conditions of the form D Vi + Df Vo + Di{\Va =0, s =1,---,7" =1,
Here the AY, BY, CY, Dés) are functions of x that can be calculated explicitly.
For convenience we take AY = AJ*, BY = Bit CU = 7,

Suppose now that the superintegrable system is such that ' = r so that
relations (14) are equivalent to Bv = b. Further, suppose the integrability
conditions for system (14) are satisfied identically. In this case we say that
the potential is nondegenerate. Otherwise the potential is degenerate. If V
is nondegenerate then at any point xg, where the AY, BY C% are defined
and analytic, there is a unique solution V' (x) arbitrarily prescribed values of
Vi(x0), Va(xo), Va(x0), Vi1(x0) (as well as the value of V' (xo) itself. The points
x are called reqular. The points of singularity for the A%, BY C% form a
manifold of dimension < 3. Degenerate potentials depend on fewer param-
eters. For example, we could have ' = r but the integrability conditions
are not satisfied identically. This occurs for the generalized Kepler-Coulomb
potential where the integrability conditions lead to an additional equation
of the form Vi; = AV} + BV, + C''V; so that V;; cannot be prescribed
arbitrarily.

From this point on we assume that V' is nondegenerate. Substituting the
requirement for a nondegenerate potential (14) into the Bertrand-Darboux
equations (10) we obtain three equations for the derivatives al*, the first of
which is

(a}) — Vi + (@) — Vs + (0" — )V (15)

+a12(A23V1 4 B23‘/2 =+ 023%) _ (CL33 _ all)(Al?;‘/l 4 Bl?;v*2 4 013%)
—a23(A12V1 + B12‘/2 + 012‘/3) + a13(A33V1 + B33‘/2 + 033%)
— (—G3CL11 4 G1a13)V1 4 (_G3a12 + G16L23)‘/2 + (_G3a13 + G1a33)‘/},,

and the other two are obtained in a similar fashion.

Since V' is nondegenerate we can compute all of the third partial deriva-
tives of V. In fact, differentiating each of the equations (14) with respect to
zj, j = 1,2,3 we obtain 15 equations for the 10 distinct partial derivatives
Vijk- For example

Viss = Vi = APVi+ By’ Vo + C3*Va + APVig + BPVay + CPVig
= 01\Vas = APVI + BPVy + CP*Va + A®Viy + B®Viy + C*Vi,
= 03Vip = A7*Vi + B3*Va 4+ C5°V3 + AVis + B Va3 + CPVig

Vin = (AP — AP)Vi+ (B - BP)Va+ (C)” — CP)Va
o A22V11 + B12‘/22 + (AIQ - B22)‘/12 o 022‘/'13 _|_ 012‘/'23
= (45 — APV + (B’ — BP)Va + (C5° — C7°) Vs

12



— APV + CPVas 4+ (A — CP) Vi3 — B¥Vis + B® Vs
Vags = (A3 4+ A2)V, + (B3 + B3V, + (C* + C3) Vs
A3Vi 4+ C**Vag + BBVy + (C* + A%*) Vi3 + BV
A2V + B3Vy + C23) Vs + A®Vig + CBVsy + BBV,
(A" + 4°)Vi+ (B + B)Ve + (O + G;°) Vs
ARViy + BBVoy + C'Vay + (B + A»)Vip + C*Vis
= APVi+ BPVa+ CPVa + AVig + B¥Vos + 0%V, (16)

_I_

Vss2

_|_

with analogous expressions for the other third derivatives. Similarly all higher
order derivatives of V' can be computed from these. The right-hand side of
each of these equations can be expressed as an explicit linear combination
of Vi,V,, V3, Vi1 with analytic functions of zi,x9, 23 as coefficients. Thus
if the potential V' belongs to the solution space then V' can depend on at
most 4 parameters, in addition to a trivial additive constant. We can choose
these parameters to be Vi (o, yo, 20), Va(20, Yo, 20), V3(%0, Y0, 20), V11 (20, Yo, 20)
for any fixed regular point (g, ¥, 20). Then all higher derivatives can be
computed by successive differentiation of relations (14). Thus our potential is
nondegenerate, i.e., it depends non-trivially on these 4 arbitrary parameters,
so that all higher-order integrability conditions are satisfied.

Then, equating coefficients of Vi, V5, V3, Vi1 on each side of the conditions
81‘/23 = 82‘/13 = 83‘/12, 83‘/23 = 82‘/33, etc., we obtain integrability CODditiOIlS,
the simplest of which include

A23 — Bl3 — 012 B12 . A22 — 013 _ A33

B23 A13 +022’ 023 — AIZ +B33, (17)
AP BIZA12 +A33 +A33A12 +B33A22 +C33A23

Ag?j 4 B23A23 + 023A33

A13A12 + B13A22 + CI3A23

A%?: + B23A12 + 023A13

A§2 + A13A12 + BlQA23 + 012A33.

_|_

_|_

13
A2

All of these conditions, analytic expressions in xz,y,z, must hold identi-
cally in a common domain to have a nondegenerate system. Note that if
r" > r then there will be conditions relating the parameters V(zo, yo, 20),
Vo(z0, Yo, 20),V3(z0, Yo, 20), Vi1(Z0, Yo, 20), SO we cannot have a nondegenerate
system in that case.
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We can further clarify the situation by introducing the dependent vari-

ables W =V, W@ =V, WG =V, W® =V, the vector

w®
w®
w®)
w®

and the matrices

where
A14
Bl4
014
A24
024

A34
034

0 0 0

AN —

A12 B12
A22 B22
A23 323
A24 B24

A13 B13
A23 B23
A33 B33
A34 B34

A® —

Aé2 - A%2 + B12A22 + A12A12 _ B22A12 _ 022A13 + 012A23
Aé?’ _ Ai’?’ + B13A23 + A13A13 _ B33A12 _ 033A13 + 013A33,
B%Z _ B%Q + BI2B22 4 A12312 _ 322312 _ 022313 + 012B23

A12 Bl2 012
A13 BlS 013
A14 Bl4 014

012
022
023
024

013
023
033
034

o O

Al

v O = O

[SU

1
0
0

B2 _ A22

b

(18)

(19)

B;P’ _ B?S + BISB23 + A13BIS _ B33B12 _ 033313 + 013B33,

0212 o 0122 4 312022 + A12012 - 322012 o 022013 4 012023

C§3 o 033 4 313023 + A13013 - 323012 o 033013 + 013033,

A%2 + BIQAIQ + 012A13,
0112 +B12012 +012013’
A}Z’) + Bl3A12 + 013A13,
0113 +B13012 +013013.

B24 — B112 + B12B12 + 012B13

B34 — B113 + B13B12 + 013B13

(22)

Then the conditions (17) must hold as well as the integrability conditions for

the system

Op, W = AU)w

14

j=1,2,3.

(23)



The integrability conditions are

A9 _ Ag-i) = AD A — ADAD = (40 A0)]. (24)

{2

The integrability conditions (17) and (24) are analytic expressions in 1, 9, 3
and must hold identically. Then the system has a solution V' depending on
4 parameters (plus an arbitrary additive parameter). For convenience in the
arguments to follow we set

U =AY — AP — 4@ A 1?2 = AL — AP —[4A®) A0 (25)

U = AP — A — (A0, A2,
so that the identities are
U'=U=u>=0 (26)

We have shown that a weakly functionally independent set of five sym-
metries (or constants of the motion) is functionally linearly independent. For
systems with nondegenerate potentials, the converse holds.

Theorem 2 Let
> ik
Sp = Z azh)pkp]_'_W(h) h=1,---,5, H=&
J.k=1

be functionally linearly independent symmetries for a system with nondegen-
erate potential V. = W(y. Then these symmetries are weakly functionally
independent.

PROOF: By assumption, the set {S,} is functionally linearly independent.
Suppose it is also functionally dependent. This means that the set of differ-
entials {dS,} is dependent, i.e., that the 5 x 6 matrix

¥ a(1 Di 2 a’ﬁ)pi 2 a’(l)pz Ky +3%; Cb(l Vi Kis+ Z] V K+ 35 a(l)V

D a%},)pi ) az@,)Pi Do aé?s’)pi Kss + 325 a{;)‘/} Kss + 3, ag)vj Ks6 + 3, a{g’)Vj

where -
Kiais = ) ajy pibj,
j

15



is of rank < 5 for all values of p;,V;. Thus all 5 x 5 minors must vanish
identically in p;, V. It is an easy consequence of this that all 5 x 5 minors of
the 5 x 6 matrix

1 12 13 22 23 33
Gy 4y ) ) 4o 4
11 12 13 92 23 33
) U5 ) 45 YU Y
vanish, hence that this matrix have rank < 5. Thus {£;, : h = 1,---,5} is
functionally linearly dependent. Contradiction! Q.E.D.
Since (as we assume) the potential is nondegenerate, at any regular point
X the first derivatives Vi, V5, V3 can be chosen arbitrarily. Thus the coef-
ficients of V; on both sides of equation (13) must be equal. From this, we
obtain the relations

aél _ a?l — _ql24% 4 (a33 _ a11)A13 L aB A2 _ g1BA3 _ Gaal + Gra®?,
aéQ . a:I,Q = —q2B% 4 (a33 . an)Bl?’ L a®BB2 — ¢1BB%® _ G402 + G1a®,
aé?’ — 6% = —a!20% 4+ (a33 _ a11)013 +aBC™2 — g0 — Gya®® + Gra®,

with 6 analogous relations from the other two Bertrand-Darboux equations.
Using these 9 relations and equations (8) we can solve for all of the first
partial derivatives a/* to obtain

al' = —Gra'' — Ga"? — G3a®? (27)
a? = —Gia*? — Goa®® — G3a®,
a3 = —Gia"® — Gya® — G3a®,
3012 = ql2A22 (g2 _ gll)A12 _ gBAL 4 1342
—+ Ggall - 2G1&12 — GQGQZ — G3a23,
3all = —2a12A4% 4 2(a?? — a'1)A!? 1 2B A1 _ 241342
- 2G2(L11 + G1a12 - GQG,QQ - G3a23,
3012 = —a20% + (0® — ') + aB01? — 130

— Glall — 02a12 — 2G3a13 + G1a33,
30,?3 — 2(1,12023 _ 2(0,33 _ 0,11)013 _ 2(1,23012 + 20,13033
- Glan — GQCLlZ + G3a13 - 2G1a33,

3a§3 _ a23(B33 _ B22) _ (a33 _ a22)BQ3 —aBB12 4 g12p13
— G1a13 — 2G2a23 — G3a33 + G3a22,
3032 _ —2a23(B33 _ 322) + 2(&33 _ a22)323 +92¢BB12 _ 941213

G1a13 + G2a23 — G3a33 — 2G3a22,

16



308 = —a®A2 4 (0l — a®)AB 4 a3 AB 4 1242
— 2G1a'® — G9a®® — G50® + G3att
3a§1 2a% A2 4 2(a% — o) AP — 2413 A% _ 2412423

+ G1a13 — GQCL23 — G3a33 — 2G3a11

30:33 — _2a13012 + 2((1,22 . 0,33)023 + 2a12013 o 2(1,23(022 o 033)
- G1(L12 — GQCL22 + G3a23 - 2G2a33

3&%3 — a13012 _ (a22 _ a33)023 _ CL12013 _ CL23(C33 _ 022)
— G1a12 — G2a22 — 2G3a23 + G2a33

3&%2 — _a13B23 + (a22 _ all)BIZ _ a12B22 + CL23B13

— Gia'' — 2G2a'? — G3a® + G1a®?
302 = 2aB3B® — 2(a® — o1)B'? 4 2412B% _ 2,2 BV
— Gia' + G20’ — G3a™® — 2G1a*
362 = al2(BB + 02+ oY(BY + 012) - o202 _ 3B
+ a3(B® 4 0P — oB(C" + BY?)
— 2G a®® + Gya'® + G3a12
3012 = a'2(—2B% + C2) + o' (C"? — 2B3) — ¢2C™2 + 243 B
+ aB3(—2B% 4 O®) + aB(~C" + 2B1)
_ 2G3a12 T Goa® + Gla23
301 = al2(B® —20%) 4 o'(BY — 2012) 4 220" — ¥ BV
+ aB(B® - 20%) + o®(20" — BY?)
— 2Gya"® + G1a® + G3a'?

plus the linear relations
A B13 012 B23 _ A13 _ 022 =0

B2 _ A2 AB _oB g B®4A2_0B ).

Using the linear relations we can express C'?, O3, C?2,C?® and B®? in terms
of the remaining 10 functions.

Since the above system of first order partial differential equations is in-
volutive the general solution for the 6 functions a’* can depend on at most
6 parameters, the values a’*(x¢) at a fixed regular point xo. For the integra-
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bility conditions we define the vector-valued function

11
12
13
22
23
33

h(z,y,z) =

QL Q2 2 2

and directly compute the 6 x 6 matrix functions A to get the first-order
system

O;h=A%n  j=123. (28)
The integrability conditions for this system are are
APh — A0 = AD AR — AD ADh = [AD, AR, (29)

In terms of the 6 x 6 matrices
5O = AP — AP — [AD, AP], SO = AP ~ AP — (AP, AV,
SO = AP — AP - [AV, A0,

the integrabilty conditions are

SVh=8%h=8%n=0 (30)

4 The 5 = 6 Theorem

Now assume that the system of equations (27) admits a 6-parameter family
of solutions a’*. (The requirement of superintegrability appears to guarantee
only a 5-parameter family of solutions.) Thus at any regular point we can
prescribe the values of the a/* arbitrarily. This means that (29) or (30) holds
identically in h. Thus S® = S@ = 8®) = 0. Using these expressions, we
can perform a tedious but straightforward Maple-assisted computation that
yields

1. An expression for each of the first partial derivatives 8,4%, 8,B¥, 9,C",
for the 10 independent functions as homogeneous polynomials of order
at most two in the A?' B/’ (%3 There are 30 = 3 x 10 such
expressions in all. An example is

By? = gAuB12 — 1B12G’2 — §G1A12 - 1G1G2
3 6 6 6
1

1 1 7 1
+§B22312 + gBQ2G1 + §A23B23 _ 6031423 + §G12-
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2. Exactly 5 quadratic identities for the 10 independent functions:

a) _AZ B33 _ A12 423 4 A13pI12 | P22 23 | B23 433
+1A2G; — 1ABG, — 1BGy — 1G1Gs

—$ABG, + 3Gy — ABG, — A®B® =),
b) (A33)2 4+ B12433 _ 433 422 _ B33 g12 _ (033 13 | P22 A12
_Bl2A22 | A13p23 _ (A12)2 +
3G — 5G2 — 3Gss + 5 APGs + ;B¥Got

—1A2G, + 1A¥G, - 1B®G, - 13220 L 10%Gy ¢ 1(Ga)? =0,

c) o (333)2 _ B3 A2 B33p22 | pBl12433 323033 (B23)

+(B2)? + L(G1)? = 3Gy + 3G

_%33302 _ %A33G1 _ %(G?’)Q _ %033G3 — O,
d) ZBl2423 _ 7433 423 | 41333 | 41223
+2Go — LABG — A1G,

—5B%G,y — 5G,Gs — 5B¥G3 =0,
6) AIQBIQ + 033A23 _ AQBBZS + BS3A22 _ B33A33
+3G1s — 3G1Go — LARG,

—%BIQGQ _ %A23G3 =0

(31)

There are no nontrivial conditions in which some derivative of G is involved
as a factor in each term.

Theorem 3 (5 = 6) Let V be a nondegenerate potential corresponding to
a conformally flat space in 3 dimensions that is superintegrable, i.e., suppose
V' satisfies the equations (14), where conditions (17, 24) hold, and there are
b functionally independent constants of the motion. Then the space of second
order symmetries for the Hamiltonian H = (p34p;+p2) / Mz, y, 2)+V (2,9, 2)
(excluding multiplication by a constant) is of dimension D = 6.

Corollary 3 If H+V is a superintegrable conformally flat system with non-
degenerate potential, then the dimension of the space of 2nd order symmetries

3
Z (z,y, 2)pkpj + W (x,y, 2)

is 6. At any reqular point (xo, Yo, 20) and given constants o = o’* there is
ezactly one symmetry S (up to an additive constant) such that a* (xo, yo, z) =
okl Given a set of 5 functionally independent 2nd order symmetries L =
{S¢ : £ = 1,---5} associated with the potential, there is always a 6th sec-
ond order symmetry Sg that is functionally dependent on L, but functionally
linearly independent.
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Corollary 4 The previous theorem and corollary remain true for 5 weakly
functionally mdependent second order symmetries, if the corresponding quadratic
forms 3 i a )pkpj, 1 < ¢ <5 are functionally linearly independent.

PROOF OF THEOREM: The proof takes many steps, most of which have
to be carried out with computer algebra software. We give the logic behind
the proof and describe the steps in order.

If there is only a 5-parameter family of solutions then (30) holds only
for the h that lie in a 5-dimensional space. By appropriate Euclidean trans-
formation of coordinates, if necessary, we use Gauss-Jordan elimination and
show that there is a basis for the space of the form h?, j =1, ---5 where

(R, B2, B, b, B°) =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

al(.’lf,y,Z) OéQ(iE,y,Z) Oég(l',y,Z) (1/4(33,2/,2) a5(x,y,z)

Here we mean that if h belongs to the solution space then there are unique
differentiable functions g,(z,y, z) such that h = E?Zl g;h7. Tt follows that
the integrabilty conditions become

Sk]_i_%s]%): ¢=1,---.3, k=1,---,6, j=1,---,5. (32)

Further, the conditions (30) must hold. The question that we need to decide
is whether the conditions (30) and (32) imply

S =80 =56 = .
Some of the elements of the matrices S vanish identically. Indeed

Sl = Sk’ = S =Sy = 84 =86 = Siy =S =S¢ =0

Also
2 1 1
5&)‘) = 815 = _811 ) S§4) = _353)7
S =-8, =8, 38 =28y,
2
Si) =388, S =-5w,
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This implies that the following conditions must hold no matter what are the
values of the o;:

sP =0, i=1,246 1<j<6, S =0, (33)

sP=s@ =0, 1<j<6 SP=0, 8=

We will show that the identities (33), plus the identities (26) (that must
always hold) suffice to prove that

S = 52 — gB) — 0,

hence that the integrabilty conditions are satisfied identically and there is a
6-parameter family of symmetries. In the first step we compute all of the
identities (33), (26) and use a subset of 17 of the identities (33) and 12 of
the identities (26) to solve for each of the 30 independent partial derivatives

akA12’ akA13, akAQZ, 8kA23, akA33,

o,B*2, 0,B%, 0,B%, 0,B*, 9,C*, k=1,2,3,

save 0,C% which doesn’t occur in these expressions. In each case we ob-
tain an expression for the derivative as a polynomial in the 10 variables
A2 ... (O3 with coefficients in the linear and zero order terms that involve
derivatives of (G. Then we substitute these expressions back into the remain-
ing conditions (33), (26). This yields a set of 4 independent second order
polynomial identities, a subset of the identities (31). These identities are
sufficient to verify that

By conditions (32) this immediately implies S/ = 0, and SJ(-,? = 0 for
j=2,3,4and 1 < k < 6. Substituting our expressions for the derivatives
into these new identities we obtain the full set of 5 identities (31), and can
solve for 9,C33. This set is now sufficient to verify that

2 2 3 3 3 3 3
S50 = Sig =Sty = S35 = Sig’ = 54 = S =0,

which implies S = SG) = 0. Q.E.D.
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5 Third order constants of the motion

Now we investigate the space of third order constants of the motion, assuming
a nondegenerate potential. We have

3
K= 3% d(z,y,2)pp;pi + v(z,y, 2)pe, (34)

k,ji=1

which must satisfy {#, K} = 0. Here a** is symmetric in the indices &, 7, i.
The conditions are

3 3
alt = -5 Z a® (In \)s, (35)
3a/" +a = -3 a™(In)\),, i#]
a4 = ! ZaSjj(ln A)s — 1Za”’i(ln A) 1]
7 9 2 - S 2 . S
207" +af + ol = =Y a?*(In)),, i,k distinct
b+ =3AY oMV, j#k j k=123, (36)

3 y 1
= 5)\2@5”‘/; - §Zb5(ln)\)3,, j=1,2,3,

and

S bV, = 0. (37)

The a*7* is just a third order Killing tensor. We will, as usual, require the
potential V' to be superintegrable and non-degenerate. Again, as usual, we
require that the highest order terms, the /% in the constant of the motion,
be independent of the four independent parameters in V. However, the b*
must depend on these parameters. We set

Y,y 2 Zf“xy, Vi(z,y, 2)-

(Here we are excluding the purely first order symmetries. Also, we could
add a term f%(x,y,2)Vii(2,y,2) to the preceding expression. However
condition (37) implies f&' = 0.) Substituting this expression into (37) we
see that

o4 pt=0, 1<¢,j<3.
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Further

b= (7 Ve + £ Vi),
£

where the subscript j denotes the partial derivative with respect to ;. Sub-
stituting these results and expressions (14) into the defining equations (36)
and equating coefficients of Vi, V5, Vs, Vi1, respectively, we obtain the inde-
pendent conditions (G5 = (In \);):

)\alll
)\&222
)\0,333
)\a112
)\a113
)\a122
)\a223
)\a133

)\a233

)\a123

1,2
1

1,2
f2

1,3
1

1 3
(f1,2A12 4 f1,3A13) + g Zfs’le’ (38)

s=1

1 3
(_f1,2B12 n f2,3B23) n = Z 2q,,

s=1

3
(_f1,3013 _ f2,3023) + % Z fs’?’Gs,
s=1
1 3
f1,2(A22 + Bl2) + 2f1,3A23 + f2,3A13) + 5 Zfs’2Gs;
s=1

3
2f1’2A23 + f1,3(A33 + 013) N f2,3A12) + % Z fs’3G3,
s=1
1 3
g 2 G,

s=1

1 3
_2f1,2A23 . f1,3B12 + f2,3(_B22 + B® 4+ 023)) + § Z fS’SGs,
s=1

f1,2(_A12 + 322) + f1,3Bz3 4 2f2’3A23) +

3
f1,2023 + f1,3(_A13 + 033) . 2f2’3A23) + é Z fs’le,
s=1

OIN OIN OIN OIN ©OIN OIN OIN WIN WD Wi

/N N N N /N N,

f1,2022 +f1,3B33 + f2,3(_B12 +013)) ’

1 3
32 [Gs (39)
s=1

1 3
(f1,2(_2A12 _ B22) _ BB f2,3A23) 4 5 Z 71a,,

s=1

(f1,2(A22 B 2312) . f1,3A23 + f2,3A13)) .

3
(_f1,2A23 + f1,3(A33 B 2013) B f2,3A12) i %Z fs’gGs,

s=1

W= Wl W
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1 13
?},3 — g (_f1,2023 + f1,3(_2A13 _ 033) _ f2,3A23) + g Zfs’le;
s=1
1 13
22,3 _ g (f1,2A23 N f1,3B12 + f2,3(_322 + B3 _ 2023)) _ § Zfs’gGs,
s=1
2,3 L /2,3 1,3 423 2,3 23 22 33 13 5,2
37 = G (/PO - AT PA(2BY 1+ 0” — 0%)) + 5 Y 1,
s=1
and
2,3 1,3 _ 1 1,2 22
Pkt o= g (=m0 (40)

+ fl’3(2B33 _ 3023) _ f2,3(2312 + 013) ) ,
_ 12,:’,%_]031,2 _ %(—f1’2(2A13+B23)
_ f1,3B33 + f2,3(BIQ + 2013) )’

We have 8 equations for the 9 derivatives f,:’j , and by differentiating
these we have 18 independent conditions for the 18 second derivatives Iad.
Thus the system closes. A solution is determined by 12 parameters 122 (%0),

7 (x0) at a regular point, and these parameters are constrained by at least 8
linearly independent conditions. Thus the solution space, which is obviously
of dimension > 3 must be of dimension < 4. We have still to apply the
conditions that the a* are third order Killing tensors.

Theorem 4 Let K be a third order constant of the motion for a conformally
flat superintegrable system with nondegenerate potential V :

3 3
K= Z a"(z,y, 2)PrDiDi + Z Vi(x, y, 2)pe-
k,j3yi=1 =1

Then
3

be(xv Y, Z) = Z fe’j(xa Y, Z)‘/J(xa Y, z)

=1

with f4 + fit =0, 1< 4£,5 < 3. The a* b’ are uniquely determined by
the four numbers

fl’Q(ﬂﬁoay(),Zo); fl’g(xovyoyzo), f2’3(330790,20), f31’2($0,y0,20)

at any regular point (zo, Yo, 20) of V.
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Let
S => a?f)Pkpj + Wy, S=> ag)pkpj + Wi
be second order constants of the the motion for a superintegrable system
with nondegenerate potential and let Ag)(z,y,2) = {a](cij) (z,y,2)}, 1 = 1,2
be 3 x 3 matrix functions. Then the Poisson bracket of these symmetries is

given by
3

{81,8} = Y d"'(z,y, 2)prpipi + V' (2, y, 2)pe

k,7i=1

where

¢ ¢
_mzj@%, aglaly). (41)
Differentiating, we find

it = 2/\2 (0; ag) it 4+ ag 0; aﬂ — 0 aff) {e) — akj 0; a”lZ )+ Gif*t.  (42)

Clearly, {Si, S} is uniquely determined by the skew-symmetric matrix
[Ag),An] = AgAp — AwpAe), hence by the constant matrix
[A2) (%0, Yo, 20)5 A@) (o, Yo, 20)] evaluated at a regular point, and by the num-
ber F(xo, Yo, 20) = f?,l’z(moa Yo, 20)-

For superintegrable nondegenerate potentials there is a standard structure
allowing the identification of the space of second order constants of the motion
with the space S3 of 3 X 3 symmetric matrices, as well as identification of
the space of third order constants of the motion with a subspace of the space
K3 x F of 3 x 3 skew-symmetric matrices K3. crossed with the line. F' =
{F(x0)}- Indeed, if x, is a regular point then there is a linear correspondence
between second order symmetries S and their associated symmetric matrices
Axp). Let {S1,8:}" = {82,851} be the reversed Poisson bracket. Then the
map

{S1, S} = [A)(x0), Ag) (%0)]
is an algebraic homomorphism. Here, §;, S, are in involution if and only if
matrices A(1)(Xo), A(2)(Xo) commute and F(xo) = 0. If {S;,S,} # 0 then
it is a third order symmetry and can be uniquely associated with the skew-
symmetric matrix [A(1)(Xo), A(2)(%0)] and the parameter F(xp) . Let £¥ be
the 3 x 3 matrix with a 1 in row ¢, column 7 and 0 for every other matrix
element. Then the symmetric matrices

AW = S(E0 4+ &) = AU, 4, j=1,2,3 (43)
2
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form a basis for the 6-dimensional space of symmetric matrices. Moreover,
g 1 . . . .
[AW, A®9) = 2 (0B + 6;4B™) + 5, BIY 4 6,,BIM)) (44)

where

B = %(5“’ — &) = -BUY 4 =1,2,3.
Here B = 0 and B B®) BB form a basis for the space of skew-
symmetric matrices. To obtain the commutation relations for the second
order symmetries we need to use relations (42) to compute the parame-
ter F(xo) associated with each commutator [A®), A*9]. The results are
straightforward to compute, using relations (27) .

Commutator 3F/A

[A(12), A(ll)] — 3(21) —3A1 _ B2 _ G3
[./4(13),./4(11)] = BB A2 _ B33 G,
[A(22),A(11)] =0 —4A%

[A(23),A(11)] =0 2(A22 _ A33)

[./4(33),.»4(11)] =0 4423

[A(IS), A(12)] — %8(32) %(3312 — A%2 4 343 _ G1)
[.A(22), A(12)] — B2 _3B2 _ A3 _ G
[A(23),A(12)] — %B(?’l) %(_3333 —3A4249B2 4 G,)
[A(33),.A(12)] =0 2(323 _ A13)

[ACD A0 =0 —92B%

[A(23), A(13)] — %B(Ql) —O33 + %323 _ %Al?’ _ %G?’
[A(33),A(13)] — BB g2 B33 Go
[A(23),A(22)] — B(B2) 433 _ g22 _ pl2 _ G,
[.A(33), A(ZQ)] =0 —4 A28

[.A(33),.A(23)] — 3(32) A22 _ A33 _ pl2 _ Gl

Suppose the dimension of the space of truly third order symmetries gen-
erated by commutators of second order symmetries is 3. This means that
whenever the matrices of two second order symmetries commute at a regular
point X , so that f1?(xq,v0,20) = f*(20, Y0, 20) = f>3(0, Yo, 20) = 0, then
f372(x0, Yo, z0) = 0. From the table above we see that

A23 =0 A22 — A33 B23 — A13 B33 =0.
Further, since 412, A0D] — [A®2) A(2)] = 0, etc., we have

B12 — _1A33 B22 — 2A12 033 — 2A13
92 ’ ; .
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Substituting these results into the integrability conditions for the potential
and the symmetries, we find that there exists a function U(z, y, z) such that

A® =2(InU),, A®=-(nU),, A®=-(nU),,

where
Uss = Uyy = Upzy, Upy = Uy, = Uy = 0.

Note that U is an instance of the isotropic oscillator potential
U=oa(z®+1y*+ 2%+ Bz +yy + iz

(Further, the defining second order symmetries for the isotropic oscillator
are only weakly functionally independent.) By analogy with the 2D Stéckel
transform studied in [2] (whose 3D form will be studied in our next paper)
it is straightforward to see that the potential of our system is a Stéackel
transform by U of the isotropic oscillator potential. By taking the inverse
Stickel transform we can obtain AY = BY = C% = 0 for all 4,j. Plugging
these values into the integrability conditions for the symmetries, we find that
G, =Gy =G3=0s0 A is a constant. Thus the Stackel transformed system
is just the isotropic harmonic oscillator in flat space.

Corollary 5 Let V' be a superintegrable nondegenerate potential on a con-
formally flat space, not a Stickel transform of the isotropic oscillator. Then
the space of truly third order constants of the motion is 4-dimensional and is
spanned by Poisson brackets of the second order constants of the motion.

6 The standard basis

To gain a deeper understanding of our standard basis structure, it is useful
to reformulate the problem of determining the second order symmetries for
a nondegenerate superintegrable potential. We set

W(z)=f'Vi+ Vot PVa+ F11Vy

and substitute this result into W; = )\2?:1 at V;. Additionally we must
impose the Killing tensor conditions

i _ 1 2i 3i
a; = —Gia"' —Ga™ —Gsa
20 +a = —Gia¥ — Goa¥ — G3a¥, i#j
ay + afl +al = 0, 1,74k distinct
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From the expressions for W; we obtain the equations for the a¥:
Aall — f11 + f2A12 + f3A13 + f11A14 (45)
AalZ — f21 + flAlZ + f2A22 + f3A32 + f11A24
Aa13 — f31 + f1A13 + f2A23 + f3A33 + f11A34
Aa22 — f22+f1312+f2322+f3B32+f11324
ACL23 — fg?'i‘lel?’+f2B23+f3Bg3+f11B34
AP = R4 IO 4 207 4 0% 4 fICH
and the condition on the first derivatives of the f*:
f21 _ f12 — _f1A12+f2(B12 _A22) +f3(B13 _A23) +f11(B14 —A24), (46)
f31 o f13 — _f1A13 +f2(012 o A23) +f3(013 o A33) + f11(014 _A34)’
f32 _ f23 — f1(012 _ Bl3) +f2(022 _ 323) +f3(023 _ B33) +f11(024 _ 334).
Note the expressions for fl' and fi! in terms of f!, f2, f%:
I fl fU(BI2 22 fl g2 gL Ll g3 gl gl

Differentiating (46) with respect to each of z1, x2, x3 and substituting (45)
into the Killing equations we see that we can express each of the second
derivatives of f!, f2, f3 in terms of lower order derivatives of f!, f2 f3, f%.
Thus the system is in involution at the second derivative level, but not at
the first derivative level because we have only three conditions for the 9
derivatives f]z We can uniquely determine a symmetry at a regular point by
choosing the 10 parameters

(FL P 2 P L fas fa0 135 130 13).
The values of f1, f2, f3, f!! at the regular point are analogous to the 4 pa-
rameters that we can add to the potentials in the 4 parameter family. For

our standard basis, we fix (f', f2, f3, f'')x, = (0,0,0,0). Then from (45),
(46) we have

i A
f12 f22 f?? =\ (1,21 a22 a23
f13 f23 f?? (1,31 a32 a33

Thus we can define a standard set of basis symmetries SU*) = 3 a% (x)pip; +
W9 (x) corresponding to a regular point xo by

1 fll f21 f31 CLH alZ al?’ . .

e p i) e e e] —am wo-o
3 3 3 31 ,32 33
fl f2 f3 X0 a a Q -

The condition on WU*) is actually 4 conditions since WU*) depends on 4
parameters.
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7 Maximum dimensions of the spaces of poly-
nomial constants

In order to demonstrate the existence and structure of quadratic algebras
for 3D superintegrable systems on conformally flat spaces, it is important to
compute the dimensions of the spaces of symmetries of these systems that
are of orders 4 and 6. These symmetries are necessarily of a special type.
The highest order terms in the momenta are independent of the parameters
in the potential, while the terms of order 2 less in the momenta are linear
in these parameters, those of order 4 less are quadratic, and those of order 6
less are cubic. We will obtain these dimensions exactly, but first we need to
establish sharp upper bounds.

7.1 Quartic constants

We investigate the space of fourth order constants of the motion:

3 3
F= > d™(z,y,2)pmrpjpi + > 0"(z,y, 2)pmpe + W (z,y,2), (47)
é,k,j,i:l m,q:l

which must satisfy {#H, F} = 0. Here a®*7% ™ are symmetric in all indices.
The conditions are

a;m = -9 Z Tsasm (48)
S
it 114 As 87 ; ;
da; " +a" = —6zxa , 1 F ]
S
jjii 114] As siid As stjj ; ;
3a;"" + 2a;7 = —Zya —32Xa , 1#£]
S 8
3a;7" +af +al" = —63 ™", i,k distinct
)
2a§“k + Qa;-”k + a;cm - _ Z f(aslm + ask”)a 1, J, k distinct
S
bk 4+ b 4 B = 6AY " a™'V,, i, ],k distinct (49)

27 + b = 6A Y a7V, — %b i # j
g 3. A
b;z — 2)\20/5211‘/8 o Z stsz’

s=1
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and .
AV, =W (50)

Clearly, the a®*/¢ is a fourth order Killing tensor. We require the potential V'
to be superintegrable and nondegenerate. Also we require that the highest
order terms, the a®*7* in the constant of the motion be independent of the
four independent parameters in V' . However, the b™¢ must depend linearly
and W quadratically on these parameters.

We set,
4

pik — Z fjk,aw(a), fjk,a — fkj,a,
a=1
where W(®) is defined by (18). Then conditions (49) take the form

awhfjk,a + arkfhj’a + an fkh,a . A(Lahjk — ... (51)

where the right hand side depends only on the 7% 1 < j, k,h < 3 and we
set a*"7F = 0. From the integrability conditions 9, (%%) = 6%(%), i F# ]

for equations (50) we obtain the conditions
Ouy [P 0y, [ — Oy, [ — 0, O = . (52)

where the right hand side depends only on the f7*< j #£ k 1 < a,8 < 4
and we set f4° = (.

There are 30 independent equations (51) with « # 4 and we use 15 of
these to define the 15 components a*/* as linear combinations of 9, f7*
and f7%® We can then eliminate the a?** from the remaining 15 equations
to obtain 15 conditions relating 9,, f7%* and f/*®. There are 18 terms of
the form 9,, f/**. Equations (52) with & = 8 = 4 are satisfied identically.
There are 9 equations (52) with § =4, 1 < a < 3 and 10 equations (51)
with @ = 4. Thus all terms of the form 9,, f** can be expressed as linear
combinations of f/%<. There are a total of 54 distinct terms of the form
Oz, [75™, 1 < h,j,k,m < 3. We have seen that there are 15 conditions on
these terms remaining from (51); there are an additional 18 such conditions
from (52) with a, 8 # 4. Thus there is a shortfall of 21 conditions on the
first derivatives 0, f/*™.

There are a total of 108 distinct terms of the form 9,,d,,f’*™ with
1 <, hj, k,0,m < 3 Differentiating with respect to x1,zs and z3 the 15 first
order conditions of (51), from which the a”*/* have been eliminated, we ob-
tain 45 independent conditions on these 2nd derivatives. Differentiating each
of our expressions for the a** and substituting into equations (48) we find
63 additional conditions on the second derivatives. This allows us to ex-
press each second order derivative as a linear combination of lower order
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derivatives, Thus the system is in involution. Also, we can differentiate the
18 equations from (52) with «, 8 # 4 to obtain 54 additional conditions on
the 2nd derivatives (which may or may not be independent of those already
found).

We conclude that any fourth order symmetry is uniquely determined by
the values f7%%(x,) and a subset of 21 of the values 0,, f/*™(x,) at a reg-
ular point xy. Note that by adding an appropriate linear combination of
purely 2nd order symmetries to the fourth order symmetry we can achieve
f7%2(x4) = 0 for all 5, k, c, so the maximum possible dimension of the space
of purely fourth order symmetries for a nondegenerate potential is 21.

7.2 Sixth order constants

We take the general sixth order symmetry for a nondegenerate potential to
be of the form

L=> a""™p.ppippipe + Y 0" ppipipr + > Hpipj + W,

where the functions a"*¥ bk (i are symmetric in all indices. Here a7kt
is independent of the parameters V,, o = 1,---,4, b"* is a homogeneous
quadratic polynomial in the W{®) ¢ is homogeneous fourth order, and W
is homogeneous sixth order in the W{®. The Poisson bracket of H and L is
polynomial in the momenta and the parameters W and for it to vanish at
a regular point, each coefficient of this polynomial must vanish separately.
The conditions are (for 1 < 4,7,k < k and 1, j, k pairwise distinct and for

s=1,2,3)

144040 _ A szzm
a/Z ...... - _3 Z s a
6a]zmz + G,Z”m = —15 Z )\S asgzm
5a jjiiii + 2 Jiieii - _ Z /\s asz'z'iz'z' 10 Z /\s asjjiiz'
4aj]]ZZZ + 3 ]]ZZZZ = _3 E )\3 st _ 19 Es )\s asgggzz
]lciiz'z' jtiii kiiiie _ )\ sjkiii
5a]""" + a3 + af = —103, 5:a™™",

4a j]kZZZ + 2a;kiiii + a]jiiii - —6 Es )\Tsasjjkii _ E As askzzzz’
3q j]kku + 2a ]kaZZ +2a kjjiii = —90 Es %asijjk:k 30 Z /\s askkm 30 E )\s asgjiii
53
bzzzz = 3\ Z asiiiiiW(s) 9 Zs )\TSbSiii, ( )
buu + 4b]2“ = 15\ Z asjiiiiw(s) 625 /\stsjii’
2bm] + 3bjjzz = 15\ Es asjjiiiw(s) Es ATS(ZbSZZZ + 6bsjji), (54)
b;zzk bmJ + 3b“]k = 15\, a1k (s) _ 6 Y, )3\_sbsijlc’

b;'cm + 2b;”k + sznk — 15\ Y, asITkT(s) — 9 Y, )\_/\s(bsiik + bsjjk)’
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sz — 2)\2 bszzzW E )\s Csz

2¢7 + ¢t = BAY, DWW — 3, A (55)
o + c’k +d7 = AL, bR,
S (=)W = 15 (TOWO); — T OWE);) . (56)
We set A
= Y by e hed = e
a,f=1
There are 6 x 10 = 60 independent terms ¢**?. There are 60 x 3 = 180 terms
¢ of which 108 are of the form ¢*, 54 are of the form ¢** and 18 are
of the form ¢”**, . Equations (56) give 30 conditions relating the derivatives
cieb 18 condltlons relating the derivatives ¢/”** and 8 conditions relating
the derivatives c;g’ The 100 independent equations (55) allow us to solve

for the 15 terms b”’“f"L and the 45 terms bY4%5 where

bz]ki Z bzgkﬁ aW(a)

a=1

Further, they yield 10 conditions relating the derivatives c”’44 15 equations

relating the derivatives ¢** and 15 equations relating the derivatives ",
It follows that all 18 terms of the form 02’44 can be expressed as linear
combinations of the ¢¥*?. There are a total of 78 conditions on the remaining
162 terms.

There are 360 terms ¢;* of which we can ignore the 36 terms c;*".
The 84 equations (54) allow us to solve for the 28 terms a"*™ and give
21 conditions for ¢%* and 35 conditions for ¢%**. Further differentiating
our previously obtained 78 conditions on the first derivatives we obtain 78 X
3 = 234 conditions, 99 on ¢;* and 135 independent conditions on ¢*.
It follows that all 108 terms of the form cZJé can be expressed as linear
combinations of lower order terms and there is a total of 35 + 135 = 160
independent conditions on the 216 terms c;*". Finally, differentiating the
previous conditions obtained for the ¢%* and using the 31 equations (53) we
obtain at least 360 independent conditions for the 360 terms ¢’ . Thus the
maximal number of parameters in a solution of the sixth order symmetry
equations is 60 + 84 + 56 = 200, excluding the 35 independent additive terms
W @WwGWwW O,

We know that that the dimension of the space of second order symmetries
for a superintegrable system with nondegenerate potential is 6. Now let us
suppose (as we will prove) the dimension of the space of quartic symmetries
is 21. Then there are exactly 84 = 21 x4 independent sixth order symmetries

that are also quartic symmetries, and 6 x 10 = 60 independent sixth order
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symmetries that are also quadratic. Thus the maximal possible dimension
of the space of truly sixth order symmetries is 200 — 84 — 60 = 56. We will
show that this bound of 56 is actually achieved.

8 Bases for the fourth and sixth order con-
stants of the motion

It follows from Section 7.1 that, for a superintegrable system with nondegen-
erate potential, the dimension of the space of truly fourth order constants
of the motion is a most 21. Note from Section 6 that at any regular point
Xg, we can define a standard basis of 6 second order constants of the motion
SW) = A6 4 W) where the quadratic form A®) has matrix A®) defined
by (43) and W) is the potential term with W) (x,) = 0 identically in the
parameters W(®. By taking homogeneous polynomials of order two in the
standard basis symmetries we can construct fourth order symmetries.

QUESTION: Is every fourth order symmetry a polynomial in the second
order symmetries?

ANSWER: Yes! Also the dimension of the space of fourth order symmetries
is exactly 21.

Theorem 5 The 21 distinct standard monomials S SUR) | defined with re-
spect to a reqular point Xo, form a basis for the space of fourth order symme-
tries.

Proof: We choose the basis symmetries in the form

1.
(S(ii)){ S(ii)g(ij)’ S(ii)g(jj)’ Si) glik)
fori,j,k=1,---,3 1,4,k pairwise distinct. (15 possibilities)
2.
S §UI) _ (§69))2
fori,j =1,---,3 1,7 pairwise distinct. (3 possibilities)
3.

St glik) _ (i) g(ik)
fori,j,k=1,---,31,j,k pairwise distinct. (3 possibilities)
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If we evaluate this set at the regular point the first class of symmetries will be
P}, Pip; PiD}, DipiDk, respectively, whereas the last two classes of symmetries
will vanish. Thus the only possible linear dependencies are those relating the
6 symmetries

F(12) — 8(11)8(22)—(8(12))2, F(13) — 8(11)8(33)—(8(13))2, F(23) — 8(22)8(33)—(8(23))2,

G(23) — 8(12) 8(13) _8(11) 8(23), G(IS) — 8(12) 8(23) _8(22) 8(13), G(l?) — 8(13)8(23) —8(33)8(12).

The second order terms in the symmetry F/ are
F@) — A6 4 Gy @) _ 9 @)y @)
Now F9) vanishes at the regular point but its derivatives at the point are
F = p2Vi — pipiVs, FP = p2V; — pipiVi, P =0,
Similarly the second order terms in the symmetry GU*) are
GUR) — Ay k) L AR @) _ @)y Gk) _ AGR Y6,
Again G%) vanishes at the regular point but its derivatives at the point are

g = %pipjvk-i-%pipkv}—pjpk‘/}, g](-]k) = %pipk‘/%—%pgvk, , GIM = %pz‘pﬂ/ﬁ—%pﬁ/}.
Since Vi, V5, V3 are arbitrary, it is clear that these 6 terms are linearly inde-
pendent. Thus the 21 symmetries form a basis. Q.E.D.

Now we know that for a superintegrable system with nondegenerate po-
tential the space of purely fourth order constants of the motion is exactly
21. Thus from Section 7.2 the dimension of the space of purely sixth order
constants of the motion is at most 56. Again we shall show that the 56 inde-
pendent homogeneous third order polynomials in the symmetries S form
a basis for this space.

At the sixth order level we have the symmetries

L.
(8E))3 (8280 (§(D)2807) - (S))25(k)

fori,j,k=1,---,3 1,4,k pairwise distinct. (18 possibilities)

S g Ui - §0i) §6) gUk) - §(i4) §(77) G(kk)
fori,j,k=1,---,31,j,k pairwise distinct. (10 possibilities)
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Stm) (S(iz‘) S _ (g(z'j))2)

fori,j =1,---,3 i,j pairwise distinct. (10 possibilities)

Stm) (3(ij)5(ik) ) S(jk))
fori,j,k=1,---,3 1,4,k pairwise distinct. (18 possibilities)

Theorem 6 The 56 distinct standard monomials S®SURSE™) - defined with
respect to a reqular xq, form a basis for the space of sizth order symmetries.

Proof: Rather than using the monomials directly we choose the polynomi-
als in the forms 1-4 above. Suppose some linear combination C of these 56
polynomials has identically vanishing sixth order terms. This implies imme-
diately that the coefficients of the first 28 polynomials are zero. Thus C must
be a linear combination of the 6 fourth order symmetries F), G(9) of The-
orem 5. Now the first derivatives of the second order terms in C all vanish
at xy so by the proof of Theorem 5 the linear combination of fourth order
basis symmetries must vanish. Thus we must have C = 0. Then evaluating
the expressions
ath(X()) =0 82 C(Xo) =0

ThTy
and making use of the expressions for F%,G% in the proof of Theorem 5
it is straightforward to show that the coefficients of all 28 terms in C must
vanish. This the 56 terms are linearly independent and all nonzero linear
combinations are truly sixth order. Q.E.D.
We conclude that the quadratic algebra closes.
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