
Immortal DB: Transaction Time Support for SQL Server

David Lomet, Roger Barga
Microsoft Research

Redmond, WA

Mohamed F. Mokbel ∗

Purdue University
Lafayette, IN

German Shegalov ∗

Max Planck Institute
Saarbruecken, Germany

Rui Wang ∗

Northeastern University
Boston, MA

Yunyue Zhu ∗

New York University
New York City, NY

ABSTRACT
Immortal DB builds transaction time database support into
the SQL Server engine, not in middleware. Transaction
time databases retain and provide access to prior states of
a database. An update ”inserts” a new record while pre-
serving the old version. The system supports as of queries
returning records current at the specified time. It also sup-
ports snapshot isolation concurrency control. Versions are
stamped with the times of their updating transactions. The
timestamp order agrees with transaction serialization order.
Lazy timestamping propagates timestamps to all updates of
a transaction after commit. All versions are kept in an in-
tegrated storage structure, with historical versions initially
stored with current data. Time-splits of pages permit large
histories to be maintained, and enable time based index-
ing. We demonstrate Immortal DB with a moving objects
application that tracks cars in the Seattle area.

1. INTRODUCTION

1.1 Overview
Researchers have identified two forms of temporal data-

base functionality: (1) Valid time [3] is the real world time
at which information recorded in the database becomes true
(or the time when they are no longer true). (2) Transac-
tion time [5] is the time at which information is posted to
the database. However, transfer of this research into com-
mercial databases is limited. Historical data in commer-
cial databases is usually only for the very recent past for
snapshot isolation [1], a multi-version concurrency control
method where a reader reads, without locking, a recent ver-
sion instead of accessing the current version.

Immortal DB, our research prototype, builds transaction
time support into a commercial database system, Sql Server,
not on top. It shows that one can provide this functionality
without impairing performance for conventional functional-

∗Work done while on Microsoft internship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

ity applied to current data. It also supports snapshot isola-
tion with excellent performance.

1.2 Immortal DB Project
Immortal DB extends Sql Server without disturbing most

of the original code. Regular insert/update/delete ac-
tions never remove information from the database. Rather,
these actions add new versions to maintain a complete and
queryable history of states of the database. Immortal DB
makes changes in three areas that distinguish it from conven-
tional database systems and some previous efforts to provide
transaction time functionality.

Timestamping. Each record version is stamped with
a clock time Ti that serializes it with the commit order of
other transactions. Ti indicates the beginning of the life-
time of the newly inserted/updated data. When that data
changes (e.g., with a subsequent update), a new version is
inserted, marked with the timestamp Tj (Tj > Ti) of its
transaction, indicating its start time. The old version im-
plicitly has an end time of Tj . A record delete is treated as
an update that produces a special version, called a ”delete
stub” that indicates when the record was deleted. Versions
are thus immortal (i.e., never updated in place). A unique
lazy timestamping mechanism propagates the timestamp to
the transaction updates after commit.

Version management. Historical versions of a record
are stored in a version chain within a page. A time-based
page split grows space associated with versions beyond a
single page and facilitates time based access to all versions
via a unified temporal index [4].

SQL syntax. We extend the data definition language
(DDL) to include an Immortal attribute that defines a
table to be a transaction-time table. We enable historical
queries by means of an “AS OF” clause on the “Begin
Transaction” statement, requesting the status of the data-
base as of some time in the past.

2. IMMORTAL DB TIMESTAMPING

2.1 When to Timestamp
Timestamps must reflect a correct serialization order for

their transactions. One might choose a timestamp at trans-
action start, using the start time as the timestamp. The
timestamp is then available whenever a record is updated,
so it can be posted to the record version during the update.
Timestamp order (TO) concurrency [1] correctly serializes
transactions using this time. Unfortunately, transactions
that serialize in an order different from the order of their

939

Version

8 bytes

Record data (n bytes)

(a) Record structure for versioning

2 bytes 4 bytes

(b) Structure of versioning information

Timestamp (Ttime)
Sequence

Number (SN)Pointer VP

(14 bytes)
Versioning data

Figure 1: Record structure in Immortal DB.

already chosen timestamps must be aborted.
Immortal DB hence chooses a transaction’s timestamp as

late as possible. At commit, the transaction serialization or-
der is already known. Thus, Immortal DB currently chooses
a transaction’s timestamp to be its commit time, hence guar-
anteeing that it is consistent with transaction serialization
order.

2.2 Timestamp Representation
Sql Server snapshot isolation versioning adds 14 bytes to

the tail of each record. Immortal DB utilizes these bytes for
its versioning. Figure 1a gives the record layout used in Sql
Server. Figure 1b gives the Immortal DB layout of these 14
bytes, specified as follows:

Transaction time Ttime (8 bytes). We initially store
the transaction identifier (TID) of the updating transaction
in Ttime. When the transaction commits, the TID is re-
placed with the transaction’s commit time.

Sequence number SN (4 bytes). In SqlServer, the
SQL date/time function returns an eight byte time with a
resolution of 20ms, which is insufficient to give each trans-
action a unique time. Thus, we extend it with a four byte
sequence number, SN, to give every transaction a unique,
correctly ordered timestamp. SN is chosen when the trans-
action commits.

Version Pointer VP(2 bytes). VP contains a pointer
to the immediate previous version of the record. Two bytes
is sufficient for this intra-page pointer.

2.3 The Timestamping Process
With transaction time not known until the end of the

transaction, Immortal DB revisits updated records in order
to timestamp them. A lazy timestamping strategy is used.
Records are only re-visited on the next access or when the
page is re-visited for some reason (e.g., a page split). This
eliminates any delay at the transaction commit, resulting in
shorter duration transactions, and increasing concurrency
and system throughput.

Lazy timestamping is not logged. Instead, we maintain a
disk-based table, the persistent timestamp table (PTT) con-
taining the mapping from TID to Ttime. In addition, we
maintain a memory-based hash table, the volatile timestamp
table (VTT). The VTT serves two purposes: (1) It caches
some of the entries from PTT, thus enabling in-memory
timestamping. Only entries that are not found in the
VTT require disk accesses to search the PTT. (2) It main-
tains a reference count of the number of records not yet
timestamped for each transaction. This permits garbage col-
lection of PTT entries. Once a transaction’s reference count
is zero AND all pages containing its timestamped records

B

A

A

B

A

0

n

2

0
T

n
T

n

2
T

1

T

T

Page Header

Slot Array 01

Figure 2: Page structure in Immortal DB.

have been written to disk, the transaction’s entry is deleted
from PTT (and VTT). We know when the pages have been
written to disk by tracking database "checkpoints".

Lazy timestamping has four stages:
Transaction Begin. A VTT entry with the reference

counter set to zero is created when a transaction starts.
Inserting/updating/deleting records. New versions

are initially marked with the TID of the updating trans-
action in the version’s T time field. We also increment the
reference counter for the transaction in VTT.

Transaction commit. At transaction commit, we set
the transaction timestamp in both VTT and PTT.

Accessing a record. When a non-timestamped record
is accessed, we replace its TID with the timestamp for its
transaction by consulting either VTT or PTT. If an entry is
found in VTT, we decrement its reference count, otherwise,
we consult PTT.

3. IMMORTAL DB VERSIONING
Immortal DB supports both persistent versions for

transaction-time functionality and snapshot versions for
snapshot isolation concurrency control. It stores prior ver-
sions of a record in the same page as the current version.
All versions are accessed through a versioning chain that
originates from the most recent record, until the disk page
is full. Figure 2 gives an example of the layout of the page
structure after inserting three versions of record A and two
versions of record B.

When the current page fills up, we either do a key split,
as in a conventional B-tree, or a time split. With a key
split, we go from one to two pages holding current versions
of records, partitioning them by key range. A time split,
unlike a key split, does not partitions the versions. With
a time split: (1) a version that ends its lifetime before the
split time is moved to the historical page; (2) a version whose
lifetime spans the split time is copied to the historical page
(It (redundantly) stays in the current page. Thus, a time
split does not partition record versions.); (3) a version that
starts after the split time remains in the current page; (4) an
uncommitted version remains in the current page.

Immortal DB adds two fields to the page header: (1) His-
tory pointer. This field points to the page that contains ver-

940

sions that had once been in the current page but at an earlier
time. In this case, older versions can be traced through dif-
ferent pages via a chain of pages. (2) Split time. This field
contains the time used in splitting the page. By examining
this field during an “as of” query, we may skip searching for
records in this page. Both the history pointer and split time
fields are assigned during the time split procedure.

The time-split B-tree (TSB-tree) [4] indexes the collection
of time split and key split pages described above. Using the
TSB-tree in Immortal DB1 permits us to directly access the
pages needed to satisfy any historical query. This indexing is
enabled by time splitting, which ensures that each page con-
tains all versions with lifetimes within its time range. This
improves access performance while increasing somewhat the
number of version copies.

4. IMMORTAL DB FUNCTIONALITY
In this section, we describe how a user specifies temporal

functionality in Immortal DB’s extended SQL language.

4.1 Defining an IMMORTAL table
The keyword Immortal is added to the Create Table

statement to indicate that the table should have persistent
versions. Conventional tables, can be used in our prototype
to support snapshot versions, i.e., recent versions used for
concurrency control, by enabling snapshot isolation with an
Alter Table statement. The following example shows the
creation of an immortal table named MovingObjects.

Create IMMORTAL Table MovingObjects

(Oid smallint PRIMARY KEY,

LocationX int,

LocationY int) ON [PRIMARY]

The keyword IMMORTAL causes us to set a flag in the cat-
alog entry for the table, indicating the immortal property.
This has three effects: (1) It disables garbage collection of
historical versions; (2) It enables persistent timestamping;
and (3) It enables “as of” queries. The rest of Immortal DB
functionality (e.g., volatile timestamping, versioning chain,
etc.) can be exercised via conventional tables enabled for
snapshot isolation.

4.2 Querying in Immortal DB
To demonstrate Immortal DB transaction time function-

ality, we support queries “as of” some time in the past. We
modify the snapshot isolation capability already present.
We extend the SQL syntax for the “Begin Transaction”
statement by adding the keyword clause As Of. The follow-
ing query asks for information about the first ten moving
objects ”as of” some earlier time.

Begin Tran AS OF "8/12/2004 14:15:20"

SELECT * FROM MovingObjects

WHERE Oid < 11

Commit Tran

5. IMMORTAL DB IN ACTION
We demonstrate Immortal DB functionality with a mov-

ing objects application. We first define an Immortal table.

1We have not yet implemented the TSB-tree.

Figure 3: Screen Shot: Scrolling through history.

Then, we use the Network-based Generator of Moving Ob-
jects [2] to generate a set of moving objects (e.g., vehicles,
trucks, cyclists, etc), in our case on the road network of the
Seattle, Washington area. Each moving object is shown on
a map of the area.

When an object appears on the map, an Insert transac-
tion adds a record for it to the MovingObjects table that in-
cludes the object ID and location. Immortal DB timestamps
the inserted record using the lazy timestamping method.
When an object moves, an update transaction for it posts
the new location to the MovingObjects table. Immortal DB
maintains the complete history of locations for each mov-
ing object. Objects have pre-determined sources and des-
tinations and move at variable speeds, submitting update

transactions at different rates. Once an object reaches its
destination, it stops sending updates. Thus, moving objects
have different numbers of update transactions.

An interesting feature of our demo is that we can scroll
over history. When the SQL query (e.g., select * from
MovingObjects where LocX >50 AND LocX<350). is sub-
mitted to Immortal DB, we start a transaction that asks
for database state ”as of” a specified time. Figure 3 gives a
screen shot of the demo in the scrolling mode. First, we spec-
ify the scrolling resolution (i.e., the amount of time separat-
ing ”as of” queries as we travel through time via scrolling).
Then, we specify the SQL query. Finally, with each move-
ment of the scroll bar, we display the result ”as of” the scroll
bar time in tabular form as well as on the map. By scrolling
over the history, we can traverse the trajectory of a set of
moving objects in the road network.

6. REFERENCES
[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[2] T. Brinkhoff. A Framework for Generating Network-Based
Moving Objects. GeoInformatica, 6(2), 2002.

[3] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-Time
Indeterminacy. TODS, 23(1):1–57, 1998.

[4] D. B. Lomet and B. Salzberg. Access Methods for
Multiversion Data. In SIGMOD, 315–324, May 1989.

[5] D. B. Lomet and B. Salzberg. Temporal Databases: Theory,
Design, and Implementation, chapter Transaction-Time
Databases, 388–417. Benjamin/Cummings, 1993.

941

