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ABSTRACT

In this paper, we demonstraRecDB a full-fledged database sys-
tem that provides personalized recommendation to usersim#/e
plementedRecDBusing an existing open source database system
PostgreSQl.and we demonstrate the effectivenessRetDBus-

ing two existing recommendation applications (1) RestatRec-
ommendation, (2) Movie Recommendation. To make the demo
even more interactive, we showcase a novel applicationr¢icam-
mends research papers presented at VLDB 2013 to the cooéeren
attendees based on their publication history in DBLP.

INTRODUCTION

Recommender systems have grabbed significant attentianttin b
commercial [3, 4, 7] and academic [1, 2, 5, 6, 9] settings. M
objective of a recommender system is to suggest new integest
items to users from a large pool of items. Recommender sgstem
are implicitly employed on a daily basis to recommend movies
(e.g., NetFlix), friends (e.g., Facebook), news artickeg.( Google
News) [4], books/products (e.g., Amazon) [7], and Micrapjmsts
(e.g., Twitter). For instance, Netflix reported thé@% of Movies
users watch on Netflix is from recommendation.

Recommendation techniques exploit the history of events pe
formed by the system users in order to extract a set of irttages
items for each user. These events might be users clickswie®-
site links visited), users opinions (e.g., movie ratings)sers pur-
chases (e.g., buying a product on Amazon). In technical¢eem
recommender system takes as input a set of usereems/, and
user/item event® and estimates a utility functiaf (u, ¢) that pre-
dicts how much a certain usere U will like an itemi € I such
that: has not been already seen (or watched, consumed . [y

Currently, to support the recommendation functionalityaimy
application, a developer must implement the recommenul it
ity estimation as well as the recommendation query execlo
gorithms at the application layer. That is considered albdes a
novice application developer who might not be quite famitigth
efficient recommender system implementations. An apjtioat
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developer would prefer to declaratively create and quecpmre
menders and save the effort to focus on the main applicatigia.|
Moreover, optimizing recommendation queries might bedesli
especially that most applications integrate (eJ@l N) generated
recommendation with other data to enrich the end-user epzs.

In this paper, we demonstraiRecDBa full-fledged database
system that produces personalized recommendations toythe s
tem users. Integrated with an open source relational DBMS, (i
PostgreSQL)RecDBuses SQL to seamlessly integrate the recom-
mendation functionality with traditional relational opéors, i.e.,
SELECT, PRQJECT, JO N. To this end RecDBintroduces a new
SQL statementCREATE RECOMVENDER, that takes the input
user/item events data, internally runs the recommendatigo-
rithm, and creates the data structures necessary to gemet
ommendations. RecDBtherefore employs a new SQL operator,
RECOMMVEND, that leverages the initialized data structures to gener-
ate recommendations to the querying user. We summarizeahe m
features oRecDB as follows.

e Usability: The system is easily used and configured so that
a novice application developer can define a variety of recom-
menders that fits the application needs in few lines of code.
RecDBhelps the community building asut-of-the-boxool
to implement a myriad of recommendation applications.

e Flexibility : RecDBis flexible in terms of defining a recom-
mender using a wide range of popular recommendation al-
gorithms (e.g., item-based/user-based collaboratiexifilg,
singular value decomposition), presented in the liteeadund
implemented insid®ecDB

e Seamless Integration The system is able to seamlessly in-
tegrate the recommendation functionality in the tradiion
SPJ, i.e., SELECT, PRQJECT, JA N, query pipeline to ex-
ecute rich recommendation queries.

o Efficiency: RecDBprovides near real-time personalized rec-
ommendation to a high number of users over a large pool of
items, and enormous user/item events matrix.

To proveRecDBeffectiveness, we demonstrate the system using
two (existing) real life applications: (1ylovieLeng8]: a system
developed at University of Minnesota that delivers movieore-
mendation tox 72K end-users world wide and (Bindbad[10]:

A location-aware social networking system developed awémi
sity of Minnesota and provides a restaurant recommendaton
vice [11] to its users. We replace the underlying recommesge
tem, already-deployed for both applications, wRkcDBto show

the effectiveness of our system and its applicability td liéarec-
ommendation scenarios. Moreover, we build a new applicatio
that leverages the publication history (i.e., retrieveahfiDBLP) of
VLDB 2013 conference attendees and recommends papersto the
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Figure 1: RecDB System Overview.

accordingly. For the paper recommendation application fure
thermore allow the demo attendee to issue ad-hoc recomriemda
queries usingsql i.e., PostgreSQL client, to show the simplicity
of integrating recommendation functionality with othefateonal
operators in PostgreSQL.

2. SYSTEM OVERVIEW

Figure 1 highlights the layered architectureR¥cDB
Input Data. RecDB assumes the following data, as input:
(1) Users a set of userg!{ = {u1,...,un}. (2)Items a set of
itemsZ = {41, ...,im }. (3) Events Each usew; performs actions
or expresses opinions about a set of itefpg C Z. Events can
be a numeric rating (e.g., the Netflix scale of one to five ytans
unary (e.g., Facebook “likes”, Foursquare “check-ins"Aarazon
purchases)RecDBconsists of three layers, as follows:
Layer I: SQL Layer: This layer supports two new SQL clauses:
(1) Recommender Creation SQhand (2) Recommender Query

SQL These new SQL clauses are leveraged by the application de-

veloper and the clients in declaring and querying perspedliec-

The application developer specifies the following paransete
(1) Reconmrender nane: A unique name assigned to the newly
declared Recommender. (2sers Tabl e, Itens Tabl e,
and Events Tabl e: names of SQL tables that contains the
users, items, and user/item events information. The ugerss,
and events data tables are specified inWB&ERS FROM | TEMS
FROM andEVENTS FROMSQL clauses. (4recommendat i on

Al gorit hm the application developer may choose to build the
recommender using several recommendation algorithmsosigap
by RecDB(e.g., Item-ltem collaborative filtering, User-User col-
laborative filtering, singular value decomposition), byeaifying
the recommendation algorithm in thiSl NG clause.

2.2 Recommendation Algorithms

Most recommendation algorithms perform two main steps:
Step |: Model Building: That step is performed by the recom-
mender initialization component when the application tgver
issues LREATE RECOMVENDER statement tdRecDB That step
consists of building a recommendation mo&acModelsing the
recommender input data. For instance, for the Item-Itenta@ot
rative Filtering algorithm, we generate an items similalist. To
compute the similaritygimScoré&,,, i4), we represent each item as
a vector in the user-events space of the user/item eventixmat
Many similarity functions have been proposed (e.g., CQsitine
Cosine similarity is calculated as given in equation 1.

M (1)
llenlllliqll

Step Il: Recommendation Generatiofhis step is performed by
the query processing component when a user issues a recemmen
dation query toRecDB This step utilizes theRecModel(e.qg.,
items similarity list) created irStep Ito predict a recommenda-
tion score,RecScore(u,i) (equation 2), for each user/item pair.
RecScore(u, i) reflects how much each usetikes itemq.

SimScore(ip,iq) =

Y oiep STm(i, 1) x Ty
Zzeg |sim (i, 1)]

RecDBusers may select an algorithm among a variety of recom-

RecScore(u,i) =

@)

ommenders. The parsed SQL statements are then passed to thmendation algorithms that fits their application needs. niXas

relevant component in thgrocessing layer
Layer II: Processing Layer: As given in Figure 1, this layer
consists of two main components, namely Rgcommender Ini-

are as follows: (1) Item-Item Collaborative Filtering wi€osine
Similarity Function (abbr. ItemCosCF), and its varianty (Ber-
User Collaborative filtering (abbr. UserCosCF), and itsarts

tialization: This component creates the necessary recommenda-(3) Regularized Gradient Descent Singular Value Decontiposi

tion models, data structures, and views for a created reeomder.
(2) Query processingThis component efficiently executes recom-
mendation queries over a created recommender and retarnsch
ommendation answer back to the user.

Layer lll: Indexing and Storage Layer: This layer stores a set
of data structures and recommendation models necessarp-to p
duce recommendations. For efficient query executretDBalso
stores a set of views that contains the final recommendatiores
generated using the recommendation model. The systemaales s
statistics about created recommenders and query/updakéoads
that are harnessed by theery processingomponent.

2.1 Recommender Creation

The application developer creates a new recommender using t
CREATE RECOWMMENDER SQL statement, as follows:

CREATE RECOMMENDER [ Reconmender Nane]
USERS FROM [ Users Table] KEY Users.uid

| TEMS FROM [Itens Table] KEY Itens.iid
EVENTS FROM [ Events Tabl e] KEY Events.eid
USI NG [ Recommendati on Al gorit hni

(abbr. SVD). (4) Content-based Filtering (abbr. Contdtepi

2.3 Recommendation Query

Once arecommender is initialized, users can issue recodanen
tion queries over that initialized recommender. A recomdeens
exposed to the querying user as a virtual SQL table that hissialv
schema, i d, i i d, RecScor e), explained as follows: ()i d:

ID of a user who exists in the users table,i(2)d: ID of an item in
the items table, (3RecScor e: a recommendation score (values
between 0 and 1) that predicts, i.e., based on the undenlgoan-
mendation algorithm, how much the user would like the item.

In RecDB we define a new clause namBECOVVEND that is
integrated with traditional SQL clauses, e $ELECT, FROM and
WHERE clauses, as follows:

SELECT [ Sel ect d ause]

FROM [ Recommender ], [ Tabl es]
WHERE [ Wher e C ause]
RECOMVEND( k) User _I D

The RECOVMEND clause is responsible for generatihgrecom-
mendations using an initialized recommender. InRR®OMclause,
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CREATE RECOMVENDER Movi eRec
USERS FROM Users KEY uid

Itens FROM Movi es KEY m d
EVENTS FROM Ratings KEY uid, md
USI NG | t enCosCF

MovieRec

Movie recommender built us
ing the item-item CF (ItemCF
recommendation algorithm

Q1: SELECT A. nmid FROM Movi eRec A RECOWEND(5) A uid =

Q2: SELECT E. nane FROM Mvi eRec A, Myvies E
WHERE A. mid =
RECOMMEND(5) A uid =

E.m d AND E. genre = ' Conedy’

RestaurantRec CREATE RECOMMENDER Rest aur ant Rec
Restaurant recommender built USERS FROM Users KEY ui d

using the singular value def | tens FROM Restaurants KEY rid
composition (SVD) recom- EVENTS FROM Checkl ns KEY uid,rid

Qs: SELECT C. name FROM Restaurant Recl B, Restaurants C
VHERE B.rid
RECOVMEND( 10) B.uid =

= Crid AND C.location = 'New York Gity’

mendation algorithm USI NG SVD Q4: SELECT C. nane FROM Rest aurantRecl B, Restaurants C
WHERE B.rid = C.rid AND C.location = 'Riva Del Garda’
RECOMMEND( 10) B.uid =
PapersRec CREATE RECOMVENDER Paper sRec Qs5: SELECT F.titl e FROM PapersRec D, Papers F
VLDB 2013 paper recom- USERS FROM Aut hors KEY aid WHERE F.pid = D.pid AND F. venue=" VLDB2013’
mender built with content-| |tems FROM Papers KEY pid RECOMMEND( 10) D.aid = 100
based filtering recommendd- EVENTS FROM Ci t ati ons KEY ai d, pi d
tion algorithm USI NG ContentFilter Qg: SELECT F.title, G session, Gtine
FROM Paper sRec D, Papers F, VLDB2013Program G
WHERE D.pid = F.pid AND G pid = F.pid AND
F. venue=' VLDB2013’ AND G Day =
RECOMMEND( 10) D. aid = 100
Table 1: RecDB Applications SQL.
Prediction Your Movie Restaurant ‘m Ny = [’l’%
or Rating 3 Rating Information R (% i z 7
FAKK  [Notseen 3] Shawshank Red The (1994) DVD infefma Tuner st Recommendation ; s
———— Crime, Drama A > S
> % Nicollet Nicollet
[add tag] Popular tags: based on a book B I3 K] B 302 twist ending B EBED W;’Z?:;“ ; Island siand
e dfath DVD infol Haal e 1ber of t t
**** Not seen iy Crime, Dra‘ll-'::(.lhg:“z}:sh/[llallan = e Hume f :
[add tag] Popular tags: organized crime BI302 | Mafia EIEAED | 0scar (Best Picture) EIE3IQ Geo-Location Aware
Recommendation
b2 e b 1 Not seen 4 Sand of Brothers HB0) 200 ‘A)]‘arﬂ')me|rmdn‘ﬂag‘aneTur\ef il ol Recommendation
[2dd tag) Popular tags: true story B3I based on 2 book EIESEY| world war 1| B E3ED v
Y o
P2 & b 1 Usual , The (1995) DVD infolimdb|fiag]| Tuner alia '
%,

Not seen 4 i
= Crime, Mystery Thriller - English, Hungarian, Spanish, French

[add tag] Popular tags: organized crime B2 | Kevin Spacey B K3 K| twist ending E1E302

KRR Notseen ) Schindler's List (1993) DVD VHS infolimdblfiag]:
Drama; War

Figure 2: MovieLens: Movie recommendation website.

Tuner ilis

the user specifies a recommenfié&ecomender] that is har-
nessed by the system to produceecommended items for user
USER.I D. To execute a recommendation quéRgcDBinvokes an
operator, nameBecomrend, that is responsible for evaluating the
user/item recommendation scores for all items unseen hyutbey-
ing user. When a user asks for recommendationRéeonmend
operator calculates the recommendation sd®¢eScore , based
on the selected recommendation algorithm (see EquatiofoR),
all candidates items and selects the top-k items with thbdsg
RecScore value and returns them to the usBecomend is in-
tegrated with other relational operators (eSg| ect , Pr oj ect
Joi n)in the query pipeline.

3. DEMONSTRATION SCENARIOS

In this section, we present two existing real life applioas for
which we employRecDBas the underlying system for demonstra-
tion purpose: (1) Movilens: Movie Recommendation Applicat
and (2) Sindbad: Restaurant Recommendation Applicatiam- F
thermore, we developed an application that recommendsrpape
presented in VLDB 2013 to the conference attendees basdution t
publication history. Table 1 shows how to create and quergme
menders, irRecDB for the three aforementioned applications.

3.1 MovieLens: Movie Recommendation

Figure 3 depicts a screenshot from MovieLens—movie rec-
ommendation application.

plication consists of three tables: (Users (uid, nane):

The data set leveraged by this ap-

w ‘ ,Fogu de Chéo

Minneapolis
645 Hennepin Avenue, Minneapolis

e L) Sg e
g, &
s'n
&
Dowl (own 8§
*“f Minneapolis g, ]

slis e
28

rate me!

e = X & A R

Figure 3: Sindbad: Restaurant recommendation website.

the set of users that contains information about all usegs re
istered with MyRest. Each user tuple consists of a user ID
and name. (2Mbvies (md, title, genre): the set of
movies saved in the database; each movie has a unique ID and
name. (3)Ratings (uid, md, rating, tinestanp):

The history of ratings such that each rating represents hoghra

user liked a movie she/he watched.

The first row in Table 1 gives the details of tHeREATE
RECOVMMENDER SQL statement used to decldvievi eRec, arec-
ommender that is created on top of the Users, Movies, and Rat-
ings database tables. We specify the item-item collabherdii-
tering method to be applied to the declared recommenderryQue
Q: retrieves five movie recommendations usiMpvi eRec.

Movi eRec is placed in theFROMstatement of the issued query.
The user, for whom the recommendation needs to be generated
(A.uid = 1), is passed ilRECOMVEND( 5) clause. Q recom-
mends fiveComedymovies to user4. ui d = 10) and returns the

title (ti t | e) of each movie.

3.2 Sindbad: Restaurant Recommendation
Figure 3 shows a screenshot 8indbad restaurant recom-
mendation service. The data set leveraged by this applica-

tion consists of three tables: (L)sers (uid): that con-
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tains IDs of all registered users, (Bestaurants (rid,
nane, | ocati on): the set of restaurants saved in the database

along with the session name, the day/time in which the paper i
presented, as well as the presentation location (e.g.naaie).

such that each restaurant has a name and a spatial loca- The lastrow in Table 1 gives the SQL used for building the pape

tion (i.e., city), and (3)Checklns (uid, rid, visited,
t i mest anp) : The history of check-ins that represents whether a
user has visited a restaurants before. In such caseithet ed
field is set one if the user visited the restaurant, and zéreraise.
The application generates restaurant recommendationeis us
based upon their spatial locations. We creRast aur ant Rec;
a recommender that builds a singular value decompositid}S
recommendation model usigheckl ns table as the user/item
events matrix. A user visiting New York City’ asks for
restaurant recommendation by issuing query. QFor Q;, the
user states the current user location using traditional SQera-
tors WHERE B.iid = C.iid AND C.location = ' New
York City’). RecDBtherefore produces a set of ten restaurants
by passing the user IDB( ui d = 1) to the RECOMVEND( 10)
clause. Similarly, Q recommends ten restaurants iRi va Del
Garda’ totheuserdi d = 10).

3.3 VLDB 2013 Papers Recommendation

Figure 3 exhibits a screenshot of the paper recommendation
application. We leverage the DBLP citation database todbuil
an application that recommends papers to VLDB 2013 attendee

such that the recommended papers are presented in the -confer

ence. The database schema is as follows:A(t)hor s (ai d,

dbl p_.nane) : a table that contains a set 600 authors that
publish papers in database venues (i.e., VLDB, SIGMOD, ICDE
EDBT). Each user tuple consists of an author identifard),
and the author name as it appears in DBLP.R@per s (pi d,
title, abstract, venue): the set of papers published by
any author in theAut hor s table in database venues (including
VLDB 2013). Each tuple contains a paper identifigr ¢), title of

the papert(i t | e), the abstract content, and the venue in which
the paper is published/énue). (3)Citations (aid, pid,
cited, timestanp): The history of citations such that each
citation represents whether an author has cited a papiet.ed

is a boolean field; it is set to one if the auttaird has cited pa-
perpi d, and zero otherwise. (4LDB2013Pr ogram (pi d,
aid, session,Day,tinme,|ocation): that contains the
VLDB 2013 conference schedule. Each entry represents a pape

recommendation application. We create a content-filterogm-
mender Cont ent Fi | t er [2]) that leverages the papers abstracts
content and th€i t at i ons table to recommend users new papers
(in VLDB 2013) that are similar (in content) to other papereyt
cited before. Using this application, the demo attendee asky
for papers recommendation by issuing queries simila@toand

Qs in table 1. For instance)s recommends VLDB 2013 papers
that correspond to the top-k papers for which the conteninis s
ilar to the papers cited by the querying user befage. performs
the same functionality with the extra feature of recommegdinly
papers that are scheduled to be presented in the second they of
conference. The idea is to get real time paper recommemdatio
for the conference attendees. We also allow the user to ehmos
specific conference day to get paper recommendation aogydi
For more interactivity, we allow the demo attendee to issl+a@c
queries usingsqgl
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