
RecDB in Action: Recommendation Made Easy in
Relational Databases ∗

Mohamed Sarwat
University of Minnesota, Twin Cities

Minneapolis, MN 55455

sarwat@cs.umn.edu

James Avery
University of Minnesota, Twin Cities

Minneapolis, MN 55455

javery@cs.umn.edu

Mohamed F. Mokbel
University of Minnesota, Twin Cities

Minneapolis, MN 55455

mokbel@cs.umn.edu

ABSTRACT
In this paper, we demonstrateRecDB; a full-fledged database sys-
tem that provides personalized recommendation to users. Weim-
plementedRecDBusing an existing open source database system
PostgreSQL, and we demonstrate the effectiveness ofRecDBus-
ing two existing recommendation applications (1) Restaurant Rec-
ommendation, (2) Movie Recommendation. To make the demo
even more interactive, we showcase a novel application thatrecom-
mends research papers presented at VLDB 2013 to the conference
attendees based on their publication history in DBLP.

1. INTRODUCTION
Recommender systems have grabbed significant attention in both

commercial [3, 4, 7] and academic [1, 2, 5, 6, 9] settings. Themain
objective of a recommender system is to suggest new interesting
items to users from a large pool of items. Recommender systems
are implicitly employed on a daily basis to recommend movies
(e.g., NetFlix), friends (e.g., Facebook), news articles (e.g., Google
News) [4], books/products (e.g., Amazon) [7], and Microblog posts
(e.g., Twitter). For instance, Netflix reported that75% of Movies
users watch on Netflix is from recommendation.

Recommendation techniques exploit the history of events per-
formed by the system users in order to extract a set of interesting
items for each user. These events might be users clicks (i.e., web-
site links visited), users opinions (e.g., movie ratings),or users pur-
chases (e.g., buying a product on Amazon). In technical terms, a
recommender system takes as input a set of usersU , itemsI , and
user/item eventsR and estimates a utility functionF(u, i) that pre-
dicts how much a certain useru ∈ U will like an item i ∈ I such
thati has not been already seen (or watched, consumed...) byu [2].

Currently, to support the recommendation functionality inany
application, a developer must implement the recommendation util-
ity estimation as well as the recommendation query execution al-
gorithms at the application layer. That is considered a hassle for a
novice application developer who might not be quite familiar with
efficient recommender system implementations. An application

∗This work is supported in part by the National Science Foundation
under Grants IIS-0952977 and IIS-1218168.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10...$ 10.00.

developer would prefer to declaratively create and query recom-
menders and save the effort to focus on the main application logic.
Moreover, optimizing recommendation queries might be tedious
especially that most applications integrate (e.g.,JOIN) generated
recommendation with other data to enrich the end-user experience.

In this paper, we demonstrateRecDBa full-fledged database
system that produces personalized recommendations to the sys-
tem users. Integrated with an open source relational DBMS (i.e.,
PostgreSQL),RecDBuses SQL to seamlessly integrate the recom-
mendation functionality with traditional relational operators, i.e.,
SELECT, PROJECT, JOIN. To this end,RecDBintroduces a new
SQL statement,CREATE RECOMMENDER, that takes the input
user/item events data, internally runs the recommendationalgo-
rithm, and creates the data structures necessary to generate rec-
ommendations.RecDBtherefore employs a new SQL operator,
RECOMMEND, that leverages the initialized data structures to gener-
ate recommendations to the querying user. We summarize the main
features ofRecDB, as follows.

• Usability: The system is easily used and configured so that
a novice application developer can define a variety of recom-
menders that fits the application needs in few lines of code.
RecDBhelps the community building anout-of-the-boxtool
to implement a myriad of recommendation applications.

• Flexibility : RecDBis flexible in terms of defining a recom-
mender using a wide range of popular recommendation al-
gorithms (e.g., item-based/user-based collaborative filtering,
singular value decomposition), presented in the literature and
implemented insideRecDB.

• Seamless Integration: The system is able to seamlessly in-
tegrate the recommendation functionality in the traditional
SPJ, i.e.,SELECT, PROJECT, JOIN, query pipeline to ex-
ecute rich recommendation queries.

• Efficiency: RecDBprovides near real-time personalized rec-
ommendation to a high number of users over a large pool of
items, and enormous user/item events matrix.

To proveRecDBeffectiveness, we demonstrate the system using
two (existing) real life applications: (1)MovieLens[8]: a system
developed at University of Minnesota that delivers movie recom-
mendation to≈ 72K end-users world wide and (2)Sindbad[10]:
A location-aware social networking system developed at Univer-
sity of Minnesota and provides a restaurant recommendationser-
vice [11] to its users. We replace the underlying recommender sys-
tem, already-deployed for both applications, withRecDBto show
the effectiveness of our system and its applicability to real life rec-
ommendation scenarios. Moreover, we build a new application
that leverages the publication history (i.e., retrieved from DBLP) of
VLDB 2013 conference attendees and recommends papers to them

Recommender Creation SQL Recommendation Query SQL

Recommender Initialization

Recommendation Models, Data

Structures, and Maintained Views

Create / Drop

Recommender

Recommendation

Query / Answer

Recommender Statistics

& Histograms

Application Developer System Client

L
a
y
e
r
I

L
a
y
e
r
II

L
a
y
e
r
II
I

Users Items Events
Recommender

Input Data

RecDB

Query Processing

Figure 1: RecDB System Overview.

accordingly. For the paper recommendation application, wefur-
thermore allow the demo attendee to issue ad-hoc recommendation
queries usingpsql, i.e., PostgreSQL client, to show the simplicity
of integrating recommendation functionality with other relational
operators in PostgreSQL.

2. SYSTEM OVERVIEW
Figure 1 highlights the layered architecture ofRecDB.

Input Data. RecDB assumes the following data, as input:
(1) Users: a set of usersU = {u1, ..., un}. (2) Items: a set of
itemsI = {i1, ..., im}. (3) Events: Each useruj performs actions
or expresses opinions about a set of itemsIuj

⊆ I. Events can
be a numeric rating (e.g., the Netflix scale of one to five stars), or
unary (e.g., Facebook “likes”, Foursquare “check-ins”, orAmazon
purchases).RecDBconsists of three layers, as follows:
Layer I: SQL Layer: This layer supports two new SQL clauses:
(1) Recommender Creation SQL, and (2) Recommender Query
SQL. These new SQL clauses are leveraged by the application de-
veloper and the clients in declaring and querying personalized rec-
ommenders. The parsed SQL statements are then passed to the
relevant component in theprocessing layer.
Layer II: Processing Layer: As given in Figure 1, this layer
consists of two main components, namely (1)Recommender Ini-
tialization: This component creates the necessary recommenda-
tion models, data structures, and views for a created recommender.
(2) Query processing: This component efficiently executes recom-
mendation queries over a created recommender and returns the rec-
ommendation answer back to the user.
Layer III: Indexing and Storage Layer: This layer stores a set
of data structures and recommendation models necessary to pro-
duce recommendations. For efficient query execution,RecDBalso
stores a set of views that contains the final recommendation scores
generated using the recommendation model. The system also saves
statistics about created recommenders and query/update workloads
that are harnessed by thequery processingcomponent.

2.1 Recommender Creation
The application developer creates a new recommender using the

CREATE RECOMMENDER SQL statement, as follows:

CREATE RECOMMENDER [Recommender Name]
USERS FROM [Users Table] KEY Users.uid
ITEMS FROM [Items Table] KEY Items.iid
EVENTS FROM [Events Table] KEY Events.eid
USING [Recommendation Algorithm]

The application developer specifies the following parameters:
(1) Recommender name: A unique name assigned to the newly
declared Recommender. (2)Users Table, Items Table,
and Events Table: names of SQL tables that contains the
users, items, and user/item events information. The users,items,
and events data tables are specified in theUSERS FROM, ITEMS
FROM, andEVENTS FROM SQL clauses. (4)Recommendation
Algorithm: the application developer may choose to build the
recommender using several recommendation algorithms supported
by RecDB(e.g., Item-Item collaborative filtering, User-User col-
laborative filtering, singular value decomposition), by specifying
the recommendation algorithm in theUSING clause.

2.2 Recommendation Algorithms
Most recommendation algorithms perform two main steps:

Step I: Model Building: That step is performed by the recom-
mender initialization component when the application developer
issues aCREATE RECOMMENDER statement toRecDB. That step
consists of building a recommendation modelRecModelusing the
recommender input data. For instance, for the Item-Item Collabo-
rative Filtering algorithm, we generate an items similarity list. To
compute the similaritySimScore(ip, iq), we represent each item as
a vector in the user-events space of the user/item events matrix.
Many similarity functions have been proposed (e.g., Cosine); the
Cosine similarity is calculated as given in equation 1.

SimScore(ip, iq) =
~ip · ~iq

‖~ip‖‖~iq‖
(1)

Step II: Recommendation Generation:This step is performed by
the query processing component when a user issues a recommen-
dation query toRecDB. This step utilizes theRecModel(e.g.,
items similarity list) created inStep I to predict a recommenda-
tion score,RecScore(u, i) (equation 2), for each user/item pair.
RecScore(u, i) reflects how much each useru likes itemi.

RecScore(u, i) =

∑
l∈L

sim(i, l) ∗ ru,l
∑

l∈L
|sim(i, l)|

(2)

RecDBusers may select an algorithm among a variety of recom-
mendation algorithms that fits their application needs. Examples
are as follows: (1) Item-Item Collaborative Filtering withCosine
Similarity Function (abbr. ItemCosCF), and its variants (2) User-
User Collaborative filtering (abbr. UserCosCF), and its variants
(3) Regularized Gradient Descent Singular Value Decomposition
(abbr. SVD). (4) Content-based Filtering (abbr. ContentFilter).

2.3 Recommendation Query
Once a recommender is initialized, users can issue recommenda-

tion queries over that initialized recommender. A recommender is
exposed to the querying user as a virtual SQL table that has a virtual
schema, (uid,iid,RecScore), explained as follows: (1)uid:
ID of a user who exists in the users table, (2)iid: ID of an item in
the items table, (3)RecScore: a recommendation score (values
between 0 and 1) that predicts, i.e., based on the underlyingrecom-
mendation algorithm, how much the user would like the item.

In RecDB, we define a new clause namedRECOMMEND that is
integrated with traditional SQL clauses, e.g.,SELECT, FROM, and
WHERE clauses, as follows:

SELECT [Select Clause]
FROM [Recommender], [Tables]
WHERE [Where Clause]
RECOMMEND(k) User_ID

The RECOMMEND clause is responsible for generatingk recom-
mendations using an initialized recommender. In theFROM clause,

Recommender Recommender Declaration SQL Recommendation Query SQL

MovieRec
Movie recommender built us-
ing the item-item CF (ItemCF)
recommendation algorithm

CREATE RECOMMENDER MovieRec
USERS FROM Users KEY uid
Items FROM Movies KEY mid
EVENTS FROM Ratings KEY uid,mid
USING ItemCosCF

Q1: SELECT A.mid FROM MovieRec A RECOMMEND(5) A.uid = 1

Q2: SELECT E.name FROM MovieRec A, Movies E
WHERE A.mid = E.mid AND E.genre = ’Comedy’
RECOMMEND(5) A.uid = 10

RestaurantRec
Restaurant recommender built
using the singular value de-
composition (SVD) recom-
mendation algorithm

CREATE RECOMMENDER RestaurantRec
USERS FROM Users KEY uid
Items FROM Restaurants KEY rid
EVENTS FROM CheckIns KEY uid,rid
USING SVD

Q3: SELECT C.name FROM RestaurantRec1 B, Restaurants C
WHERE B.rid = C.rid AND C.location = ’New York City’
RECOMMEND(10) B.uid = 1

Q4: SELECT C.name FROM RestaurantRec1 B, Restaurants C
WHERE B.rid = C.rid AND C.location = ’Riva Del Garda’
RECOMMEND(10) B.uid = 10

PapersRec
VLDB 2013 paper recom-
mender built with content-
based filtering recommenda-
tion algorithm

CREATE RECOMMENDER PapersRec
USERS FROM Authors KEY aid
Items FROM Papers KEY pid
EVENTS FROM Citations KEY aid,pid
USING ContentFilter

Q5: SELECT F.title FROM PapersRec D, Papers F
WHERE F.pid = D.pid AND F.venue=’VLDB2013’
RECOMMEND(10) D.aid = 100

Q6: SELECT F.title, G.session, G.time
FROM PapersRec D, Papers F, VLDB2013Program G
WHERE D.pid = F.pid AND G.pid = F.pid AND
F.venue=’VLDB2013’ AND G.Day = 2
RECOMMEND(10) D.aid = 100

Table 1: RecDB Applications SQL.

Figure 2: MovieLens: Movie recommendation website.

the user specifies a recommender[Recommender] that is har-
nessed by the system to producek recommended items for user
USER ID. To execute a recommendation query,RecDBinvokes an
operator, namedRecommend, that is responsible for evaluating the
user/item recommendation scores for all items unseen by thequery-
ing user. When a user asks for recommendation, theRecommend
operator calculates the recommendation scoreRecScore , based
on the selected recommendation algorithm (see Equation 2),for
all candidates items and selects the top-k items with the highest
RecScore value and returns them to the user.Recommend is in-
tegrated with other relational operators (e.g.,Select, Project,
Join) in the query pipeline.

3. DEMONSTRATION SCENARIOS
In this section, we present two existing real life applications for

which we employRecDBas the underlying system for demonstra-
tion purpose: (1) Movilens: Movie Recommendation Application,
and (2) Sindbad: Restaurant Recommendation Application. Fur-
thermore, we developed an application that recommends papers
presented in VLDB 2013 to the conference attendees based on their
publication history. Table 1 shows how to create and query recom-
menders, inRecDB, for the three aforementioned applications.

3.1 MovieLens: Movie Recommendation
Figure 3 depicts a screenshot from MovieLens—movie rec-

ommendation application. The data set leveraged by this ap-
plication consists of three tables: (1)Users (uid, name):

Figure 3: Sindbad: Restaurant recommendation website.

the set of users that contains information about all users reg-
istered with MyRest. Each user tuple consists of a user ID
and name. (2)Movies (mid, title, genre): the set of
movies saved in the database; each movie has a unique ID and
name. (3)Ratings (uid, mid, rating, timestamp):
The history of ratings such that each rating represents how much a
user liked a movie she/he watched.

The first row in Table 1 gives the details of theCREATE
RECOMMENDER SQL statement used to declareMovieRec, a rec-
ommender that is created on top of the Users, Movies, and Rat-
ings database tables. We specify the item-item collaborative fil-
tering method to be applied to the declared recommender. Query
Q1 retrieves five movie recommendations usingMovieRec.
MovieRec is placed in theFROM statement of the issued query.
The user, for whom the recommendation needs to be generated
(A.uid = 1), is passed inRECOMMEND(5) clause. Q2 recom-
mends fiveComedymovies to user (A.uid = 10) and returns the
title (title) of each movie.

3.2 Sindbad: Restaurant Recommendation
Figure 3 shows a screenshot ofSindbad restaurant recom-

mendation service. The data set leveraged by this applica-
tion consists of three tables: (1)Users (uid): that con-

Figure 4: VLDB 2013 Papers Recommendation Application.

tains IDs of all registered users, (2)Restaurants (rid,
name, location): the set of restaurants saved in the database
such that each restaurant has a name and a spatial loca-
tion (i.e., city), and (3)CheckIns (uid, rid, visited,
timestamp): The history of check-ins that represents whether a
user has visited a restaurants before. In such case, thevisited
field is set one if the user visited the restaurant, and zero otherwise.

The application generates restaurant recommendation to users
based upon their spatial locations. We createRestaurantRec;
a recommender that builds a singular value decomposition (SVD)
recommendation model usingCheckIns table as the user/item
events matrix. A user visiting’New York City’ asks for
restaurant recommendation by issuing query Q3. For Q3, the
user states the current user location using traditional SQLopera-
tors (WHERE B.iid = C.iid AND C.location = ’New
York City’). RecDBtherefore produces a set of ten restaurants
by passing the user ID (B.uid = 1) to theRECOMMEND(10)
clause. Similarly, Q4 recommends ten restaurants in’Riva Del
Garda’ to the user (uid = 10).

3.3 VLDB 2013 Papers Recommendation
Figure 3 exhibits a screenshot of the paper recommendation

application. We leverage the DBLP citation database to build
an application that recommends papers to VLDB 2013 attendees
such that the recommended papers are presented in the confer-
ence. The database schema is as follows: (1)Authors (aid,
dblp name): a table that contains a set of500 authors that
publish papers in database venues (i.e., VLDB, SIGMOD, ICDE,
EDBT). Each user tuple consists of an author identifier (aid),
and the author name as it appears in DBLP. (2)Papers (pid,
title, abstract, venue): the set of papers published by
any author in theAuthors table in database venues (including
VLDB 2013). Each tuple contains a paper identifier (pid), title of
the paper (title), the abstract content, and the venue in which
the paper is published (venue). (3)Citations (aid, pid,
cited, timestamp): The history of citations such that each
citation represents whether an author has cited a paper.cited
is a boolean field; it is set to one if the authoraid has cited pa-
per pid, and zero otherwise. (4)VLDB2013Program (pid,
aid, session,Day,time,location): that contains the
VLDB 2013 conference schedule. Each entry represents a paper

along with the session name, the day/time in which the paper is
presented, as well as the presentation location (e.g., hallname).

The last row in Table 1 gives the SQL used for building the paper
recommendation application. We create a content-filteringrecom-
mender (ContentFilter [2]) that leverages the papers abstracts
content and theCitations table to recommend users new papers
(in VLDB 2013) that are similar (in content) to other papers they
cited before. Using this application, the demo attendee mayask
for papers recommendation by issuing queries similar toQ5 and
Q6 in table 1. For instance,Q5 recommends VLDB 2013 papers
that correspond to the top-k papers for which the content is sim-
ilar to the papers cited by the querying user before.Q6 performs
the same functionality with the extra feature of recommending only
papers that are scheduled to be presented in the second day ofthe
conference. The idea is to get real time paper recommendation
for the conference attendees. We also allow the user to choose a
specific conference day to get paper recommendation accordingly.
For more interactivity, we allow the demo attendee to issue ad-hoc
queries usingpsql.

4. REFERENCES
[1] Z. Abbassi and L. V. S. Lakshmanan. On Efficient Recommendations for

Online Exchange Markets. InICDE, 2009.
[2] G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions.TKDE,
17(6), 2005.

[3] S. Amer-Yahia, A. Galland, J. Stoyanovich, and C. Yu. From del.icio.us to
x.qui.site: recommendations in social tagging sites. InSIGMOD, 2008.

[4] A. Das et al. Google News Personalization: Scalable Online Collaborative
Filtering. InWWW, 2007.

[5] B. Kanagal, A. Ahmed, S. Pandey, V. Josifovski, J. Yuan, and L. G. Pueyo.
Supercharging Recommender Systems using Taxonomies for Learning User
Purchase Behavior.PVLDB, 5(10):956–967, 2012.

[6] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. FlexRecs: Expressing and
Combining Flexible Recommendations. InSIGMOD, 2009.

[7] G. Linden, B. Smith, and J. York. Amazon.com Recommendations:
Item-to-Item Collaborative Filtering.IEEE Internet Computing, 7(1), 2003.

[8] MovieLens: http://www.movielens.org/.
[9] S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu. Space efficiency in

group recommendation.VLDB Journal, 19(6), 2010.
[10] M. Sarwat, J. Bao, A. Eldawy, J. J. Levandoski, A. Magdy,and M. F. Mokbel.

Sindbad: A Location-based Social Networking System. InSIGMOD, 2012.
[11] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel.LARS*: A Scalable

and Efficient Location-Aware Recommender System. InTKDE, 2013.

