
A Demonstration of SpatialHadoop:
An Efficient MapReduce Framework for Spatial Data

∗

Ahmed Eldawy

Department of Computer Science and
Engineering

University of Minnesota

eldawy@cs.umn.edu

Mohamed F. Mokbel

Department of Computer Science and
Engineering

University of Minnesota

mokbel@cs.umn.edu

ABSTRACT

This demo presents SpatialHadoop as the first full-fledged MapRe-
duce framework with native support for spatial data. Spatial-
Hadoop is a comprehensive extension to Hadoop that pushes spa-
tial data inside the core functionality of Hadoop. SpatialHadoop
runs existing Hadoop programs as is, yet, it achieves order(s) of
magnitude better performance than Hadoop when dealing with spa-
tial data. SpatialHadoop employs a simple spatial high level lan-
guage, a two-level spatial index structure, basic spatial components
built inside the MapReduce layer, and three basic spatial opera-
tions: range queries, k-NN queries, and spatial join. Other spa-
tial operations can be similarly deployed in SpatialHadoop. We
demonstrate a real system prototype of SpatialHadoop running on
an Amazon EC2 cluster against two sets of real spatial data ob-
tained from Tiger Files and OpenStreetMap with sizes 60GB and
300GB, respectively.

1. INTRODUCTION
MapReduce-like systems, e.g., Hadoop, have been around for

years and was proven to be an efficient framework for big data
analysis for many applications, e.g., machine learning [3], tera-byte
sorting [9], and graph processing [1]. In the mean time, there is a
recent explosion of spatial datasets generated by different sources,
e.g., smart phones, medical devices, and space telescopes. Unfor-
tunately, Hadoop is ill-equipped for supporting spatial data as its
core framework is unaware of spatial data properties. Existing at-
tempts to process spatial data on Hadoop focus mainly on specific
data types and operations, e.g., range queries on trajectories [6] and
kNN join on points [5, 13]. Also, the efficiency of such operations
is limited as the internal Hadoop system is unaware of spatial data.

In this demo, we present SpatialHadoop as the first full-fledged
MapReduce framework with native support for spatial data; avail-
able as open-source at http://spatialhadoop.cs.umn.edu/. Spatial-
Hadoop is a comprehensive extension to Hadoop (around 12,000

∗This work is supported in part by the National Science Foundation
under Grants IIS-0952977 and IIS-1218168

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th ­ 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12

Copyright 2013 VLDB Endowment 2150­8097/13/10... $ 10.00.

Objects = LOAD ’points’ AS (id:int, x:int, y:int);
Result = FILTER Objects BY x < x2 AND x > x1

AND y < y2 AND y > y1;

(a) Range query in Hadoop

Objects = LOAD ’points’ AS (id:int, Location:POINT);
Result = FILTER Objects BY

Overlaps (Location, Rectangle(x1, y1, x2, y2));

(b) Range query in SpatialHadoop

Figure 1: Range query in Hadoop vs. SpatialHadoop

lines of code inside Hadoop) that pushes spatial constructs and the
awareness of spatial data inside Hadoop code base. As a result,
SpatialHadoop works in a similar way to Hadoop where programs
are written in terms of map and reduce functions, and hence exist-
ing Hadoop programs can run as is on SpatialHadoop. Yet, if the
programs deal with spatial data, SpatialHadoop will have order(s)
of magnitude better performance than Hadoop. For example, Fig-
ures 1(a) and 1(b) show how to express a spatial range query in
Hadoop and SpatialHadoop, respectively. For 70M spatial objects
on a 20-nodes cluster, Hadoop executes this query in 200 seconds,
while SpatialHadoop executes the same query in 2 seconds.

SpatialHadoop pushes its spatial constructs in all layers of
Hadoop, namely, language, storage, MapReduce and operations

layers. In the language layer, a simple high level language is pro-
vided to simplify spatial data analysis for non-technical users. In
the storage layer, a two-layered spatial index structure is provided
where the global index partitions data across nodes while the local

index organizes data in each node. This structure is used to build
a grid index [7], an R-tree [4] or an R+-tree [11]. In the MapRe-
duce layer, two new components are added to allow MapReduce
programs to access indexed files as input, namely, SpatialFileSplit-
ter and SpatialRecordReader. The SpatialFileSplitter exploits the
global index by pruning partitions that do not contribute to the
query answer, while the SpatialRecordReader exploits the local in-
dex to efficiently access records within each partition. The opera-
tions layer contains a number of spatial operations (range query,
kNN and spatial join), implemented using the indexes and new
components in the MapReduce layer. Other spatial operations can
be added in a similar way.

SpatialHadoop is distributed as an open source, which allows
contributors in the research community to further extend its func-
tionality. The basic components shipped in the core of Spatial-
Hadoop help in implementing more spatial operations in different
applications efficiently. As case studies, SpatialHadoop already has
three spatial operations, range queries, k-nearest-neighbor queries,
and spatial join. We envision that SpatialHadoop will act as a re-
search vehicle where various researchers will contribute their spa-



Storage

MapReduce

Operations

SpatialHadoop

MasterSlaves

Map/Reduce

Tasks

Configured

MapReduce Job

Compiled

MapReduce Program

Spatial

Queries

Query

Results

Index

Information

Storage/Processing

Nodes

Language

Spatial 

Operations

System AdminCasual UserDeveloper

Config

Files 

Grid File, R-tree

R+-tree Indexes

SpatialRecordReader

SpatialFileSplitter

RangeQuery,

kNN, SpatialJoin

File Data

System

Parameters

Figure 2: SpatialHadoop architecture

tial operations and analysis techniques inside, providing a rich sys-
tem to be widely used by developers, practitioners, and researchers.

We will demonstrate SpatialHadoop with its real system pro-
totype running on an Amazon EC2 cluster against two sets
of real spatial data obtained from Tiger Files [12] and Open-
StreetMap [10]. Tiger files include 70 Million spatial objects (size
of 60GB) of road segments, water features, and other geographic
information in USA. OpenStreetMap includes map information
from the whole world including road segments, points of interest,
and buildings boundaries with a total size of 300GB.

2. SpatialHadoop ARCHITECTURE
Figure 2 depicts the system architecture of SpatialHadoop. A

SpatialHadoop cluster contains one master node that accepts a user
query, breaks it into smaller tasks, and carries out the tasks on
multiple slave nodes. There are three types of users who interact
with SpatialHadoop, casual users, developers and administrators.
Casual users are non-technical users who access SpatialHadoop
through the provided language to process their datasets. Devel-
opers are more advanced users who have deeper understanding of
the system and can implement new spatial operations, which could
be specific to some applications. Administrators are able to tune up
the system through adjusting system parameters in the configura-
tion files provided with SpatialHadoop installation.

SpatialHadoop adopts a layered design of four main layers,
namely, language, storage, MapReduce, and operations layers.
The language layer provides a simple high level SQL-like language
that supports spatial data types and operations. The storage layer
employs a two-level index structure of global and local spatial in-
dex structures. The global index partitions data across computation
nodes while the local index organizes data inside each node. The
MapReduce layer has two new components, namely, SpatialFile-

Splitter and SpatialRecordReader that exploits the global and local
indexes, respectively, to prune data that do not contribute to the
query answer. The operations layer encapsulates the implementa-
tion of various spatial operations that take advantage of the spatial
indexes and the new components in the MapReduce layer. Spa-
tialHadoop is initially equipped with an efficient implementation
of three basic spatial operations, namely, range query, kNN, and
spatial join. Other spatial operations can be added to the opera-
tions layer using a similar approach of the implementation of basic
spatial operations.

3. LANGUAGE LAYER
SpatialHadoop provides a simple high level language that sim-

plifies the interaction with the system for non-technical users. This
language provides a built-in support for spatial data types, spa-
tial primitive functions, and spatial operations. Spatial data types
(Point, Rectangle, and Polygon) are used to define the
schema of an input file upon its loading process. The spatial prim-
itive functions Distance, Overlaps, and MBR are applied to
spatial attributes to calculate the distance between the centroid of
two shapes, find whether two shapes overlap or not, and compute
the minimal bounding rectangle of a polygon, respectively. The
spatial operations range query, k-nearest neighbor, and spatial join
are applied to input files with spatial attributes and produce the re-
sults in another output file.

Rather than creating a new spatial language from scratch, Spa-
tialHadoop extends Pig Latin [8], a high level language for Hadoop
by adding new spatial constructs while preserving the original
functionality. In particular, SpatialHadoop language overrides the
keywords FILTER and JOIN, when their parameters have spa-
tial predicate(s), to perform range query and spatial join, respec-
tively. For example, when the FILTER keyword is used with the
Overlaps predicate, SpatialHadoop reroutes its processing to the
range query operation. For k nearest neighbor queries, a new key-
word KNN is introduced. Following is an example that calculates
the 100 nearest houses to the query point query loc.

houses = LOAD ’houses’ AS (id:int, loc:point);

nearest_houses = KNN houses WITH_K=100

USING Distance(loc, query_loc);

4. STORAGE LAYER
In the storage layer, SpatialHadoop adds new spatial indexes that

are well adapted for the MapReduce environment. These indexes
overcome a limitation in Hadoop, which supports only non-indexed
heap files. There are two challenges that prevent traditional spa-
tial indexes to be used as-is in Hadoop. First, traditional indexes
are designed for the procedural programming paradigm while Spa-
tialHadoop uses the MapReduce programming paradigm. Second,
traditional indexes are designed for local file systems while Spatial-
Hadoop uses the Hadoop Distributed File System (HDFS), which
is inherently limited as files can be written in an append only man-
ner, and once written, they cannot be modified. To overcome these
challenges, SpatialHadoop organizes its index in two levels, global

and local indexing. The global index partitions data across nodes
in the cluster while the local index organizes data efficiently within
each node. The separation of global and local indexes lends itself
to the MapReduce programming paradigm where the global index
is used for preparing the MapReduce job while the local indexes
are used for processing map tasks. Breaking the file into smaller
partitions allows indexing each partition separately in memory and
writing it to a file in a sequential manner.

The global index is kept in the main memory of the master node
while each local index is stored as one file block (typically 64MB)
in a slave node. SpatialHadoop supports grid file [7], R-tree [4] and
R+-tree [11] indexes. An index is constructed for an existing file
by issuing the new file system command writeSpatialFile

introduced in SpatialHadoop, where the user specifies the input file,
column to index, and index type to construct.

An index is constructed in SpatialHadoop through a MapReduce
job that runs in three phases, namely, partitioning, local index-

ing, and global indexing. In the partitioning phase, a file is spa-
tially partitioned such that each partition is contained in a rectan-
gle while its contents fits in one file block (64MB). A grid index



partitions the space using a uniform grid while R-tree and R+-tree
use a distribution-aware R-tree partitioning which reads a random
sample from the input file, bulk loads this sample into a tempo-
rary in-memory R-tree, and uses the boundaries of the leaf nodes
of that R-tree for partitioning the whole file. Notice that in grid and
R+-tree, some records may be replicated if they overlap multiple
partitions while in R-tree each record is written to the best fitting
partition [4]. Replicated records are handled later in the query pro-
cessing to avoid producing duplicate results. In the local indexing
phase and according to the type of index being constructed, a local
index is created for each partition separately and flushed to a file
with one HDFS block which is annotated by the MBR of the parti-
tion. Since each partition has a fixed size (64MB), the local index is
constructed in memory before it is written to disk in one shot. The
third and final phase is global indexing where the files containing
local indexes are concatenated into one big file and a global index
is constructed to index all partitions using their MBRs as keys and
stored in main memory of the master node. In case of system fail-
ure, the global index is reconstructed from block MBRs only when
needed.

5. MAPREDUCE LAYER
The MapReduce layer in traditional Hadoop is designed to work

with non-indexed heap files as input. However, spatial operations in
SpatialHadoop take spatially indexed files as input, which requires
different handling. Moreover, some spatial operations, e.g., spatial
join, are binary operations that take two input files as input. To
be able to handle spatially indexed files, SpatialHadoop introduces
two new components in the MapReduce layer, namely, SpatialFile-

Splitter and SpatialRecordReader, that exploits the global and local
indexes, respectively, for efficient data access.

The SpatialFileSplitter takes as input one or two spatially in-
dexed files in addition to a user provided filter function. Then, it
uses the global index to prune file blocks that do not contribute to
the query answer (e.g., outside query range), based on their mini-
mal bounding rectangles which were assigned when the index was
created. In the case of binary operations where there are two in-
put files, the SpatialFileSplitter uses two global indexes, as one per
file, to select pairs of file blocks that need to be processed together
(e.g., overlapping blocks in spatial join). The SpatialRecordReader

utilizes the local index by allowing records in one block to be ac-
cessed through the local index instead of iterating over all records
one-by-one. It reads the local index from the assigned block and
passes a pointer to this index to the map function which utilizes
the index to select the processed records without the need to it-
erate over all records. Together, SpatialFileSplitter and Spatial-

RecordReader help developers writing many spatial operations as
MapReduce programs.

6. OPERATIONS LAYER
The spatial indexes introduced in the storage layer along with the

new components in the MapReduce layer give the possibility of re-
alizing many spatial operations efficiently in SpatialHadoop. In this
demonstration, we show the implementations of range query, kNN,
and spatial join as three case studies of how to exploit the new stor-
age and MapReduce layers in SpatialHadoop. Other spatial opera-
tions such as kNN join and shortest path can be also implemented
following a similar approach.

In range queries, the SpatialFileSplitter uses the global index to
select only the partitions that overlap the query range. Each of
the selected partitions goes through a SpatialRecordReader which
extracts the local index in that partition and executes a traditional

Figure 3: SpatialHadoop front end

range query on that index to find matching records. As some
records are replicated during indexing, the reference point dupli-
cate avoidance technique [2] is employed on the matching records
to ensure that each answer record is reported exactly once.

The k-nearest-neighbor operation is carried out in two iterations.
In the first iteration, the SpatialFileSplitter uses the global index to
select the partition that contains the query point. The local index in
that partition is extracted by the SpatialRecordReader and used to
find the kNN in that partition. To test whether the answer is correct
or not, a test circle is drawn with the query point as the center and
the distance to the k

th neighbor as radius. If the test circle fits
completely in the processed partition, the answer is correct. If it
overlaps with other partitions, a second iteration is carried out to
process those overlapping partitions.

For spatial join, the SpatialFileSplitter uses the two global in-
dexes in both files to find all pairs of overlapping partitions. Each
pair of overlapping partitions is processed by a SpatialRecor-

dReader, which uses the local indexes in both files to find over-
lapping records.

7. DEMONSTRATION SCENARIO
We deploy the real system prototype of SpatialHadoop (down-

loadable at http://spatialhadoop.cs.umn.edu/) on an Amazon EC2
cluster of 20 nodes. The cluster is loaded with two real datasets
obtained from Tiger files [12] and OpenStreetMap [10]. For Tiger
files, we extract three files that represent road segments, rivers, and
lakes in the US. From OpenStreetMap, we extract files that repre-
sent road segments, points of interest, parks, and buildings bound-
aries for the whole world. The attendee can access the Amazon
EC2 cluster through a front end machine (i.e., a laptop) while all
the processing is done by the cluster in the backend.

7.1 Front End
Figure 3 depicts the system front end, which is a querying and

visualization tool designed to help users and administrators to in-
teract with SpatialHadoop. On the left, there is a selection pane that
lists all files loaded in the system. Users can upload new files us-
ing the add button, or remove existing files using the delete button.
When a file is selected, the contents of this file are visualized on the
screen as shown in the figure. When more than one file is selected,
they are all visualized with different colors to help contrasting two
or more files. In the figure, blue and red lines present water areas
(rivers and lakes) and primary roads in US, respectively. The user
can then use the toolbar on top to perform a query (range query,
kNN or spatial join) with the selected file(s). The front end dis-
plays the progress of the query as it is running and once finished,
the results can be visualized.



Figure 4: Joining roads with rivers

7.2 Operations
First, attendee select one of the files by clicking it to visualize its

contents on the screen. The data is visualized by running a MapRe-
duce job that generates an image out of the data in the selected file.
The generated image only includes the spatial attributes of the file
and draws the records according to their type (point, rectangle, or
polygon). As depicted in Figure 3, the visualization can also dis-
play the boundaries of the global index used to index the displayed
file. This allows the attendee to compare the grid index to R-tree
and realize that the grid index is more suitable for uniformly dis-
tributed datasets while R-tree works better with skewed data. The
boundaries given in the figure are clearly obtained from an R-tree
as they are not uniform. Showing the index boundaries is optional
and is used to only show the system internals.

Once a file is selected, an attendee can issue a query on that file
by selecting an operation from the toolbar on the top. The available
operations are range query, kNN and spatial join. Only the spatial
join requires two files to be selected as it is a binary operation. As
shown in Figure 4, when an operation is selected, a dialog box is
displayed to the attendee to provide query parameters and output
file name. For the range query, the attendee provides the query
range as a rectangle defined by its two corner points. For the kNN,
the parameters are the query point and number of neighbors (k).
For spatial join, only the join predicate needs to be provided where
the default is the overlap predicate. An example of an interesting
query is to join parks with lakes to find all parks that have lakes
in them and visualize results on the screen. As the parameters of
the query are set, the front end displays the query written in the
spatial language of SpatialHadoop as shown in Figure 4. Once a
query is submitted to the system, the front end sends the query to
the back end for processing. As shown in Figure 5, the attendee
can see the progress of the query as it is running in the system. This
administration interface lists the progress of all running jobs as well
as all completed job. Subsequent queries can be submitted to the
system and they will run concurrently in the back end. Once a query
ends successfully, attendee can visualize the results on screen.

7.3 Comparison with Hadoop
To contrast SpatialHadoop with Hadoop, we also set up a sepa-

rate cluster of 20 nodes running traditional Hadoop. An attendee
can run the same query on both clusters (i.e., Hadoop and Spa-
tialHadoop clusters) and watch the progress of both of them side-
by-side. As the functionality of traditional Hadoop is preserved in
SpatialHadoop, non-spatial queries can still run in SpatialHadoop
without any overhead. This can be tested by the attendees by sub-
mitting a non-spatial query to both clusters and comparing the per-
formance of both clusters.

Figure 5: Progress of running jobs

7.4 Installation and Configuration
SpatialHadoop is open source and is publicly available on the

web. During the demonstration, we will show a quick setup guide
on how to install and run SpatialHadoop on a single machine in
a few minutes. To install SpatialHadoop, the first step is to down-
load the binaries as a compressed file and decompress it to the local
disk. Then, the installation is configured by editing some config-
uration files. After that, the SpatialHadoop server is started and
some example operations are executed to show the interaction with
the server. These steps are available on the official web page of
SpatialHadoop (http://spatialhadoop.cs.umn.edu/) and the attendee
will be able to see them in action.

8. REFERENCES
[1] Giraph. http://giraph.apache.org/.

[2] J.-P. Dittrich and B. Seeger. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE, pages
535–546, Mar. 2000.

[3] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald,
V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.
SystemML: Declarative Machine Learning on MapReduce.
In ICDE, Apr. 2011.

[4] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, June 1984.

[5] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient Processing
of k Nearest Neighbor Joins using MapReduce. PVLDB,
5:1016–1027, 2012.

[6] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query Processing of
Massive Trajectory Data Based on MapReduce. In
CLOUDDB, pages 9–16, Oct. 2009.

[7] J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File:
An Adaptable, Symmetric Multikey File Structure. TODS,
9(1):38–71, 1984.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-so-foreign Language for Data
Processing. In SIGMOD, June 2008.

[9] O. O’Malley. Terabyte Sort on Apache Hadoop. 2008.

[10] OpenStreetMap. http://www.openstreetmap.org/.

[11] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional Objects.
In VLDB, 1987.

[12] TIGER files.
http://www.census.gov/geo/www/tiger/.

[13] C. Zhang, F. Li, and J. Jestes. Efficient Parallel kNN Joins
for Large Data in MapReduce. In EDBT, Mar.


