StreamRec: A Real-Time Recommender System

Badrish Chandramouli* Justin J. Levandoski*®* Ahmed Eldawy? Mohamed F. Mokbel?

'Microsoft Research, Redmond, WA, badrishc@microsoft.com
2University of Minnesota, Minneapolis, MN, {justin,eldawy,mokbel}@cs.umn.edu

1. INTRODUCTION In this demonstration, we propoStreamReca recommender

Research and development of recommender systems has been 8YStém architecture that leverages a stream processing system [4,
vibrant field for over a decade, having produced proven methods 5]- StreamRe@ddresses the drawbacks of more traditional rec-
for “preference-aware” computing. Recommenders use commu- Ommender systems through two salient featuresRggl-time in-
nity opinion histories to help users identify interesting items from a Ccremental processingStreaming systems are architected for high-
considerably large search space (e.g., inventory from Amazon [7] throughput processing, where query operators are tuned for incre
movies from Netflix [9]). Personalization, recommendation, and Mental evaluation, meaning the recommendation process (model
the “human side" of data-centric applications are also becoming Puilding and recommendation generation) can be performed in real-

important topics in the data management community [3]. time. (2)Push-_based subscriptiongsers can register_long-running
A popular recommendation method used heavily in practice is "@commendation requests, updated only when their recommenda-
collaborative filtering consisting of two phases: (1) Aoffline tion list changes; in some cases, this approach is more scalable

model-buildingphase that uses community opinions of ifems (e.g., than on-demand systems that regen_erate whole recommendations
movie ratings, “Diggs” [6]) to build a model storing meaningful ~ from scratch for each query. Alternatively, requests can have shor

correlations between users and items. (2)gmdemandecom- lifetimes, causingstreamRe¢o revert to an on-demand system.
mendationphase that uses the model to produce a set of recom- The basic idea otreamRe¢s to model a recommendation sys-
mended items when requested from a user or application. tem as a complex event processing (CEP) application. We show

To be effective, recommender systems must evolve with their that well-known collaborative filtering recommender models can
content. In current update-intensive systems (e.g., social neswork P€ expressed usingnly native incremental streaming operators.
online news sites), the restriction that a model be genemated ~ StreamReds scalable, as all the operations used in our solution
fline is a significant drawback, as it hinders the system’s ability to are parallelizable. Moreover, the entire recommender can be ex-
evolve quickly. For instance, new users enter the system chang-Pressed using singlestream query planStreamRe@ccepts two
ing the collective opinions over items, or the system adds new input stream types: (1Yypdate eventsa stream of new user opin-
items quickly (e.g., news posts, Facebook postings), which widens ions (€.g., movie ratings), used to incrementally update the rec-
the recommendation pool. These updates affect the recommendePmmender model and (ZRecommend eventsa stream of re-
model, that in turn affect the system’s recommendation quality in Guests to produce recommendations (e.g., ‘recommend user Al-
terms of providing accurate answers to recommender queries. Inic€ 10 movies”). Recommendations can fel-based(e.g., on-
such systems, a completeigal-time recommendation process is demand) opush-basedwhich are registered witBtreamReover
paramount. Unfortunately, most traditional state-of-the-art recom- an extended period. Recommendations are produced by joining
menders are “hand-built", implemented as custom softwarbuilt recommend eventsith the maintained recommender model. In
for a real-time recommendation process [1]. Further, for some addition,StreamRecan easily provide recommendatiseshness
scenarios, a purely request-based recommendation model does nd#Sing event windows, older “stale” opinions (e.g., ratings) can de-

scale with the number of subscribers; this suggests the need forcay Within the recommender model over time, meaning recommen-
more “push-based” recommendation schemes. dations rely on current opinion trends and remain “fresh”. We im-

plementStreamReasing the Microsoft StreamlInsight stream pro-
.) . cessing system [2].
Categories and Subject Descriptors In the rest of this paper, we provide details of dGireamRec
H.2.4 [Database M anagement]: Systems demo. Section 2 provides background information, while Section 3
provides the details ddtreamRecFinally, Section 4 describes our

StreamRedemonstration and application scenario.
General Terms

Algorithms, Design, Human Factors 2. BACKGROUND

§The research of these authors is supported in part by the National Collaborative Filtering. Our demo uses collaborative filtering
Science Foundation under Grants 11S-0811998, 11S-0811935;CNS as its recommendation approach, a popular method used in real-
0708604, 11S-0952977 and by a Microsoft Research Gift world systems [7]. Collaborative filtering (CF) assumes a set of

usersid = {u,...,un} and a set ofn itemsZ = {iy,...,im}.
Copyright is held by the author/owner(s). gagh_ USERL; EXPrESSES opinions about a set of |t_em§ < I s
SIGMOD'11,June 12-16, 2011, Athens, Greece. pinions can be a numeric ranking (e.g., one to five stars in Net

ACM 978-1-4503-0661-4/11/06. flix [9]), or unary (e.g., a “Digg” [6]). Given a querying useg,

CF produces a set éfrecommended itenis, C Z thatu, is pre-
dicted to like the most. There are many CF paradigms (see [1] for
a comprehensive survey). Each follows a similar two-phase model-
building then recommendation generation approach, described be-
low for the popular item-based CF method used this demo.

Phase I: Model BuildingThis phase computes a similarity score
sim(i,,i4) fOr each pair of objects, andi, (represented as vectors

in the user-rating space) that have at least one co-rated dimensions.

In this demo we use Cosine similarity as our measure due to its
popularity [7], computed as:

iy - iq
l[ip][llqll
A model is built that stores for each item iteime Z, a list £ of
similar items ordered by a similarity scosen(i,,i).

Phase II: Recommendation Generatio®iven a querying user
uq, recommendations are produced by computin predicted
rating P, ;) for each itemi not rated byu,:

@)

sim(ip,iq) =k

P B Zleﬁ sim(i,1) * Tuy 1
T Y e lsim(i,)]

Before this computation, we reduce each similarity Listo con-
tain only itemgrated by useru,. The prediction is the sum ef, 1,
the user’s rating for a related itetne £ weighted bysim(i,l), the
similarity of [to candidate item, then normalized by the sum of
similarity scores betweenand!. The user receives as recommen-
dations the toge items ranked by?,,, ;).

Stream Processing Systems. A stream is a sequence
e1,ea,...,e, Of events. Anevente; = (p,c) is an outside no-
tification (e.g., user rating) that consists gayloadp = (p1, ...,
pr) (e.g., rating value), and evemtetadac. While metadata varies
across systems [5, 10], two common notions are: (1) an event gen-
eration time, and (2) a time window, which indicates the period of
time over which an event can influence output. We capture these by
definingec = (LE, RE), where the time intervdLE, RE) specifies
the period (ofifetime) over which the event contributes to output.
The left endpoint ICE) of this interval is the application time of
event generation, also called the evemtestamp

@)

3. StreamRec DESCRIPTION

Figure 1 depicts part of StreamRec’s fully incremental contin-
uous query plan for end-to-end item-based collaborative filtering.
The plan covers model generation as well as similarity scoring and
recommendation. The input to our recommender consists of two
streaming events: (1)Ypdate eventswhich are user ratings for
items, and (2Recommend eventwhich are requests for recom-
mendations for a target user. We model the input using a com-
mon schema (Timestamp, Streamld, Userld, Itemld, Rating). An
event with Streamld=0 denotes a new rating for an item, while
Streamld=1 denotes a request for recommendation by a user (in
the latter case, Itemld and Rating are null). Recommendation re-
guests can be registered wifreamReby using: (1)Edge events
which sets the event lifetime end BE = co. Edge eventsl-
low users to “subscribe” to their recommendation list over a period
of time. This approach is geared towgrdsh-basedpplications,
whereStreamReonly sends updates (changes) to the user recom-
mendation list. (2)Point eventswhich are“instantaneous” events
with no lifetime, whereRE is set toLE + § where is the smallest
possible time-unitPoint eventsllow the user to receive a one-time
on-demand recommendation list. This approach is geared toward
pull-basedapplications

M odel Building. Model building works as follows:

streaml
GroupAppl!
TemporalJoin

final output

gal apply branch | GroupApply |ga3

apply
branch

TemporalJoin Jjginz | Sream?

_GroupAppIy ga2
Select] Cosine GroupApply [9a4

similarity
Weighted

joinl

AlterLifetime
Selecfl
L L

Multicast

Figure 1: Part of StreamRec’srecommender plan

) “subplan

sum
subplan

[Multicast |

input of ratings & requests

o We first perform an AlterLifetime operation on ratings events
to control the window of historical ratings that are used for
building the model. Applying this windows allows the sys-
tem to decay older “stale" user opinions over time, allowing
the model to rely on newer “fresh" user opinions (an infinite
window implies ratings will never decay).

e For each rating event for itettem1by userUserl, we per-
form a temporal self-equi-join on Userld using the Tempo-
ralJoin operatorj¢inl) to produce events (Userld, Item1,
Ratingl, Item2, Rating2) for every pair of items rated by
Userl The TemporalJoin operator allows correlation be-
tween two streams. It outputs the relational join between
its left and right input events. Streaming systems typically
implement TemporalJoin as a symmetric hash join, where
events along each input are stored in a separate int@inal
synopsis Further, each join output has a lifetime consisting
of the intersection of the joining event lifetimes.

e Events fromoinlare fed into the GroupApply operatadl)
with grouping keylteml, followed by a second GroupApply
(ga2 with grouping keyltem2 The GroupApply operator
allows us to specify a grouping key, and a query sub-plan
(calledapply branch to be “applied” to each group (depicted
as a dotted box in Figure 1). Within each groupgal,
we produce an aggregate cosine similarity across all users
for each item thattem1 pairs with, producing a stream of
(Item2, SimScore) events. A streaming aggregation operator
(e.g., Average, Top-k) reports a result each time the active
event set changes. The similarity metric is computed in an
incremental mannerby using one built-in sum operator for
each term in Equation 1, followed by Project to compute the
similarity score. For unary ratings (e.g., Diggs [6]), we sub-
stitute the vector similarity for cosine similarity, which, inter-
estingly, can still be expressed using compositions of native
streaming operators (details omitted for brevity).

e These events serve as input to a Temporaljaim?—still
within gal—that effectively holds the model in memory (in
the right join synopsis) for scoring in the future.

Recommendation Generation. Recommendation generation works

as follows:

e When a new recommendation request event arrives for user
Userl, we first send the event joinl, in order “look up” the
previously rated itemdtem1) for Userl

e The join results are grouped ltgm1 by re-using GroupAp-
ply gal Within the group, for each itettem, we “look up”
similarity scores of related items usijmn2, and produce a
stream (as output afal) that contains, for every itertem1
rated byUserl, an event for every other item (s&gm2 that
Item1lis similar to.

e These events are re-grouped by Userld using GroupApply
ga3 For each user, we group by the second itétent2
using another GroupApplga4, and an aggregate (weighted
sum) is used to compute the predicted recommendation score
of Item2for Userl(i.e., Equation 2).

“Push-Based” Mobile App “Pull-Based” Web App

T
MSRNews ks = Ul

MSRF iu’/\‘

New items/reviews
SMIINDL/SWI) MAN

v

<

StreamRec Recommender Engine

(a) MSRNews (b) MSRFlix
Figure 2: Demonstration Applications

Recommend events
--------- Update events

Figure 3: Demonstration scenario overview

e We eliminate items that have been previously rated by the
user, using &eftAntiSemiJoimperator (details omitted). Fi-

nally, we use a Top-k aggregation operator to report the final StreamReddepicted in Figure 3). (1Push-based The mobile
recommendation fodserl version of our applications receive push-based recommendations,

meaning updates to user recommendation lists are pushed to the

Yevice wherStreamRedetects a change in a user’s topecom-
endations. (2pull-based The web version of our applications

eceive recommendations for a user only after explicitly submitting

a recommend request to the underlyBigeamReengine.

4.3 Walkthrough

Our walkthrough showcases the featuresStkamRedn three
phases : (1)nitial recommendations The attendee will register
with MSRNew®r MSRFlix and give opinions on a nhumber of ex-
isting news items or movies in the system. This action will cause
StreamReto provide the attendee with an initial set of tepec-
ommendations. (2)Vitness instant updatet/sing the mobile ver-
sion of MSRNewsor MSRFlix the attendee will open their rec-
ommendation list, and witness it changing even though they have
not rated any new items. This behavior is the resubméamRec
pushing updates to the recommendation lisbteger usersadd or
rate new items in the system (thereby changing the recommender
model). (3)Witness freshnesVithout any other user activity, at-
tendees will see their recommendation list changeStasamRec
decays older ratings in the system in favor of newer ratings (de-

In case a request arrives as an edge event, the correspondin
events gets lodged in the right synopsis of joinl and the left syn-
opsis of join2. As a consequence, any change to either items rate
by the user or to the model itself causes the query to produce an
update to the top-k result that is then pushed to the user.

We implement the entire recommendation process usihgna-
tive stream operators, ensuring high performance. Every operator
is either stateless, within a GroupApply, or is an equijoin, which
implies that the computation can easilyale outon a cluster.

4. DEMONSTRATION SCENARIO
4.1 Application

We provide two applications built specifically for this demo.
(1) MSRNews a social news application (similar to Digg).
MSRNewsisesStreamReto provide personalized news feeds us-
ing collective user feedback (e.g., “likes") for popular news post-
ings. (2)MSRFlix a movie recommendation applicatiodd SRFlix
usesStreamRec¢o provide movie recommendations using collec-
tive user ratings for movies. Both applications come in two ver- - { c !
sions: (a)Mobile-based implemented as a Microsoft Windows ~ Scribed in Section 3), thereby keeping recommendafiest
Phone 7 application, depicted in Figure 2, and\itab-baseddis- As StreamReds a fully devglop_ed systems, the attendee will also
played in a standard web browser (screenshot omitted for space).be free to use our demo_appllcatlons inan ad-hoc manner. Accessto
In both applications users perform three basic tasks Gt rec- StreamRec's backend (implemented using Streaminsight as the un-
ommendationfrom the system (e.g., news feeds, movies)GR)e derlying engine) will als_o be_avallable through Visual Studio 2010,
opinions(e.g., “like" news posts, rate movies), @ldnew items to Wherq attendees can visualize query pIaps, analyze the event flow
the system (e.g., news posts, movies). Each action triggers an evengraphically to see how/why particular ratings were generated, and
in the underlyingStreamRececommender system, implemented in €xamine performance statistics on a per-operator basis.

Microsoft Streaminsight, as depicted in Figure 3. Specifically, the
get recommendatiortask triggers aecommend evergtlepictedas 5. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recomraend

a solid line in Figure 3), while thgive opinionandadd tasks trig- 4
Systems: A Survey of the State-of-the-Art and Possible ExtensI&{3E,

gerupdate event@epicted as dashed lines in Figure 3).

(2]
3]
(4]
(5]

(6]
(7]

8]
E]
[10]

4.2 Data, Applications, and Queries

Data. To build the initial recommendation model MSRFIix
we use the popular MovieLens open-source movie ratings data [8].
The rating domain is a user-specified value in the range of [1-5].
ForMSRNewswe use publicly available data from the Digg [6] so-
cial news website with a unary rating domain where users can only
“like” a news item. For both applications, attendees will generate
new data as they use the system. This new data will instantly inte-
grate intoStreamReroducing fresh relevant recommendations.
Push and Pull Applications. We use two application types
to showcasesubscription and on-demandrecommendations in

17(6), 2005.

M. Ali et al. Microsoft CEP Server and Online Behavioral TargetingVLtDB,
2009 (demonstration).

S. Amer-Yahia et al. Crowds, Clouds, and Algorithms: Exploring thertdn
Side of Big Data Applications. I8IGMOD, 2010.

B. Babcock et al. Models and issues in data stream systerfO DS 2002.
R. Barga et al. Consistent streaming through time: A vision for eveeast
processing. IICIDR, 2007.

Digg: http://digg.com.

G. Linden et al. Amazon.com Recommendations: Item-to-ltem Collaborative
Filtering. IEEE Internet Computing7(1), 2003.

MovieLens: http://www.movielens.org.

Netflix: http://www.netflix.com.

U. Srivastava and J. Widom. Flexible time management in data strestemsy.
In PODS 2004.

