
A Demonstration of SHAREK: An Efficient Matching
Framework for Ride Sharing Systems

Louai Alarabi1, Bin Cao2, Liwei Zhao2, Mohamed F. Mokbel1, Anas Basalamah3

1University of Minnesota, Minneapolis, MN, USA
2Zhejiang University of Technology, Hangzhou, China

3KACST GIS Technology Innovation Center, Umm Al-Qura University, Saudi Arabia
1{louai,mokbel}@cs.umn.edu, 2{bincao,201412044}@zjut.edu.cn, 3abasalamah@gistic.org

ABSTRACT

Recently, many ride sharing systems have been commercially intro-

duced (e.g., Uber, Flinc, and Lyft) forming a multi-billion dollars

industry. The main idea is to match people requesting a certain ride

to other people who are acting as drivers on their own spare time.

The matching algorithm run by these services is very simple and ig-

nores a wide sector of users who can be exploited to maximize the

benefits of these services. In this demo, we demonstrate SHAREK;

a driver-rider matching algorithm that can be embedded inside ex-

isting ride sharing services to enhance the quality of their matching.

SHAREK has the potential to boost the performance and widen the

user base and applicability of existing ride sharing services. This

is mainly because within its matching technique, SHAREK takes

into account user preferences in terms of maximum waiting time

the rider is willing to have before being picked up as well as the

maximum cost that the rider is willing to pay. Then, within its

course of execution, SHAREK applies a set of smart filters that en-

able it to do the matching so efficiently without the need to many

expensive shortest path computations.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS

Keywords

Ride Sharing, Dynamic Matching, Indexes, Road-network, Real-

time systems

1. INTRODUCTION
Ride sharing services (e.g., Uber [12], Flinc [4], and Lyft [6])

have become very common forming a multi-billion dollars industry.

The main idea of these services is to match a set of riders’ requests

to a set of drivers who have expressed their willingness to offer a

ride for someone. All these ride sharing systems rely on a simple

matching algorithm that matches each rider request to a close-by

driver. Unfortunately, such simple matching has two main limita-

tions [3]: (1) It assumes that the driver is either constantly driving

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL’16 October 31 - November 03, 2016, Burlingame, CA, USA

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4589-7/16/10.

DOI: http://dx.doi.org/10.1145/2996913.2996983

to satisfy on-demand users’ requests on the road or parking around

a particular event place waiting for a ride call. The destination of

the driver depends on the riders’ destinations. Hence, the matching

algorithm does not take into consideration the case that the driver

is already heading to some predetermined destination. (2) The cost

of the ride sharing service is set by the service provider based on

the ride time and distance. Hence, the shared ride cost is not taken

into consideration when matching riders with drivers. With such

two limitations, the user base of ride sharing services is still lim-

ited as many users are not able to participate as drivers picking up

riders on their way to work or back home. Meanwhile, recent re-

search (e.g., T-Share [7] and Noah [5, 11]) has proposed matching

techniques that either rely on the availability of enormous historical

trajectories [7] or an expensive kinetic tree structure [5, 11]. Both

assumptions render them impractical to sue for real-time scalable

ride sharing services.

In this demo, we demonstrate SHAREK [2]; a driver-rider

matching algorithm that can be embedded inside existing ride shar-

ing services (e.g., Uber, Flinc, and Lyft). By avoiding the above

two limitations of current matching algorithms, SHAREK has the

potential to boost the performance and widen the user base and ap-

plicability of existing ride sharing services. SHAREK takes into

consideration the direction that the driver is already heading to,

which will immediately result in increasing the user base of ride

sharing services. For example, using SHAREK as a matching ser-

vice within Uber will allow someone who is returning from work

to home to pick up a rider who is going into a similar direction or

nearby destination. As of now, such user cannot use Uber, as the

user does not want to wonder in the street. Yet, the user only wants

little disturbance to her original route. As a result, SHAREK in-

creases the user base participating as drivers for existing ride shar-

ing services.

Meanwhile, SHAREK takes into consideration the cost of the

ride when matching drivers with riders. A driver who will have

less disturbance to her original route will be paid less, while a

driver who will make a big divergence to her original route will

be paid more. As a result, a rider will be matched with drivers who

will be paid less as a matter of convenience. SHAREK takes that

cost consideration in its own equation when it matches drivers with

riders. Hence, users of a ride sharing service (e.g., Uber) that is

equipped with SHAREK matching algorithm will pay less for the

same ride that they will get from another ride sharing service that is

not equipped with SHAREK. This will definitely affect the number

of users using a certain ride sharing service.

The main idea of SHAREK is to match riders, requesting a ride

sharing service, to a set of drivers who can provide the requested

service, while taking into account: (a) the cost of the ride sharing

(,)

Road Network

Data

 Request

Noti�cation

Dynamic Matching Indexing

Framework Front-End Framework Back-End

 $

Figure 1: System Overview

service, and (b) the convenience of the service for both rider and

driver. SHAREK achieves its efficiency and scalability through ap-

plying three consecutive phases, namely, Euclidian Temporal Prun-

ing, Euclidian Cost Pruning, and Semi-Euclidean Skyline-aware

Pruning, with an explicit goal to avoid the expensive shortest path

computations as much as possible. We will demonstrate SHAREK

through a full fledged system prototype where conference audience

are allowed to submit ride sharing requests through either a nicely

designed web-interface or mobile application. Large synthetic data

sets will be generated by Minnesota Traffic Generator [8], based on

Brinkhoff model [10] to simulate a large set of riders and drivers in

San Francisco, USA.

2. SYSTEM OVERVIEW
Figure 1 presents the system overview of SHAREK. The Front-

End of the system includes a web-interface and mobile app, allow-

ing users to interact directly with SHAREK. Ride service providers

(i.e., drivers) login to SHAREK to indicate their origin and desti-

nation locations. On the other side, riders submit their requests by

disclosing four pieces of information: (1) current location, (2) fi-

nal destination, (3) maximum waiting time before being picked up

by a driver, and (4) maximum price that the rider is willing to pay

for ride sharing service. SHAREK Back-End includes two main

components: indexing and dynamic matching. As SHAREK users

constantly move in the space, SHAREK maintains a Grid index

to serve as an infrastructure that is capable of supporting location-

related queries while updating workloads generated by large num-

bers of traveling users (Section 3). The Dynamic Matching com-

ponent starts by defining a cost model for each user request (Sec-

tion 4). Then, it goes through three phases (Section 5), namely,

Euclidian Temporal Pruning, Euclidian Cost Pruning, and Semi-

Euclidean Skyline-aware Pruning, that employ the cost model to

prune as many drivers as possible without calculating actual road

network shortest path distances. Finally, the rider receives a set of

drivers from SHAREK that can offer the requested ride within the

waiting time and price constraints. Once the rider selects the cor-

responding driver, the driver is notified immediately to accept or

decline the ride service.

3. INDEXING
Indexing is one of the core modules in SHAREK, as given in

Figure 1. In order to sustain the recent locations and facilitate the

searching of candidate drivers, the underlying spatial index needs

to be well selected. Tree-based moving object indexing methods

would encounter frequent update operations that cause too much

overhead to the index structure. Hence, a simple, yet effective,

grid-based spatial index [13] is adopted by SHAREK to maintain

such dynamic locations.

Driver Trip

Rider Trip

Pickup Return

Origin(r)
dest(r)

dest(d)Origin(d)

Figure 2: The illustration for different costs

Once a driver registers with the system, SHAREK is allowed to

track the driver location to assess its suitability for any ride shar-

ing service. Once the driver reaches its destination, the driver is

unregistered from SHAREK. During this life-cycle, the grid index

is updated whenever the driver location moves between the index

grid cell. SHAREK also manages other static location information

in the same index structure, such as users’ origins and destinations

locations .

4. COST MODEL
Figure 2 gives an illustrative example for the price cost model

of SHAREK. The origins and destinations of driver d and rider r

are plotted as black and white circles, respectively. The dotted line

represents the original driver d trip. The solid line represents the

detour that the driver d will encounter to provide a ride sharing ser-

vice to r. Basically, d has to travel from its origin location orig(d)
to the rider origin location orig(r). Then, d has to go through the

rider trip till dest(r) to drop off r. Finally, d will need to go to its

destination dest(d).
According to this setting, the price for the ride sharing service

offered from driver d to rider r, Price(d, r), has two components:

(1) The cost of the rider trip from its origin to destination. This is

intuitive as at least the rider needs to pay the cost of its own route.

(2) The cost of the detour that the driver d will encounter to pickup

and drop off r, then to return to its own destination. This part of

the price cost will play a major role in matching drivers to riders,

as drivers with less detour will be favored over drivers with longer

detours. Based on the cost model, SHAREK can pinpoint those

drivers that can make it to the rider within its cost and temporal

constraints. Formally, the price can be represented by the following

equation:

Price(d, r) = RiderTrip(r) +Detour(d, r)

Detour(d, r) can be calculated as the difference between the

new route of the driver d (the solid line in Figure 2) and its original

route (the dotted line in Figure 2, taking the rider trip into consider-

ation as it is not necessary has a same route to the driver trip. This

can be formally stated as:

Detour(d, r) = Pickup(d, r) +RiderTrip(r)

+Return(d, r)−DriverT rip(d)

From the above two equations, we get the equation used in

SHAREK to calculate the cost of any ride sharing service from

driver d to rider r, as

Price(d, r) = Pickup(d, r) + 2 ∗RiderTrip(r)

+Return(d, r)−DriverT rip(d) (1)

It is important to note here that the price cost of any trip between

two end points is proportional to the shortest path road network

distance between the two end points. For example Pickup(d, r) is

proportional to the shortest path network distance between orig(d)
and orig(r).

Rider current Location

Rider Constraints

Skyline Option

Figure 3: SHAREK Front-end Interface

5. DYNAMIC MATCHING
SHAREK aims to match riders with drivers that satisfy the

rider’s constraints: (1) Maximum waiting time that the rider is

willing to wait before being picked up and (2) Maximum price

the rider affords to pay for the ride sharing service. One trivial

way to realize the above matching criteria is to calculate the actual

price cost and waiting time for all registered drivers in the system.

Then, for those drivers that satisfy rider constraints, we run a two-

dimensional skyline algorithm to report drivers that are not domi-

nated by each other [1]. Such trivial way is prohibitively expensive

as it encounters large numbers of road network shortest path com-

putations and it is not practical given the online environment of ride

sharing requests.

The challenge of implementing a ride sharing framework is

to determine how to match drivers with riders efficiently with

minimal shortest path computations. SHAREK successfully

avoids such prohibitive computations through the three following

consecutive phases:

Phase I: Euclidian Temporal Pruning. In this phase, SHAREK

runs a range query that exploits the grid index to retrieve the

drivers within a circular range centered at the rider location

with a radius set to the Euclidean distance corresponding to the

maximum waiting time constraint of the rider. With this, SHAREK

significantly narrows down the search space for matching by

ignoring those drivers that are outside the range query, since there

is no way for them to satisfy the rider temporal constraint. The

output of this phase is a list of candidate drivers that can pickup

the rider within the maximum waiting time constraint.

Phase II: Euclidean Cost Punning. In this phase, SHAREK

employs a conservative Euclidean distance computation to prune

more drivers from the candidate drivers list received from Phase I,

without computing any road network shortest path. This idea is to

substitute the price cost from Equation 1 with its corresponding

Euclidean_price cost as in Equation 2. If a certain driver cannot

satisfy Euclidean_price, then there is no need to calculate the

actual price cost, i.e., shortest path network cost. The output of this

phase is a list of candidate drivers that can pickup the rider within

the maximum waiting time and Euclidean_price cost.

EuclideanPrice(d, r) = EuclideanP ickup(d, r)

+2 ∗RiderTrip(r) + EuclideanReturn(d, r)

−DriverT rip(d) (2)

Phase III: Semi-Euclidean Skyline-aware Pruning. The input

to this phase is a list of candidate drivers produced from Phase II.

SHAREK adopts an incremental road network nearest-neighbor al-

Figure 4: Phase I: Euclidean Temporal Pruning

gorithm (iKNN) [9] that retrieves the drivers one by one from the

candidate list, based on their actual road network shortest path. At

this stage, all drivers in the candidate list should realize the price

cost model in Equation 1. A straight forward solution is to report

all candidate drivers to the rider, after pruning out those who do

not pass the price cost model. Yet, it is not practical to bother

users to select a driver from such a long list. Therefore, SHAREK

decided to shift the burden from the rider by pruning drivers that

dominate others in term of maximum waiting time and maximum

price. Thus, the skyline computations are injected inside this phase,

which helps in pruning even more drivers without any shortest path

computations. As a matter of fact, instead of considering the sky-

line computations as an overhead, SHAREK actually considers it

as a blessing, where SHAREK inherits the skyline behavior inside

its technique [2]. Finally, the output of this phase is a drivers list,

where all drivers satisfy the rider constraints and they do not dom-

inate each other in both dimensions, i.e., maximum waiting time

and price.

6. DEMONSTRATION SCENARIO
This section shows four different scenarios that show the usabil-

ity, efficiency, and internal processing of SHAREK. All these sce-

narios are fully interactive where conference attendees can interact

with SHAREK either through seeing it running live (Scenario 1),

submitting a ride request (Scenario 2), visualizing the system inter-

nal operations (Scenario 3), or understanding its output results in

terms of its skyline pruning techniques (Scenario 4).

6.1 Scenario 1: Simulation Environment
SHAREK will be continuously running throughout the confer-

ence demo session by simulating dynamic matching of 1,000 rider

requests to 10,000 drivers in San Francisco, USA. The drivers and

riders routes are generated by Minnesota road network traffic gen-

erator [8] based on Brinkhoff model [10]. Each trip includes the

origin, destination, and set of locations associated with time-stamp.

Conference audience can visualize riders requests coming and how

SHAREK is handling them internally.

6.2 Scenario 2: Requesting a Ride
Conference audience can interact with SHAREK system by sub-

mitting ride sharing requests through either a nicely designed web

interface or mobile app, as shown in Figure 3. SHAREK obtains

user’s current location immediately from the smart phone. Then,

the user specify her final destination along with the ride constraints.

The final set of drivers is reported to the user on a side panel, where

the user can select her preferred driver based on time and price pref-

erences.

Figure 5: Phase II: Euclidean Cost Pruning

6.3 Scenario 3: System Internals
Figures 4, 5, and 6 illustrate SHAREK system internals, which

help conference attendees to distinguish the high performance of

the framework and visualize the processing of each phase sequen-

tially. Once a request is received, SHAREK processes it by em-

ploying three consecutive phases. The first phase (Euclidean Tem-

poral Pruning) is shown in Figure 4, where it takes advantage of

user maximum waiting time constraint to prune a set of drivers

without computing any shortest path operation. Figure 5 illus-

trates the second phase (Euclidean Cost Pruning), where SHAREK

prunes drivers from the previous phase based on Euclidean cost

price model (Equation 2). In the Third phase, Semi-Euclidean

Skyline-aware Pruning, SHAREK starts computing the shortest

paths in a very conservative way to prune drivers and report a can-

didate driver list that satisfies not only the temporal and cost con-

straints, but also represents a set of skyline results. Figure 6 shows

how computing the shortest path in conservative way done using an

incremental nearest-neighbor query (iKNN).

6.4 Scenario 4: Understanding Skyline
Drivers

Figure 7 shows the final result of SHAREK dynamic matching

algorithm, in which only three drivers reported that did not dom-

inate by others in term of maximum waiting time and maximum

price; so-called (Skyline drivers). SHAREK employs a skyline

technique, which enables SHAREK to prune more drivers that are

dominated by others. Conference attendees can encounter the ef-

fectiveness of this optimization method by disabling and enabling

the skyline option. It is important to note that by default skyline

option is enabled in SHAREK, but for a demonstration purposes

we allow conference audience to experience both options to under-

stand the effectiveness of reporting only skyline drivers compared

to retrieving all candidate drivers.

7. REFERENCES
[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline

operator. In ICDE, pages 421–430, 2001.

[2] B. Cao, L. Alarabi, M. F. Mokbel, and A. Basalamah.

SHAREK: A Scalable Dynamic Ride Sharing System. In

MDM, pages 4–13, Pittsburgh, PA, jun 2015.

[3] L. Chen, A. Mislove, and C. Wilson. Peeking beneath the

hood of uber. In Proceedings of the 2015 ACM Internet

Measurement Conference, IMC 2015, Tokyo, Japan, October

28-30, 2015, pages 495–508, 2015.

[4] Carpooling-the flinc carpooling service: flinc.

https://flinc.org/.

Figure 6: Phase III: Semi-Euclidean Skyline-aware Pruning

Figure 7: Understanding Skyline Drivers

[5] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large scale

real-time ridesharing with service guarantee on road

networks. In VLDB, volume 7, pages 2017–2028, 2014.

[6] Lyft: On-demand ridesharing. http://www.lyft.me.

[7] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale

dynamic taxi ridesharing service. In ICDE, pages 410–421,

2013.

[8] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy,

M. Sarwat, E. Waytas, and S. Yackel. Mntg: an extensible

web-based traffic generator. In SSTD, pages 38–55. Springer,

2013.

[9] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query

processing in spatial network databases. In VLDB, pages

802–813, 2003.

[10] Thomas brinkhoff: Network-based generator of moving

objects. http://iapg.jade-hs.de/personen/brinkhoff/generator/.

[11] C. Tian, Y. Huang, Z. Liu, F. Bastani, and R. Jin. Noah: A

dynamic ridesharing system. In SIGMOD, pages 985–988,

2013.

[12] Uber: On-demand ridesharing. https://www.uber.com.

[13] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest

neighbor queries over moving objects. In ICDE, pages

631–642, 2005.

