
A Demonstration of Shahed: A MapReduce-based

System for Querying and Visualizing Satellite Data

Ahmed Eldawy1#, Saif Alharthi2§, Abdulhadi Alzaidy3§, Anas Daghistani4§

Sohaib Ghani5§, Saleh Basalamah6§, Mohamed F. Mokbel7#

#Deptartment of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
§KACST GIS Technology Innovation Center, Umm Al-Qura University, Makkah, KSA

{1eldawy,7
mokbel}@cs.umn.edu, {2sharthi,3

azaidy,
4
adaghistani,

5
sghani,

6
sbasalamah}@gistic.org

Abstract—Several space agencies such as NASA are continu-
ously collecting datasets of earth dynamics—e.g., temperature,
vegetation, and cloud coverage—through satellites. This data
is stored in a publicly available archive for scientists and re-
searchers and is very useful for studying climate, desertification,
and land use change. The benefit of this data comes from its
richness as it provides an archived history for over 15 years
of satellite observations. Unfortunately, the use of such data is
very limited due to the huge size of archives (> 500TB) and the
limited capabilities of traditional applications. In this demo, we
present Shahed, an interactive system which provides an efficient
way to index, query, and visualize satellite datasets available
in NASA archive. Shahed is composed of four main modules.
The uncertainty module resolves data uncertainty imposed by
the satellites. The indexing module organizes the data in a novel
multi-resolution spatio-temporal index designed for satellite data.
The querying module uses the indexes to answer both spatio-
temporal selection and aggregate queries provided by the user.
The visualization module generates images, videos, and multi-
level images which gives an insight of data distribution and
dynamics over time. This demo gives users a hands-on experience
with Shahed through a map-based web interface in which users
can browse the available datasets using the map, issue spatio-
temporal queries, and visualize the results as images or videos.

I. INTRODUCTION

Huge amounts of remote sensing data are collected by

satellites and are made publicly available for use by scientists.

For example, NASA provides the Land Process Distributed

Active Archive Center (LP DAAC) [5] with more than 500TB

of data that is increasing in a daily manner. The collected

datasets measure several physical phenomena including land

temperature, vegetation, and thermal anomalies. This data is

useful in many applications and research areas such as land

cover change, detection of desertification, and climate infor-

matics. Data is collected at different temporal resolutions (e.g.,

daily and weekly) and spatial resolutions (e.g., 250 meters and

1 KM) and kept in one tremendously large archive.

Although the data in the archive is very rich, scientists are

not able to make full use of it due to three challenges. (1) The

huge size of this archive makes it too difficult to be processed

by traditional applications designed for a single machine.

Existing techniques either work on a downsized sample of

the data (e.g., one day out of each year) and produce an

0#This work was done while these two authors were visiting the GIS
Technology Innovation Center in Umm AlQura University and is supported
by the center under project GISTIC-13-05

approximate answer, or take too long time (e.g., hours or days)

to produce a more accurate answer. (2) The LP DAAC archive

provides only the raw data and does not support running

spatio-temporal queries. A standard way to access the data

is through a web interface (e.g., Reverb [1]) in which the

user provides spatio-temporal criteria and is presented with a

list of files to download. For example, to find all temperature

values in a specific point over a period of one year, the web

interface is accessed first to retrieve 365 files for all days in

that year which contains hundreds of millions of points and

with a total download size of around 2GB. These files are

then processed to extract the 365 points in the answer. (3) The

files downloaded from the archive usually have missing values

due to satellites mis-alignment or due to clouds covering an

area underneath. This requires a data cleaning step to recover

missing values and to ensure that the query answer is correct.

In this demo, we present Shahed; a system that allows

users to query and visualize satellite data efficiently with a

user-friendly interface. The core of Shahed consists of four

main components. (1) The uncertainty component processes

newly downloaded data and uses a two-dimensional interpo-

lation technique to estimate missing data. (2) The indexing

component employs a novel multi-resolution spatio-temporal

index which allows Shahed to answer spatio-temporal queries

efficiently. (3) The querying component uses the constructed

spatio-temporal indexes to answer both selection and aggregate

spatio-temporal queries in a real time manner. (4) The visu-

alization component allows users to export images, videos 1,

and multi-level images which represent the distribution of the

data over space and time as a heat map.

Shahed employs SpatialHadoop [3], a MapReduce frame-

work for spatial data, as a backbone to handle the huge

amounts of data. SpatialHadoop uses MapReduce as the main

programming paradigm for spatial data processing. Since

MapReduce is designed for offline batch processing, Shahed

uses SpatialHadoop for efficient index construction and vi-

sualization as both are offline jobs. For interactive spatio-

temporal queries, Shahed employs a separate query engine that

utilizes the spatio-temporal indexes to provide real time query

answers. Shahed also provides a simple web interface which

allows users to access all of its features easily.

1Please refer to an example at http://youtu.be/hHrOSVAaak8



LP DAAC

Archive

SHAHED

End

User

Uncertainty

2D Interpolation

Indexing
Spatio-temporal
Aggregate Index

Web
Interface

Querying
Selection and
Aggregate queries

Visualization
Image, vidoes and
Multi-level images

User InterfaceData Interface

Fig. 1. SHAHED Overview

II. OVERVIEW OF SHAHED

Figure 1 gives an overview of Shahed. The input data from

the LP DAAC archive goes through a data interface layer

which regularly reads new datasets and stores them in spatio-

temporal indexes. The user interacts with the system through a

user interface layer which answers spatio-temporal queries and

visualizes the results. The system contains four main modules

described briefly below.

The uncertainty module is triggered on newly downloaded

datasets to recover missing values using a two dimensional

interpolation function. The indexing module employs a novel

spatio-temporal index structure based on the quad-tree [6]

which keeps data organized spatially and temporally in a hier-

archical index structure and annotates it with partial aggregates

to answer both selection and aggregate spatio-temporal queries

efficiently. The querying module uses the aggregate spatio-

temporal indexes to answer both spatio-temporal selection and

aggregate queries in real-time manner by employing early

pruning techniques and using partial aggregates available in

the index. The visualization module allows users to visualize

the answers returned by the querying module as heat maps.

Shahed supports visualization of heat maps as still images,

videos, and multi-level images, all generated efficiently using

MapReduce programs running in SpatialHadoop.

Shahed makes all system features available through a map-

based web interface that is easy to use. Users can navigate

to any area and see the heat map of a selected dataset (e.g.,

temperature). Users can also issue spatio-temporal queries and

get the answer in real-time or if query contains a large selected

area over a period of time, the results are delivered through

email.

III. UNCERTAINTY

The way in which data is collected by satellites imposes a

level of uncertainty in the data. Figure 2(a) depicts an example

of missing data in the land temperature values in the area of

Saudi Arabia. There are two types of missing data shown in

the figure. (1) The white random area is caused by clouds that

blocked the satellites sensors at the moment the satellite image

was taken. (2) The sharp triangle-like white area is caused by

satellites mis-alignment that leaves a blind spot not covered

by any of the satellites. Depending on the application, these

missing values might affect the quality or correctness of a

query answer. Using historical data to estimate missing value

is not possible due to the high variance of some datasets (e.g.,

temperature).

1

2

(a) Types of missing data (b) Missing data recovered

Fig. 2. Recovering missing data in a heat map

Shahed employs a two-dimensional interpolation technique

that estimates missing data based on nearby points. Figure 2

shows an example of how the answer looks like after employ-

ing the uncertainty module in Shahed to recover missing data.

The basic idea of the two-dimensional interpolation technique

is to provide two estimates for each points, one for each

dimensions, and then compute a final estimate as the average

of these two estimates. The x-estimate is computed using a

linear interpolation function based on the two closest points on

the same horizontal line. Similarly, the y-estimate is computed

using the two closest points on the same vertical line. If no

points are available on the same horizontal or vertical line, the

corresponding estimate is not computed and the other one is

used as the final estimate.

IV. SPATIO-TEMPORAL INDEXING

The indexing module in Shahed supports a novel multi-

resolution spatio-temporal index that is designed for satellite

data. Figure 3 gives a high level overview of the index which is

organized in two orthogonal hierarchies, temporal and spatial.

In the temporal hierarchy, the index is organized in three

temporal layers, each one contains a copy of all the data

partitioned by a different temporal resolution, namely, yearly,

monthly, and daily. A temporal partition is created only after

the corresponding time frame is concluded. For example, a

partition has been created for 2013 as that year has finished

while no partition has been created yet for 2014. In the

spatial hierarchy, each temporal partition (e.g., 2012) is further

indexed using an aggregate quad tree which is similar to a

quad tree [6] with augmented aggregate values in each node

summarizing the subtree under that node. The aggregate func-

tions supported by Shahed are minimum, maximum, count,

and sum. More aggregate functions can be derived such as

range and average.

As new datasets are added to the LP DAAC archive, a daily

job in Shahed is triggered at midnight to download them. New

data is always added to the archive as daily snapshots where

each snapshot is indexed using an aggregate quad tree in the

daily layer. To construct an aggregate quad tree, point are first

sorted using their Z-order values, a quad tree is constructed on

top of the sorted index using the properties of the Z-curve [2],

and finally the aggregate values are computed in each node.

To compute aggregate values, we start by the leaf nodes and

compute aggregate values by scanning points under each one.

The aggregate values of leaf nodes are further aggregated to

compute the aggregate values of their parents until reaching

the root.



12 366 365...3 12 ...3 12 ...3 80

dec...jan feb dec...jan feb jan feb

2012 2013

Aggregate

Quad Tree

Yearly

Aggregate

Indexes

Monthly

Aggregate

Indexes

Daily

Aggregate

Indexes Last day

Fig. 3. Multi-resolution spatio-temporal index

Once all daily partitions in one month are created, they

are merged to form one partition in the monthly layer. In

the merge process, the input is a list of aggregate trees each

corresponding to one tile and the output is another aggregate

tree corresponding to the same tile but at a higher level in the

temporal hierarchy. The output tree has the same size as input

trees in terms of number of points and nodes. The difference

is the cardinality which is the number of values stored at each

point. In the output tree, all values stored at the same spatial

point are stored as a contiguous range in the output file sorted

by time. This allows a query asking about all values in a

specific point over a large time frame to be answered with

one disk access. In addition, aggregate values in each node

in the output tree are computed by aggregating all values of

corresponding nodes in all input trees.

V. QUERY PROCESSING

In this section, we describe how the spatio-temporal indexes

constructed by the indexing module are used to answer spatio-

temporal selection and aggregate queries.

In a selection query, the user specifies a dataset (e.g.,

temperature), a spatial range as a rectangle, a temporal range

as start and end dates, and the query answer is all values

contained in this range. The query runs in two steps, temporal

filter and spatial filter. In the temporal filter step, the yearly

temporal partitions are examined first and partitions that are

completely contained in the temporal range are selected. After

this, the monthly and daily partitions are examined in the

same manner to cover the entire input range. Examining the

partitions in that order ensures that the number of matched

partitions is minimum which increases the query performance.

In the spatial filter step, the aggregate quad tree in each

partition is processed with a standard spatial range query and

all matching values are returned. To query an aggregate quad

tree, a traditional range query is run against the associated

stock tree starting at the root and going deeper as needed until

the leaves. The values contained under each matching node are

retrieved from the aggregate quad tree stored on disk. Notice

that all points contained under one node are guaranteed to be

in a contiguous range on disk as the points are kept sorted by

their Z-order values [2].

Similar to a selection query, in an aggregate query the user

specifies a dataset, and a spatial and temporal ranges. However,

the answer is a set of aggregate values for all matching points,

namely, minimum, maximum, count, and sum. The query runs

in two steps, temporal filter and aggregate calculation. The

Level 0

Level 1

Level 2

p

y

x

z

Fig. 4. Multi-level heat map images

first step is exactly the same as in the selection query. In the

aggregate calculation step, each matching aggregate tree is

queried to compute the aggregate values of the part covered by

the query range. These aggregate values are further aggregated

to compute the final answer. Running an aggregate query on a

quad tree is similar to a selection query with two differences.

First, instead of returning matching records, their aggregate

values are computed and returned instead. Second, if a node is

completely contained in the query range, the aggregate values

cached in it are returned without going deeper in the tree.

VI. VISUALIZATION

Shahed supports three visualization options, images, videos,

and multi-level images which use MapReduce programming

to visualize query answers as heat maps.

A. Image and Videos

A query answer can be visualized as a heat map that shows

the distribution of values in the selected area and time range. A

still image is generated for each day while a video is generated

for a time range by combining a series of images. A single

image is generated using a MapReduce program in which the

map function partitions the data using a uniform grid and the

reduce function plots a heat map for each tile. A heat map for

a single cell is generated by scanning all points in that cell,

mapping each one to a pixel which is colored according to the

value of the point; blue maps to the minimum value and red

maps to the maximum value. If more than one point map to

the same pixel, their average is used to color that pixel. Once

all images are generated, a final stitch step puts all generated

images together to form the final picture.

B. Multi-level images

An alternative option for visualization is the multi-level

images in which a set of images is generated for different

regions and zoom levels. Figure 4 gives an example of a three-

level heat map image for temperature. In level 0, the whole

area is represented as one image of size 256× 256 pixels. In

zoom level 1, the same area is represented in higher resolution

by splitting it into four images, each of size 256× 256 pixels.

To handle the exponentially increasing number of tiles/images

per zoom level, we employ a MapReduce program that runs

in two steps, partition and plot. In the partition step, the map

function replicates each data point to all overlapping tiles. For

example, the point p in Figure 4 is replicated to three tiles,

one in each zoom level. In the plot step, the reduce function



(a) Spatio-temporal point queries (b) Heat map generation (c) Browsing multi-level heat maps

Fig. 5. Screenshots of Shahed

takes all points in each tile, and generates a heat map for them

as an image of size 256×256 pixels. No stitch step is required

as these images are kept separate on disk.

A drawback in this algorithm is that it incurs an extremely

high overhead in tiles at the higher levels of the pyramid as

they cover larger areas. For example, the single tile at the

first level of the pyramid might cover the whole world which

contains hundreds of millions of points. This huge number of

points are not really needed to generate the heat map for two

reasons. (1) Tiles at higher level do not need to be accurate as

they give a high level overview. (2) Number of pixels in the

generated image is 2562 ≈ 64K is way smaller than number

of points overlapping the tile. To improve the algorithm, we

employ a novel adaptive sampling technique which adjusts the

number of points in each level to be equal to number of pixels

in the generated image. The basic idea is to replicate a point

to a tile at level i with a probability pi which is adjusted such

that the expected number of sampled points is equal to number

of pixels in one image. This technique is shown to be much

more efficient without sacrificing much of the quality.

VII. DEMONSTRATION SCENARIO

During the demonstration, we run a prototype of Shahed

on an Amazon EC2 cluster of twenty nodes with Spatial-

Hadoop 2.2 installed. The cluster is preloaded with the temper-

ature, vegetation, and surface reflectance datasets for the last

three years to make the demo self contained. The attendee will

be able to access the system from a web interface accessible

through a laptop while the processing will be done by Shahed

on the cluster. As shown in Figure 5, the main interface

displays an interactive map based on Google Maps [4]. On the

top right, there is a map selector where the user can switch

between map view, satellite view, and heat map view. On the

top, there is a toolbar with a search box, date selector, and

dataset selector. There is also a button that exports either an

image or video. The details of the demonstration scenario for

the three main functionalities in Shahed are described below.

A. Spatio-temporal Queries

A basic feature in Shahed is to run spatio-temporal selection

and aggregate queries. Figure 5(a) shows a simple selection

query which selects all values in two distinct points over

a period of three months. The answer is displayed as a

chart which allows users to easily compare and contrast the

temperatures at the two selected points. The download button

allows the attendee to download the answer as a CSV file to

be used in another application. In addition to point queries,

users can also specify spatial ranges where Shahed returns

minimum, maximum, and average temperature in the given

area for each day in the selected time period or for the one

average for the whole selected range. Shahed also displays

some statistic about the query such as total running time and

number of partitions processed to answer the query.

B. Image/Video Generation

Figure 5(b) shows an example of generating heat map

images or videos. The attendee will be able to specify a range

on the map, a dataset and either a specific date for image, or

a start and end dates for video. In addition, the user needs to

specify an email address to which the generated image or video

will be sent to. As the submit button is clicked, MapReduce

jobs are sent to SpatialHadoop to generate the required images.

The attendee will have an access to the admin interface of

SpatialHadoop to see the progress and details of the running

jobs. Once the jobs are finished, an email is sent to the user-

provided email address with a link to download either the

image or the video. In addition, a KML file provide to preview

the generated image on Goggle Earth or a similar application.

C. Multi-level Images Browsing

To make it easier for users to explore the data, Shahed

provides a heat map mode which displays an interactive heat

map for the selected date and dataset as shown in Figure 5(c).

The heat map is based on Google Maps and it provides the

same navigation experience such as pan and zoom. As the

visible area or the data on the top change, the web page

loads the corresponding set of images from the generated

pyramid. The dataset selector on the top allows users to view

the heat map of different datasets such as vegetation or surface

reflectance.

REFERENCES

[1] Reverb - The Next Generation Earth Science Discovery Tool. http://
reverb.echo.nasa.gov/reverb/.

[2] M. Bern, D. Eppstein, and S.-H. Teng. Parallel Construction of Quadtrees
and Quality Triangulations. IJCGA, 9(6):517–532, 1999.

[3] A. Eldawy and M. F. Mokbel. A Demonstration of SpatialHadoop: An
Efficient MapReduce Framework for Spatial Data. In VLDB, pages 1230–
1233, 2013.

[4] Google Maps. http://maps.google.com.
[5] MODIS Land Products Quality Assurance Tutorial: Part:1, 2012.

https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS LP
QA Tutorial-1.pdf.

[6] H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM
Computing Surveys, 16(2):187–260, 1984.


