Demonstration oKite: A Scalable System for
Microblogs Data Management

Amr Magdy Mohamed F. Mokbel

Department of Computer Science and Engineering, Universitionesota
{amr,mokbe}@cs.umn.edu

I. INTRODUCTION : Memory Indexer :
Motivated by its wide availability and richness, there have, Inl'nrgixmeosry CStrea't“ <L Microblog Sreems

been a plethora of recent work in querying, analyzing, and N onnectors |
visualizing microblogs (see [3] for a brief survey). Exaewml : RN DatalBatChes | Application
of microblogs include tweets, online reviews, and comments| Flushing | Fiushing Policy | Memory Index : Developers
on news websites. Unfortunately, existing work in micraplo 1| Manager Manager Create/Drop
lacks data management tools that provide the necessaaginfr “= = —F - == - Fushbae ————p——=- 5 Indexes @
tructure to support efficient storage, indexing, and reglief =y 2R _ _ _AfcisSJ'ffeEES_ _.

microblogs. Hence, researchers, developers, and poaetrs Disk Index
who need to process microblogs for their own purposes Would Manager
need to either build their own ad-hoc techniques [5] or use!

Query Operators ICompiled Programs
[(Java)

Insert | Data Operation lPipeIine

|
.. R . | Q
any of existing general purpose big data engines, e.g.kSgar | Apache Ignite | 1 Queuery
their backbone infrastructure [4]. Relying on ad-hoc teghes I Runtime 13U v
- . - . (Indexed) I Language
does not scale neither in terms of data size nor in terms of |

supporting various functionality. Meanwhile, existingngeal 'Disk Indexer, (Query Processor

purpose big data engines are built in a generic way to suppo
various data and query workloads and are not equipped to
support the specific characteristics of microblogs [2].sThi
results in sub par performance when supporting microblogs.

E[g 1. Kite System Overview.

To this end,Kite is equipped with light spatial and keyword
in-memory index structures that can digest the high rate
Queries on microblogs have three main distinguishingof incoming microblogs. Then, the in-memory indexes are
characteristics [2]: (1) All queries are temporal. For epamif ~ equipped with a buffer manger policy that is specifically de-
a user issued a query likdirid tweets about Obarfiawithout signed to favor toge and temporal queries. When the memory
explicitly specifying a temporal interval, the underlyisgstem is full, a portion of the data is evicted from memory and
will add a default temporal interval, e.g., last week, otfise goes to secondary storage index structures that are oeghniz
we will get tweets from ten years ago, which is not practical.temporally and built in the Hadoop Distributed File System
(2) All queries are topge. For any issued query, even if it (HDFS) for both spatial and keyword queries. A scalable yjuer
is not mentioned explicitly, the underlying system will add processor is exploiting these system infrastructures coige
defaultk to limit the size of the answer to tapaccording to a efficient querying on arbitrary microblogs attributes fatii
specified or default ranking function, otherwise we will gat in-memory and in-disk data. All system facilities are asess
excessive number of tweets for every query. If the user needéirough a declarative SQL-like query language to ease ingild
more thark results, there is an option to retrieve the nexhi- applications on top of microblogs data.
croblogs according to the same ranking function. (3) Keylvor
and spatial queries are very popular. A significantly higiora
of queries posed on microblogs is either asking for micrgblo
containing a certain keyword(s) or posted within a certa@aa
Unfortunately, these distinguishing characteristic aoe well
supported bygeneral purposesystems.

We demonstratite with a system deployment on Ama-
zon EC2 and using real tweets. The demonstration scenarios
include showing the system capabilities in terms of schtgbi
and query performance, in addition to showing the easinkss o
building rich applications on top dfite.

In this demonstration, we preseite; a data management . SYSTEM OVERVIEW
system tailored to the specific needs of microblogs data and Figure 1 depictKite system overview. The system consists
qguery workloadsKite aims to be the standard platform for of three main components, namelemory Indexer Disk
accessing microblogs, allowing other researchers, dpeedo Indexer and Query ProcessorThe system components are
and practitioners to focus on their data analysis tasksoand/ realized exploiting the in-memory infrastructure of Apach
applications without worrying on the underlying managetnenIgnite system.Kite receives streams of microblogs that are
and retrieval of microblogs data. Distinguished from ourkvo digested in main-memory indexes with high arrival rates.
in [1], Kite is not tailored for a specific family of queries Whenever the allocated memory budget of a certain index is
on certain attributes, instead it could query arbitraryitaites filled, its data is subject to flushing to a corresponding disk
featuring a wide variety of queries and analysis capadditi index. Indexes are created and/or dropped by system users on

arbitrary attributes. Meanwhile, application developexploit

the rich features oKite through either Java programming ©,° === =
APIs, just like Hadoop or Spark, or SQL-like query language. 7.7,
The different system components are briefly discussed belov .-«
| BT J e o Eal Uscte
A. Memory Indexer
. » @

The Memory Indexercomponent organizes incoming mi- g ¥
croblogs in main-memory index structures to achieve: @-sc = P
able digestion of incoming data with high arrival rates, and (2 n
(i) efficient in-memory query processing on recent dataictvh i = X
represents a high fraction of incoming querieskite. The i3 5

Memory IndexerencapsulatesStream Connectorso digest
and pre-process the incoming data streams. Then, thegdsult
batches of data are inserted in main-memory indexes that are

a

primarily organizedemporally as most recent ones are likely Fig- 2. Twitter News Application.

to be queried more than older on&Ste currently supports a
temporal inverted index for the keyword attribute, a tenapor
partial quad tree for the spatial attribute, and a temporal
hash index that is used for other microblogs attributes, all
based on Apache Ignite in-memory structures. Each indeX

Kite system is demonstrated using a real system deploy-
ent on an Amazon EC2 cluster of 20 nodes and using a

D EMONSTRATION SCENARIOS

is allocated a memory budget. Once the index memory isich dataset of real tweets. The dataset consists of teiorisil
filled, a Flushing Mangerselects a subset of in-memory data tweets collected through Twitter APIs along three yearse Th

to spill to a corresponding disk-resident index. THemory

tweets are fed to the system as a fast stream of 40,000

Index Manageisynchronizes the workflow between the streamtweets/second. Our demonstration attendees would be @ble t

connectors, the indexes, and the flushing manager.

B. Disk Indexer

interact withKite trough one of the following scenarios.

Scenario 1: Admin Console. In this scenario, the demo

attendees would be able to administrate the system through a

Kite adds aDisk Indexercomponent to Apache Ignite, so console interface. The console facilitates connectirepstis of
that it maintains a set of disk-resident index structurest th data, creating and dropping indexes, and logging infoionati

digest the flushed data from the main-memory ones. Disk
Index Managerreceives the flushed data from tféushing

about on-going system operations.

Scenario 2: Query Console. The console also allows the

Manager and inserts them as one batch into correspondingiemg attendees to post queries to the system using the SQL-
disk indexes in Hadoop Distributed File System (HDFS). Eachiwe query language. The console shows the results as well
index consists of a set of HDF_S blocks, Whe_re data_ in eachq monitoring query performance through logging inforomati
block is grouped based on the index key attribute. Similar ta,cpy a5 query time, touched index(es), and cluster nodes.

in-memory disk structures, disk-based structures arerappe
only temporal inverted index, temporal quad tree index, and
temporal hash index. Each disk index is organized in temporgh
slices to efficiently support temporal queries that are chami
in microblogs queries.

Scenario 3: Scalable Querying. In this scenario, we show
e scalability ofKite compared to existing systems in search-

ing tweets, both real-time and historical tweets. The demo
attendees would post queries to find tweets that satisfpicert

spatial or keyword predicates and see the query performance

C. Query Processor

Scenario 4: Building Microblogs Applications. In this

Kite query processor provides a set of generic operator§cenario, the demo attendees would experience building a
that can be combined to support arbitrary queries on arbiduick application easily usinite. The application is aews

trary microblogs attributes. In specific, it providS&ELECT,

PRQJIECT, JO N, TEMPORAL, (TOP-K, ORDER BY), and ar

aggregator(Figure 2) that displays and organizes tweets that

e published by news media, e.g., New York Times on Twitter.

(CO_JNT’ GROUP BY) Operators_ The first three Operators areThe attendees will witness Creating an index user id and

similar to the ones supported in the standard STHEVPORAL

posting a query tKite to find news by source among 750

determines the temporal horizon of the query, due to the imdifferent news accounts on Twitter.

portance of temporal queries in microblogs. The combimatio
of TOP- K and ORDER BY provides a native support for top- [y
k queries using different ranking functions. Currentiite
provides a set of pre-defined widely-used ranking functiongy)
to rank the topk results. However, the subsequent versions of

the system is planned to support user-defined ranking fumeti [3]
for more flexibility for application developers. Finallyhe
combination of COUNT and GROUP BY is used to submit [4]

aggregate queries that find most frequent items for certain
attribute, e.g., find the most frequent keywords in Minndiapo [
Such count queries are very popular in nowadays microblogs
applications to find trendy topics among microblogs users.

REFERENCES

A. Magdy et. al. Demonstration of Taghreed: A System fore§ing,

Analyzing, and Visualizing Geotagged Microblogs. IIBDE, 2015.

A. Magdy et. al. Towards a Microblogs Data Management &yst In

MDM, 2015.

A. Magdy et. al. Microblogs Data Management Systems: Query
Analysis, and Visualization. I5IGMOD 2016.

G. Mishne et. al. Fast Data in the Era of Big Data: TwitteReal-time
Related Query Suggestion Architecture. StGMOD, 2013.

W. Feng et. al. STREAMCUBE: Hierarchical Spatio-tempdtashtag
Clustering for Event Exploration Over the Twitter Stream. ICDE,

2015.

