
A Framework for Spatial Predictive Query
Processing and Visualization

Abdeltawab M. Hendawi1,2 Mohamed Ali2 Mohamed F. Mokbel1∗

1Department of Computer Science and Engineering, University of Minnesota, MN, USA
1{hendawi, Mokbel}@cs.umn.edu

2Center for Data Science, Institute of Technology, University of Washington, WA, USA
2{hendawi, mhali}@uw.edu

Abstract—This demo presents the Panda system for efficient
support of a wide variety of predictive spatio-temporal queries.
These queries are widely used in several applications including
traffic management, location-based advertising, and store finders.
Panda targets long-term query prediction as it relies on adapting
a long-term prediction function to: (a) scale up to large number of
moving objects, and (b) support predictive queries. Panda does
not only aim to predict the query answer, but, it also aims to
predict the incoming queries such that parts of the query answer
can be precomputed before the query arrival. Panda maintains a
tunable threshold that achieves a trade-off between the predictive
query response time and the system overhead in precomputing the
query answer. Equipped with a Graphical User Interface (GUI),
audience can explore the Panda demo through issuing predictive
queries over a moving set of objects on a map. In addition, they
are able to follow the execution of such queries through an eye
on the Panda execution engine.

I. INTRODUCTION

The emergence of wireless communication networks and
cell phone technologies with embedded global positioning
systems (GPS) have resulted in a wide deployment of location-
based services [7], [11]. Common examples of such services
include range queries [3], [12], e.g., “find all gas stations
within three miles of my current location” and K-nearest-
neighbor (kNN) queries, e.g., “find the two nearest restaurants
to my current location”. However, such common examples
focus on the current locations of moving objects. Another
valuable set of location-based services focus on predictive
queries [6], [8], [9], in which the same previous queries are
asked, yet, for a future time instance, e.g., “find all gas stations
that will be within three mile of my future location after 30
minutes”. Predictive queries are beneficial in a wide variety
of applications that include traffic management, e.g., predict
congested areas before it take place, location-based advertising,
e.g., predict the customers who are expected to be nearby in
the next hour, and service finders, e.g., predict my closest gas
station over the next hour of my route.

In this demo, we present the Panda system, designed to
provide efficient support for predictive spatio-temporal queries.

∗This work is partially supported by the National Science Foundation, USA,
under Grants IIS-0952977 and IIS-1218168.

Panda provides the necessary infrastructure to support a wide
variety of predictive queries that include predictive range
queries and predictive k-NN queries for stationary and moving
objects. Panda distinguishes itself from all previous attempts
for processing predictive queries [9], [13] in the following:
(1) Panda targets long-term predication in the order of tens
of minutes, while existing attempts mainly target short-term
prediction in terms of only minutes and seconds, (2) Panda
does not only predict the query answer, but it also predicts the
incoming queries, and prepares the result for these incoming
queries beforehand, and (3) Panda is generic in the sense
that it does not only address a certain type of predictive
queries as done by previous work, instead, it provides a generic
infrastructure for a wide variety of predictive queries.

The main idea of Panda is to monitor those space areas that
are highly accessed using predictive queries. For such areas,
Panda precomputes the prediction of objects being in these
areas beforehand. Whenever a predictive query is received
by Panda, Panda checks if parts of this predictive query are
included in those precomputed space areas. If this is the case,
Panda retrieves parts of its answer from the precomputed areas
with a very low response time. For other parts of the incoming
predictive query that are not included in the precomputed areas,
Panda has to dispatch the full prediction module to find out the
answer, which will take more time to compute. It is important
to note here that Panda does not aim to predict the whole
query answer, instead, Panda predicts the answer for certain
areas of the space. Then, the overlap between the incoming
query and the precomputed areas controls how efficient the
query would be. This isolation between the precomputed area
and the query area presents the main reason behind the generic
nature of Panda as any type of predictive queries (e.g., range
and kNN) can use the same precomputed areas to serve its
own purpose. Another main reason for the isolation between
the precomputed areas and queries is to provide a form of
shared execution environment among various queries. If Panda
would go for precomputing the answer of incoming queries,
there would be significant redundant computations among
overlapped query areas.

Panda provides a tunable threshold that provides a trade-off
between the predictive query response time and the overhead
for precomputing the answer of selected areas. At one extreme,

2015 16th IEEE International Conference on Mobile Data Management

978-1-4799-9972-9/15 $31.00 © 2015 IEEE

DOI 10.1109/MDM.2015.79

327

we may precompute the query answer for all possible areas,
which will provide a minimal response time, yet, a significant
system overhead will be consumed for the precomputation and
materialization of the answer. On the other extreme, we may
not precompute any answer, which will provide a minimum
system overhead, yet, an incoming predictive query will suffer
the most due to the need of computing the query answer from
scratch without any precomputations. Answer precomputation
is similar to the idea of pull and push in publish/subscribe
systems, however the distinction in Panda is that such service
is offered in isolation from the incoming query and is also
automated in a way that Panda smartly decides which areas
to deploy push or pull methodologies.

The underlying prediction function deployed by Panda
mainly relies on a long-term prediction function, designed
by Microsoft Researchers to predict the final destination of
a single user based on his/her current trajectory [2], [10]. Un-
fortunately, a direct deployment of such long-term prediction
function does not scale up for a large number of moving
objects nor it serves our purpose for predictive queries that
are concerned with the moving object location in a future
time rather than its final destination. Panda adapts such well-
designed prediction function to: (a) scale up with the large
number of users through a specially designed data structure
shared by all moving objects, and (b) provide the prediction
for a future query time (e.g., after 30 minutes) rather than only
the prediction for the final destination. It is important to note
here that a main goal behind Panda is to support long-term
predictive queries as most existing work have only focused on
short-term prediction.

The rest of this demo is organized as follows. Section II
gives an overview of the Panda system including the system
architecture, underlying data structure, and prediction function.
Section III presents the main events that control the flow of
execution in Panda, namely, object movement, query arrival,
and statistics maintenance trigger. Finally, Section IV presents
the demo scenario.

II. PANDA: SYSTEM OVERVIEW

This section gives an overview of the Panda system out-
lining the system architecture, the adaptation of the long-term
prediction function [2], [10], and the underlying data structure.
For detailed description of the Panda system, we refer the
reader to [4], [5].

A. System Architecture

Figure 1 gives the system architecture of the Panda system,
which includes three main modules, namely, answer main-
tenance, statistics maintenance, and query processing. Each
module is dispatched by an event, namely, an object movement,
a trigger for statistic maintenance, and a query arrival, respec-
tively. Panda maintains a storage for precomputed answers,
which is updated offline and used to construct the final query
answer for arriving queries. Below is a brief overview of the
actions taken by Panda for each event. Details of these actions
are discussed in Section III.

Fig. 1. The Panda System Architecture

Object movement. Whenever Panda receives an object move-
ment, it dispatches the answer maintenance module to check
if this movement affects any of the precomputed answers. If
this is the case, the affected precomputed answers are updated
accordingly.
Maintenance trigger. Based on a tunable threshold, a trigger
may be fired to alert Panda that the current set of statistics
that judge on which answers to precompute need to be reset.
The updated statistics affect which parts of query answers will
be precomputed.
Query arrival. Once a query is received by Panda, the query
processor divides the query area into two parts based on the
answer precomputation. The first part is already precomputed
where its answer is just retrieved from the precomputed
storage. The second part is not precomputed and needs to
be evaluated from scratch through the computation of the
prediction function against a candidate set of moving objects.

B. Prediction Function

The long-term prediction function deployed in Panda is
mainly an adaptation of the one introduced by Microsoft
Researchers to predict the final destination of a single object,
F= P (Ci|So) [2], [10]. F is applied to any space that is
partitioned into a set of grid cells C. F takes two inputs,
namely, a cell Ci ∈ C and a sequence of cells So = {C1, C2,
· · · , Ck} that represents the current trip of an object O. Then,
F returns the probability that Ci will be the final destination
of O.

As F only predicts the destination of an object, it does
not have the sense of time. In other words, F cannot predict
where an object will be after time period t. Since this is a core
requirement in Panda, we adapt F to be able to compute the
probability that object O will be passing by the given cell Ci

after time t, where t is specified in the predictive query. The
adaptation results in the function F̂ which is a normalization
of the results from the original prediction function F using
the set of cells Dt that could be a possible destination of an
object O after time t.

F̂ =
P (Ci|So)∑

d∈Dt
P (Cd|So)

(1)

Here, the numerator is the output of the original prediction
function F, and the denominator is the summations of the
probabilities of all grid cells in Dt, also computed from F .
Dt is the set of possible destinations of object O after time t.

328

Fig. 2. Data Structures in Panda

Panda also has another adaptation of F to scale it up to
support large numbers of moving objects as F is mainly
designed to support single object prediction. The scaling up
is mainly supported by the underlying data structure discussed
in the next section which gives an infrastructure to share by
large numbers of moving objects.

C. Data Structure

Figure 2 depicts the underlying data structure used by
Panda. A brief overview of each data structure is outlined
below:
Space Gird SG. Panda partitions the whole space into N × N
grid cells. For each cell Ci ∈ SG, we maintain: (1) CellID as
an identifier, (2) Current Objects as the list of moving objects
located inside Ci, (3) Query List as the list of predictive queries
issued on Ci. Each query Q in this list is presented by the tuple
(T ime, Counter, Answer, Frequent), where T ime is the
future time included in Q, Counter is the number of times that
Q is issued, Answer is the precomputed answer for Q which
may have different format based on the type of Q, Frequent
is a boolean value indicating whether Q is precomputed or
not, (4) Frequent Cells as the list of cells that one of their
precomputed answers should be updated with the movement
of an object in Ci.
Object List OL. This is a list of all moving objects in the
system. For each object O ∈ OL, we keep track of an object
identifier and the sequence of cells traversed by O in its current
trip.
Travel Time Grid TTG. This is a two-dimensional array of
N2 × N2 cells where each cell TTG[i, j] has the average
travel time between space cells Ci and Cj , where Ci and Cj

∈ SG. TTG is fully pre-loaded into Panda and is a read-only
data structure.

III. EVENT PROCESSING IN PANDA

As depicted in Figure 1, Panda reacts to three main events,
namely, object movement, query arrival, and a trigger for
statistics maintenance. This section covers the actions of Panda
for each event.

A. Object Movement

Once object O in cell Ci reports a change of location, the
answer maintenance module is triggered to check on the new
location of O. If the new location is still within cell Ci, then
no actions will be taken by the answer maintenance module.
However, if the new location of O is located in another cell Cj ,
the answer maintenance module checks to see if the movement
of O affects any of the precomputed answer sets, and update
the affected precomputed answers accordingly. This is mainly
done as follows: For each cell cf in the list of frequent cells
of Ci, we calculate the prediction function F̂ of O being in
cf for the times of interest of cf , which can be obtained from
the query list entry of cf . For each time value, we update
the value of the current answer by the value of the prediction
function. For example, in the case of aggregate count queries,
we subtract the result of the prediction function from the
currently computed answer. We do the same for cell Cj , the
new cell of object O, except for the fact that we add (instead
of subtract) the value of the predication function to the current
query answer.

B. Query Arrival

Once a new predictive query Qt, asking about objects in a
future time t, arrives to Panda, the query processor module
is triggered to provide the answer in a very low response
time. The query processor module first checks on the grid cells
affected by Qt. For the case of a range query, these cells will
be the ones that overlap the query region. For a kNN query,
these cells can be obtained by a pruning object that limits the
set of cells to focus on.

For each affected cell c, we check its query list cql that
includes the list of predictive queries issued on this cell. If the
time t associated with Qt is registered in cql with the frequent
field set to true, then the part of Q that overlaps c is already
precomputed, and we just retrieve its answer from the list cql.
On the other side, if t is not registered in cql or if it is registered
there, but with a false value in the frequent field, this means
that the answer of this part of the query is not precomputed.
In this case, we use the preloaded knowledge we have in the
Travel Time Grid data structure along with the future query
time t to apply a time filter over all grid cells in the space grid
SG to find out those cells that are reachable to c within time
t. For each moving object O in these filtered cells, we apply
our prediction function F̂ to calculate the probability that O
will contribute to Qt answer, and we update the query answer
accordingly. In a nutshell, the answer for Qt is collected from
two parts: (1) A precomputed part based on the precomputed
cells, and (2) The computation of the prediction function for
moving objects that lie within grid cells reachable to the area
of Qt within time t.

329

Fig. 3. System Internal Visualizer For Panda

C. Statistics Maintenance Trigger

Two possible actions can trigger statistics maintenance:
Timeout. Panda needs to reset its statistics regularly. Every
time period Tout, the counters of all queries are set to 0. This
is mainly to make sure that the current counters present a recent
image of the system in terms of what are the frequent queries.
Threshold change. At any point of time, a system admin-
istrator may change the threshold value T . In this case, the
statistics maintenance module is triggered to go through all
query lists for all cells and update their frequent field for each
time instance t according to the new threshold. For any update,
the updated cell needs to be either populated or deleted for
all reachable cells within time t. An updated cell c will be
populated for time t if its frequent field got updated from false
to true, or it will be deleted otherwise.

IV. DEMO SCENARIO

This section presents the demo scenario of Panda that
outlines the use of the Panda client and an eye on the
internal operations of Panda. The demo is based on a large
set of synthetic data of moving objects generated using the
Brinkhoff’s generator [1] on a real road network map extracted
from the shape files of Hennepin County, Minnesota, USA.
Panda has two main interface screens, each will be displayed
on its own laptop during the demo session:
Client interface. Figure 4 gives a screen shot of the Panda
client GUI. Panda users can use this interface to issue predic-
tive spatio-temporal range and kNN queries by drawing the
query area or location on the map, and entering the future time
duration in the designated box. The answer is displayed back
on the GUI along with the time taken by Panda to retrieve such
answer. Panda users can ask to make their queries continuous,
in which the answer of the query will be continuously updated
to the user.
Server interface. Figure 3 gives a screen shot of the backend
server of Panda. This is mainly done to help the demo audience
understand the internals of the Panda system. It acts like an
eye on the internal processing of Panda. The map area in
this screen shot is partitioned into grid cells corresponding to
the underlying data structure. Then, audience can monitor all
moving objects on the map along with the received queries as

Fig. 4. Client User Interface

they come. The answer for each query will be displayed on the
right side of the interface along with a set of statistics showing
the system behavior. The precomputed areas will be marked
and illustrated. Audience can tune the system threshold T and
see its effect on the system behavior. Finally, a preloaded query
workload can be uploaded to stress test the system.

REFERENCES

[1] T. Brinkhoff. A Framework for Generating Network-Based Moving
Objects. GeoInformatica, 6(2):153–180, 2002.

[2] J. Froehlich and J. Krumm. Route Prediction from Trip Observations.
In Society of Automotive Engineers (SAE) World Congress, Michigan,
USA, Apr. 2008.

[3] Y. Gu, G. Yu, N. Guo, and Y. Chen. Probabilistic Moving Range Query
over RFID Spatio-temporal Data Streams. In CIKM, pages 1413–1416,
Hong Kong, China, Nov. 2009.

[4] A. Hendawi. Predictive query processing on moving objects. In
Data Engineering Workshops (ICDEW), 2014 IEEE 30th International
Conference on Data Engineering ICDE, pages 340–344, Illinois, USA,
Mar. 2014.

[5] A. M. Hendawi and M. F. Mokbel. Panda: A Predictive Spatio-Temporal
Query Processor. In ACM SIGSPATIAL GIS, California, USA, Nov.
2012.

[6] A. M. Hendawi and M. F. Mokbel. Predictive Spatio-Temporal Queries:
A Comprehensive Survey and Future Directions. In ACM SIGSPATIAL
MobiGIS, California, USA, Nov. 2012.

[7] H. Hu, J. Xu, and D. L. Lee. A Generic Framework for Monitoring
Continuous Spatial Queries over Moving Objects. In SIGMOD, pages
479–490, Maryland, USA, June 2005.

[8] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A Hybrid Prediction Model
for Moving Objects. In ICDE, pages 70–79, Cancn, Mxico, Apr. 2008.

[9] H. Jeung, M. L. Yiu, X. Zhou, and C. S. Jensen. Path Prediction and
Predictive Range Querying in Road Network Databases. VLDB Journal,
19(4):585–602, Aug. 2010.

[10] J. Krumm. Real Time Destination Prediction Based on Efficient Routes.
In SAE, Michigan, USA, Apr. 2006.

[11] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Contin-
uous Query Processing of Spatio-temporal Data Streams in PLACE.
GeoInformatica, 9(4):343–365, Dec. 2005.

[12] H. Wang, R. Zimmermann, and W.-S. Ku. Distributed Continuous
Range Query Processing on Moving Objects. In DEXA, pages 655–
665, Krakow, Poland, Sept. 2006.

[13] R. Zhang, H. V. Jagadish, B. T. Dai, and K. Ramamohanarao. Optimized
Algorithms for Predictive Range and KNN Queries on Moving Objects.
Information Systems, 35(8):911–932, Dec. 2010.

330

