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Abstract—In this demonstration paper, we present an innova-
tive framework for sustainable Electric Vehicles (EVs) charging,
dubbed EcoCharge, which utilizes an intelligent energy hoarding
approach. Particularly, EcoCharge employs a Continuous k-
Nearest Neighbor query, where the distance function is computed
using Estimated Components (ECs) (i.e., a query we term CkNN-
EC). An EC defines a function that can have a fuzzy value
based on some estimates. Specific ECs used in this work are:
(i) the (available clean) power at the charger, which depends
on the estimated weather; (ii) the charger availability, which
depends on the estimated busy timetables that show when the
charger is crowded; and (iii) the derouting cost, which is the
time to reach the charger depending on estimated traffic. Our
framework combines these multiple non-conflicting objectives
into an optimization task providing user-defined ranking means
through an intuitive spatial application. The algorithm utilizes
lower and upper interval values derived from ECs to recommend
the top ranked EV chargers and present them through a map
interface to users. We demonstrate EcoCharge using a complete
prototype system developed using the Leaflet - OpenStreetMap
library. In our demonstration scenario, attendees will have the
opportunity to observe through mobile devices the benefits of
EcoCharge by simulating its execution over various scheduled
trips with real data retrieved from API requests (i.e., ECs).

Keywords-Mobile Data Management, Green Mobility, Renew-
able Self-Consumption, Electric Vehicles, Charging.

I. INTRODUCTION

In recent years, the market penetration of electric vehicles
(EVs) has exponentially expanded due to their notable ad-
vantages in sustainable transportation and cost-effectiveness
compared to conventional internal combustion vehicles. Cities
play a pivotal role in the pursuit of climate neutrality by 2050,
a core objective of the European Green Deal1, as they bear
responsibility for over 65% of the world’s energy consumption
and contribute to 70% of global CO2 emissions. Lately, a
growing interest has been seen in the incorporation of Renew-
able Energy Sources (RES) into EV charging infrastructure,
such as wind turbines and photovoltaic panels (PV) [1], [2].

1EU Climate-Neutral Smart Cities, https://tinyurl.com/57tzjmyk

Fig. 1. EcoCharge application: An example of a moving vehicle and available
chargers (b) based on a scheduled trip (P ). The ranking selection is derived
from each EV charger’s rate and solar production curve at a certain time,
considering also the estimated time of arrival (ETA), and the return trip time.

People often engage in the practice of “energy hoarding”,
where they charge their EVs during periods of inactivity
(i.e., idle time), even when the battery is not substantially
depleted, to ensure that the vehicle will be charged for future
travel. Even though EVs are seen as a way to reduce CO2
emissions, thus, energy hoarding with non-renewable energy
sources is negating environmental benefits. In the U.S., the
energy demand for EV charging was estimated at 4.7 TWh
in 2020, with a projected increase to ≈107 TWh by 20352.
Current applications focus on allowing users know where
to recharge but do not list the environmental impact of the
charging process (i.e., energy coming from fossil fuel burning).

A renewable hoarding technique can be applicable in scenar-
ios with idle time (i.e., while an EV user is waiting or parked).
For example, consider the following real-life scenarios: (i)
electric taxis (e.g., Lyft, Uber, Bolt) during idle periods are
waiting to be called or booked online; (ii) parents waiting

2Statista-EV charging demand, https://tinyurl.com/mtc6w8nt



in their idle EVs while their children attend after-school
activities; and (iii) an EV user going for groceries or clothing
shopping. Consequently, in all aforementioned scenarios, users
could stop at some nearby charging station to efficiently charge
their EVs using power generated from renewable sources, thus,
reducing the carbon footprint of their daily routine.

One technical challenge, is that the decision of where to
sustainably hoard depends on a variety of Estimated Com-
ponents (ECs) on where and when to charge (see Figure
1). Examples of these estimations are: the (available clean)
power at the charger that depends on the estimated weather,
the charger availability that depends on the estimated busy
timetables showing when the charger is crowded, and the
derouting cost to reach the charger that depends on estimated
traffic. To solve this kind of problem, a Continuous k-Nearest
Neighbor (CkNN) query [3] can be utilized to answer questions
like which EV chargers are closer regarding a path. However,
CkNN does not consider the estimation of various components.
Our work falls under the concept of renewable hoarding
techniques exploiting ECs. The objective is to optimize EV
charging by utilizing only RES and focusing solely on short-
term traveling, ignoring multi-stop planning.

In this demo, we demonstrate an innovative renew-
able hoarding application for charging EVs, dubbed
EcoCharge3[4]. We model the problem as a new CkNN-EC
query that retrieves the k nearest neighbors of every point on
a path segment (e.g., “find all my nearest EV chargers during
my route from source to end-point.”), while considering ECs
by employing a distance function that can express a fuzzy
value. The demo will allow the audience to experience the in-
telligent renewable hoarding notion, which is integrated in our
EcoCharge framework, through an interactive demonstration
with visual maps.

In our previous publications, we have presented Energy
Planner (EP) and Green Planner (GP), integrated in a Home
Energy Management System called IMCF+ [5], [6]. Both, EP
and GP, adapted off-the-shelf AI algorithms (hill climbing
and simulated annealing), and focus on “long-term” planning,
meaning that they would compute a whole year plan by doing
less complex daily computations. Furthermore, we developed a
system called GreenCap [7], which refers to “daily” planning
as it attempts to find the best combination for allocating and
shifting appliances during a day by minimizing the imported
energy from the grid, while considering peak demand and high
energy production times.

II. THE ECOCHARGE OVERVIEW

In this section, we describe the architecture of a prototype
system that we have developed followed by our algorithm.

A. System Architecture

The core of our system resides in an EcoCharge Client
supported by a centralized server, which interacts with external
APIs to retrieve essential data (see Figure 2). Leveraging ex-
ternal APIs, our EcoCharge Information Server (EIS) acquires

3EcoCharge, https://ecocharge.cs.ucy.ac.cy/

Fig. 2. EcoCharge Architecture: the server takes as an input all available
EV chargers, weather forecast, availability, traffic data, and road network
information.

real-time weather forecast data, detailed road network infor-
mation, and a comprehensive list of all available EV charging
stations based on the user’s location. This centralized approach
allows the server to efficiently consolidate the required data
and distribute to individual clients as per request.

The service can be provided to the users with three modes of
operation: (i) Mode 1, where EcoCharge operates in a vehicle’s
embedded operating system (e.g., Automotive OS, Volkswa-
gen OS3); (ii) Mode 2, where EIS takes over EcoCharge
calculations centrally; and (iii) Mode 3, where EcoCharge
functionalities are managed by an edge device (e.g., smart
phone using Android Auto or Apple CarPlay).

B. EcoCharge Prototype

EcoCharge Information Server (EIS): EIS is designed using
the Laravel PHP Framework, ensuring a robust and organized
structure, and it is deployed with the high-performance Nginx
web server for efficient handling of HTTP requests. It effi-
ciently retrieves road network information by integrating with
OpenStreetMap4, which facilitates advanced functionalities
such as route planning, enabling users to obtain optimal direc-
tions and navigate seamlessly on a road network. PlugShare5

is used to gather information about EV stations based on
users’ location. To gauge environmental conditions such as
sunlight availability, we rely on data from OpenWeatherMap6,
an API service offering up-to-the-minute weather information
for diverse global locations.
EcoCharge Client: Upon receiving, through an API call,
the weather forecast, road network details, and EV charging
station information from the EIS, the client application takes
on the pivotal role of processing this data. Tasked with the
responsibility of hoarding optimization, the client application
employs a novel algorithmic approach to calculate the most
efficient route considering sustainable charging and derouting

4OpenStreetMap: https://www.openstreetmap.org/
5PlugShare-EV Charging Stations, https://www.plugshare.com/
6OpenWeatherMap, https://openweathermap.org/



Fig. 3. EcoCharge Client Graphical User Interface - Prompts users to
add EC preferences and destination so that the framework provides a ranking
of the most sustainable chargers identified in each path segment of the trip.

cost based on the user’s scheduled trip. This process involves
dynamically identifying EV chargers along the route, consider-
ing factors such as real-time sunlight conditions, road network
intricacies, and availability.

EcoCharge Client, implemented in Python 3, leverages the
capabilities of the Folium library - a robust tool designed
for creating diverse Leaflet maps. The utilization of Folium
is integral to our system’s functionality, providing a dynamic
and interactive mapping component. Through the integration
of Leaflet, HTML, and JavaScript, we ensure that our system
not only delivers powerful functionality but also presents
information in a visually engaging and accessible manner.
Our mobile-based application enhances user experience by
integrating with the device’s location services. Through an
intuitive Graphical User Interface (GUI), users can easily set
their desired destination for a trip and receive comprehensive
route information, leveraging the application’s functionality for
efficient navigation (see Figure 3).

C. The EcoCharge Algorithm

This work aims to develop an intelligent technique facil-
itating sustainable EV charging through an energy hoarding
algorithm. By identifying charging stations that offer the most
green (i.e., clean) energy, users take advantage of RES self-
consumption, while reducing CO2 emissions.

The intention of the EcoCharge is to optimize an objective
function to achieve a trade-off between the vehicle’s sustain-
able charging level L, the chargers’ availability A, and the
derouting travel distance D to a charger.

In order to continuously monitor the result of kNN, the
CkNN-EC method necessitates partitioning the entire route
distance into separate segments, which are sequentially con-
sidered for the kNNs determination of the query object. The
partitioning procedure is responsible for dividing the scheduled

trip into segments (e.g., ≈5km each segment; can be modified
in settings as per preference). It is essential to note that the
road network distances between all chargers and the query
object (i.e., EV vehicle) have to be updated every time the
query object reaches a segment intersection of the scheduled
trip. For each segment, the process of finding the kNNs is
composed of two phases. The first one is called Filtering
phase, which is used to discard non-qualifying chargers. The
second phase is called Refinement, where an evaluation is
conducted to determine the eligibility of candidate chargers
as CkNN-EC.
According to the driver’s location, the Filtering phase ensures
that only the k most suitable chargers are considered, while
pruning all the rest. The particular phase loops through the
entire pool of EV chargers and examines each one based on
the following Estimated Components (ECs):
Sustainable Charging Level (L): Each EV charging station
b has a different charging rate and power generation levels st
depending on time and location. Further, the weather forecast
(e.g., sunny, cloudy) is retrieved by a cloud service (e.g.,
OpenWeather, Windy, WindFinder), which utilizes weather
models like Global Forecast System (GFS) and European
Centre for Medium-Range Weather Forecasts (ECMWF), both
with an accuracy of 95–96% for up to 12 hours and 85–95%
for three days. L consists of lower and upper estimation values,
thus, the final result is an interval Lmin to Lmax.

L(B) = max{sbt | ∀ b ∈ B } (1)

Availability (A): Each EV charger’s availability is estimated
using a third-party service (e.g., Google Maps POI busy
timetables), enabling the determination of real-time accessi-
bility on a given time t. Therefore, an interval is produced
Amin to Amax.

A(B) = max{Ab | ∀ b ∈ B } (2)

Derouting Cost (D): A route path from starting point v0 to tar-
get charger vk is a sequence of nodes P =< v0, v1, ..., vk >,
where w represents the edge weight in terms of CO2 emissions.
The derouting accurately considers real-time traffic informa-
tion (e.g., congestion) at a given time and location retrieved
from a cloud Geographic Information System (GIS) service
(e.g., Google Maps, Waze, HERE Maps), thus, D consists of
lower and upper estimation values. Therefore, the final result
is an interval Dmin to Dmax. The minimum derouting cost
for a segment p of the path P to all chargers B is:

D(B) = min{
|p|∑
i=0

wvi,b ∗ distance(vi, b) | vi ∈ p, ∀ b ∈ B}

(3)
Each charging station selected in the pool of filtered candi-

dates undergoes through the Refinement Phase to evaluate its
Sustainability Score (SC). In this work, we evaluate SC as a
weighted sum function, where w1 is the weight of Sustainable
Charging Level (L) objective, w2 is the weight of Availability



(A) objective, and w3 is the weight of the Derouting Cost (D)
objective, respectively. Using CkNN with SC as the distance
function, EcoCharge produces two result-sets, one based on
SCmin and another on SCmax, until the final output of their
intersection consists of k chargers.

SCmin = (Lmin∗w1)+(Amin∗w2)+((1−Dmin)∗w3) (4)

SCmax = (Lmax∗w1)+(Amax∗w2)+((1−Dmax)∗w3) (5)

SC(B) = sort(SCmax(b) ∩ SCmin(b)),∀b ∈ B (6)

III. DEMONSTRATION SCENARIO

During the demonstration, the conference attendees will get
the chance to appreciate the key elements of EcoCharge, the
adaptability as well as our proposition performance.

A. Case Scenario

An instance of our real prototype system has been deployed
in Nicosia, Cyprus, surrounded by approximately 50 EV
charging stations. Through the EcoCharge GUI, a test user
configured the k parameter to 3 (i.e., retrieve 3 nearest/most
sustainable chargers). The user wanted to do some shopping,
thus, a scheduled trip was set up starting at 18:00 o’clock
from the city center and ending up at the city’s mall (i.e.,
≈22-25 minutes travel time). During the trip, the user received
multiple recommendations for EV chargers generated by the
proposed framework, occurring every ≈5 minutes. However,
the user preferred to utilize the idle time of their EV at the final
destination for charging while shopping. The EcoCharge’s
performance was measured with respect to the Sustainability
Score (SC) and time. Considering the ECs retrieved from EIS
mentioned in Section II-C (e.g., availability at current time,
traffic, weather conditions), the application produced a set of
3 EV chargers nearby the mall, in a reasonable response time
t ≈ 0.5 seconds, with the following scores: (i) SCChargerA =
98% and 14 meters from destination; (ii) SCChargerB = 80%
and 57 meters from destination; (iii) SCChargerC = 72% and
3.2km from destination. Consequently, the user saved time by
having multiple available options for parking spots where they
could sustainably charge their vehicle.

B. Demo Plan

The conference attendees will have the opportunity to inter-
actively engage with the EcoCharge application interface by
configuring preferences and setting up a scheduled trip using
a tablet or smartphone. A number of synthetic preference con-
figurations will be pre-loaded to several demo user accounts
through the application’s back-end. A demonstration will take
place over real road network maps to graphically expose the
applicability and operation of the EcoCharge algorithm in real-
time.

The main objective of our approach is to enable EV
users to sustainable charge their vehicles through a renewable
hoarding process, by leveraging renewable energy sources,
optimizing charging strategies, and reducing operational costs.

To showcase the advantages of our technique to the audience,
we will provide visual representations to help them gain a
clear insight into the performance benefits. These visuals will
illustrate the increasing levels of sustainability charging and
the corresponding improvements in self-consumption observed
during our experiments.

As part of the demonstration, we will hand out to attendees
three mobile devices that will act like real EV users, each
one with a different scheduled trip in the road network of
California. Participants will have the opportunity to view on
their smartphone displays the status of the simulated moving
EV vehicles and the recommended chargers, which will appear
every few seconds (i.e., in every segment of the scheduled
trip) sorted based on SC. The three cases will vary since
different locations and times will be adjusted on the scheduled
trips, such as weather conditions, chargers’ availability, and
traffic congestion. The EC values are going to be based
on real life data retrieved by EIS. The aforementioned case
scenarios will be based on 25, 35, and 45 minutes scheduled
trips, respectively. Therefore, the execution time will be fast-
forwarded so that the audience can observe the updates of
charger recommendations throughout the trip.

Furthermore, participants will have the opportunity to form
custom scheduled trips through the mobile application. Our hy-
pothesis is that data engineering practitioners and researchers
would like to compose their own user preference profiles,
as opposed to be restricted within the boundaries of the
well-defined provided templates. Particularly, we will provide
attendees with the possibility to set up scheduled trips based on
various times throughout the day to notice the impact during
peak-demand periods. The goal will be to clearly describe the
EcoCharge and the intelligent renewable hoarding approach
employed, which makes our implementation an environmen-
tally friendly alternative to traditional charging methods.
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