
Scout: A GPU-Aware System for Interactive
Spatio-temporal Data Visualization

Harshada Chavan, Mohamed F. Mokbel

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455, USA

{chava057, mokbel}@cs.umn.edu

ABSTRACT

This demo presents Scout; a full-fledged interactive data vi-
sualization system with native support for spatio-temporal
data. Scout utilizes computing power of GPUs to achieve
real-time query performance. The key idea behind Scout is
a GPU-aware multi-version spatio-temporal index. The in-
dexing and query processing modules of Scout are designed
to complement the GPU hardware characteristics. Front end
of Scout provides a user interface to submit queries and view
results. Scout supports a variety of spatio-temporal queries-
range, k-NN, and join. We use real data sets to demonstrate
scalability and important features of Scout.

1. INTRODUCTION
Interactive spatio-temporal data visualization has

emerged as one of the most important tools to explore
data and derive valuable insights leading to strategic
decisions [11]. Examples of such visualization include
analyzing Twitter data for a certain event, analyzing taxi
trips for traffic monitoring, and analyzing flight data for air
traffic. Interactive spatio-temporal data visualization boils
down to a set of consecutive spatio-temporal operations
that correspond to users’ actions in exploring the spatial
space by panning and zooming. Therefore, to be effective,
interactive data visualization needs to adhere to stringent
query latency requirements, where queries need to be an-
swered within 160ms [6], otherwise, it may severely impact
the quality of the generated hypothesis [4]. As a result,
several generic data visualization systems were introduced
in academia (e.g., SeeDB [13], [2], imMens [5]) and industry
(e.g., Tableau [10]). However, such systems suffer from one
or more of the following two main drawbacks: (1) They are
designed to deal with data visualization in general, with no
special support for a variety of spatial and spatio-temporal
operations, and (2) They do not scale up to the massive
amounts of big spatial data, commonly generated by various

This research is supported by NSF grants IIS-0952977, IIS-
1218168, IIS-1525953, and CNS-1512877.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056444

applications, e.g., multi-billion cell phone records [9], over a
billion records generated by taxi trips in New York city [8],
a million trip records generated by Uber in China alone [12].

In this demo, we present Scout; a scalable interactive vi-
sualization system for exploring big spatio-temporal data.
Scout is designed with built-in spatio-temporal data struc-
tures and access methods. Hence, Scout gives much better
performance for spatial and spatio-temporal operations than
prior generic visualization systems. In particular, Scout sup-
ports spatial and spatio-temporal range queries, aggregate
queries, k-Nearest Neighbor queries, and join queries. To
scale up with the massive amounts of big spatial and spatio-
temporal data, Scout exploits the enormous compute ca-
pability of Graphics Processing Units (GPUs) to parallelize
computations, which results in real-time query performance.
It is important to note that Scout does not use GPUs just as
more efficient processor than regular CPUs. Instead, Scout
designs its spatio-temporal index structures and operations

specifically for GPU processing.
Scout is a full-fledged system that supports all basic

spatio-temporal operations that can be combined together
to support a myriad of spatio-temporal functionality, e.g.,
heat maps, spatial analysis, and event detection. This dis-
tinguishes it from prior work that used GPUs to support one
particular type of spatio-temporal interactive queries under
a certain environment, namely, range queries [1] or aggre-
gate queries [3] for historical data. Another distinguishing
characteristic over prior work is that Scout supports data
inserts without rebuilding its index structure.

The main idea behind Scout is a multi-version spatio-
temporal index structure, where time is sliced into equal
intervals. Each temporal interval includes a quadtree-based
spatial index structure that has been adapted to match the
architecture of GPUs. In particular, instead of represent-
ing quadtrees in a traditional hierarchical manner, we store
the final partition boundaries in contiguous memory loca-
tions, which matches GPU’s access pattern. Similarly, index
lookup has been modified to take advantage of the parallel
processing on GPUs. Instead of traversing the quadtree to
reach the required leaf nodes, we simply perform a paral-
lel test on the partition boundaries array to identify the
required leaf nodes of the quadtree. Such GPU-aware adap-
tations allow Scout to make more coalesced memory accesses
and reduce expensive thread synchronizations; properties
desired by an ideal GPU computation. While processing
the query, Scout avoids unnecessary data transfers between
CPU and GPU by pruning the quadtree partitions that are
guaranteed not to contribute to the query answer.

1691

CPU-GPU

User

Interface

Filter

Phase

Refine

Phase

Data

..

.........
..

New Data Batch

Visualization Query Processing

Spatio-temporal

Index

Spatio-temporal Query

CPU-CPU GPU-GPU

GPU-GPU

Key:
CPU-CPU: CPU based algorithm run on CPU
CPU-GPU: CPU based algorithm run on GPU
GPU-GPU: GPU based algorithm run on GPU

Quadtree

Creation
..

Partition

Boundaries Arrays

Quadtree

Partition

Boundaries

Figure 1: System Overview

2. SYSTEM OVERVIEW

Figure 1 gives an overview of Scout, composed of three
main modules: visualization, indexing, and query processing.

Visualization. The visualization module serves three pur-
poses. First, it acts as a user interface that allows sys-
tem users to explore the spatio-temporal data on a map
by panning and zooming, while specifying certain analysis
functions, e.g., heat maps, data plots. Second, it trans-
forms user actions and requests into corresponding spatio-
temporal queries and sends to the query processing module.
Third, it displays query result received from query process-
ing module. Details are in Section 5.

Query processing. The query processing module receives
its queries from the visualization module, and executes them
through two phases, namely, filter and refine phases. The
filter phase uses the underlying spatio-temporal index struc-
ture to early prune index partitions that are not going to
contribute to the final answer. The refine retrieves candi-
date partitions from the underlying spatio-temporal index
structure and performs actual expensive computational ge-
ometry operations to come up with the final query result.
Both the filter and refine phases are designed to take advan-
tage of GPU parallel processing. Details are in Section 4.

Spatio-temporal index. Spatio-temporal index is used in
filter phase of query processing. The index receives lookup
keys from the query processing module in the form of tem-
poral and spatial ranges mentioned in the query. The re-
sult of the lookup operation is a list of candidate parti-
tions. The structure and access methods of quadtree are de-
signed to adapt to GPU architecture. Scout uses array based
quadtrees, instead of traditional hierarchical quadtree struc-
ture. The leaf partitions of quadtree are stored in contiguous
memory locations to eliminate the need of tree traversal dur-
ing index lookup. These two changes help in reducing the
expensive conditional execution and thread synchronization
operations, and employ more coalesced memory accesses.
Time slicing allows easy updates to the existing index when
new data batches are added. Details are in Section 3.

New Data Points

...

Data Records (Disk Storage)

...

May 2016
Phase 1:

Temporal

Slicing

Phase 2:

Spatial

Indexing

GPU Index

Lookup
...

Index Building Process

Jun 2016 Jul 2016

Query

Partition Boundaries

Arrays

Phase 3:

Physical Index

Figure 2: Spatio-temporal Index Structure

3. SPATIO-TEMPORAL INDEX

Figure 2 gives the spatio-temporal index structure em-
ployed by Scout, which is first created through a bulk loading
process, then updated with a batch of new incoming data.
This section focuses on how to build and update the index
structure, while Section 4 focuses on how to query this in-
dex structure. Scout builds and updates its spatio-temporal
index structure through three phases, namely, temporal slic-

ing, spatial indexing, and physical indexing, described below.
It is important to note that each of these three phases is
designed specifically for the GPU environment. All design
decisions were taken based on how GPU friendly they are.

Phase 1: Temporal slicing. This phase partitions new
or incoming data into one or more equal time slices, in a
temporally increasing order, e.g., one slice for May 2016,
another slice for June 2016, and so on. Each time slice
contains data that has arrived within the temporal inter-
val of the slice, regardless of where the data is located in
the space. We strongly prefer to use time slicing indepen-
dent from the spatial domain, over prior spatio-temporal
index structures that combine both space and time together
(see [7], for a comprehensive survey), for two main reasons:
(1) Queries posed to big spatio-temporal data mostly need
to be bounded temporally, hence the temporal filter has to
be in most posed queries. To clarify, a query about finding
tweets that mention Trump or a query about Taxi drop-off
locations in New York does not have much meaning without
a temporal filter. For example, if the query is to find tweets
about Trump in New York, would a tweet that was posted
few years ago be relevant? If so, the size of the answer may
not be practical. So, such a query needs to have a tempo-
ral filter, e.g., last week, or during a certain month. Same
can be said about taxi drop-off locations. Time-slicing index
structures are the most appropriate for such kind of queries.
(2) Updating the data is much easier with temporal slicing.
Whenever a new data batch is added, it only affects the most
recent time slice, and may add one more time slices. This
is in contrast to the need to rebuild the whole index in case
we are not using time slicing.

Phase 2: Spatial indexing. This phase is applied sep-
arately on the data of each temporal slice, generated from
Phase 1. Data belonging to each time slice is further parti-
tioned using a quadtree spatial index that recursively divides

1692

space into four equal quadrants until the data contained in
each quadrant is less than a specified size. For faster process-
ing, quadtree building is performed on GPU, where multiple
threads work on dividing multiple quadrants at the same
time. Also, multiple threads are working on each time slice
concurrently; another main advantage of using time slicing
index structure in Scout. The main reason for selecting a
quadtree index structure over other spatial index structures
is that it handles data skewness in a way that data workload
is distributed equally to different partitions; a property that
is needed for GPU processing.

Phase 3: Physical indexing. As depicted in Figure 2,
first two phases belong to index building process, where the
main objective is to come up with a set of boundary parti-
tions (obtained from each quadtree). Once we have the par-
tition boundaries for each time slice, we do not need the tree
hierarchy anymore and it is not even stored anywhere. In-
stead, this phase physically stores the partition information
in contiguous memory locations, as needed by GPU deploy-
ment, for two main reasons: (1) It helps in reducing global
memory access time by making use of coalesced memory ac-
cesses. (2) It eliminates the need of tree traversal. Instead, a
parallel search is executed directly on the partition bound-
aries arrays. Performing tree traversal on GPUs involves
executing expensive conditional and thread synchronization
operations. These operations frequently lead to thread wait-
ing, thus, under-utilizing the hardware resources.

4. QUERY PROCESSING
Scout supports basic spatio-temporal operators, described

briefly in this section, namely, range, k-nearest-neighbor,
and join, along with aggregation. Together, these basic op-
erators can support a myriad of spatial analysis functions.
For example, heatmaps are composed of aggregates with
range queries. As it is the case with traditional spatial sys-
tems, spatial operations are executed in two phases, filter

and refine. The filter phase is responsible for early pruning
of spatial data that will not make it to the query result.
The refine phase performs actual expensive computational
geometry operations to decide on the final answer. Unlike
traditional spatial systems, the query processor of Scout is
specifically designed for GPUs. In particular, the GPU in-
dex lookup used in the filter phase exploits the contiguous
storage of partition boundaries by avoiding expensive tree
traversals. The compute intensive refine phase operations
are designed to be compatible with GPU memory access
and parallel processing.

Spatio-temporal range query. Such a query consists of
a spatial and temporal range as query parameters, e.g., find
all Taxi drop off locations in Manhattan in June 2016. Filter
phase invokes the GPU index lookup that performs intersec-
tion operations, in parallel, between the rectangular index
partition boundaries and the minimum bounding rectangle
of query region. Overlapped partitions are considered as
candidates that include the final answer. Data records be-
longing to candidate partitions are transferred to GPU for
the refine phase. For each input data point, the refine phase
makes use of multiple GPU threads to check if its time and
location falls within the spatio-temporal query ranges.

Spatio-temporal k-NN query. An example of k-NN
queries is: find k nearest drop off locations to a certain

restaurant on Jan., 1, 2017. The filter phase invokes the

GPU index lookup to perform parallel checks on the par-
tition boundaries arrays to determine the partition which
contain the query point i.e., query partition. The data be-
longing to query partition is transferred to GPU memory.
The refine phase processes query partition to select the k

nearest points using multiple threads of GPU. Once the k

points are found, a circle is drawn using the distance between
the query location and the k

th point as radius. If this circle
is completely contained in the query partition, the process
is deemed complete. If the circle touches other partitions,
these partitions are processed to get the final answer.

Spatio-temporal join query. An example of join queries
is: find all drop-off locations within five miles of each voting

site on election day. In the filter phase, multiple GPU in-
dex lookups are performed by multiple thread blocks to find
candidate partitions that intersect with each of the spatial
query ranges. The data belonging to candidate partitions is
transferred to GPU memory for refine phase. Each thread
block performs the refine phase in parallel to select points
that satisfy the temporal and spatial range of the query.

The query processing module also handles the case when
the spatio-temporal index does not fit into GPU’s global
memory. The index is divided into multiple blocks such
that each block fits into GPU global memory and the filter

phase is performed in a block-by-block fashion.

5. VISUALIZATION
The visualization module in Scout serves three purposes:

(1) It provides a map-based user interface for users to explore
the data, (2) It converts user actions into spatio-temporal
queries submitted to query module, and (3) It displays the
results on the map in the format asked by the query (data
points or heatmap). Figure 3 shows the web-based user in-
terface of Scout for a spatio-temporal range query.

Visualization module converts user actions into four query
parameters- query type, spatial attribute, spatial geometry,
and temporal range. Spatial k-NN queries consist of k as
the fifth parameter. As the user explores the map, every
user action, that changes any one of these parameters, is
converted into a new query and results are updated. For
example, as user pans the map, every move produces a dif-
ferent spatial range (equivalent to map-space on screen) for
the query and therefore, a new set of query parameters is
forwarded to query processing module for producing the re-
sult. After the background processing, visualization module
receives the results from query processing module. If the
query required result to be in the form of data points, the
result points are rendered on the screen, in parallel, with
the help of OpenGL. If the results are expected to be in the
form of a heatmap (e.g., Figure 4), the visualization module
computes the heatmap from the result points and renders it
onto the map.

6. DEMO SCENARIOS

Scout will be demonstrated to the conference audience
using two main datasets, New York taxi trip data for the
last six years [8] and Twitter data collected between Jan-
uary 2015 and May 2015. Both data sets have over a billion
records. Conference attendees will be able to experience
three main scenarios with Scout, namely, query execution,
interactive data exploration, and background processing.

1693

Figure 3: Query Result as Data Points

Scenario 1: Query execution. Attendees can submit var-
ious spatio-temporal queries through Scout GUI by select-
ing the query type (range,k-N, and join) and output format
(data points or heatmap). Results can be seen in real-time.
Figure 3 shows the result of a sample spatio-temporal range
query as data points and Figure 4 shows the result of the
same query as a heatmap.

Scenario 2: Interactive data exploration. Interac-
tive visualization is the main highlight of Scout. Attendees
do not have to explicitly submit the queries by clicking a
button. Instead, as they explore the map area or change
query parameters on the user interface, the query answer
is changed immediately. This will show the power of Scout
system and it is ability to exploit GPU to provide smooth
interactive experience.

Scenario 3: Background processing. Attendees will
also be able to get a peek into the background query exe-
cution process in Scout. As the queries are submitted from
the user interface, on another terminal, attendees can see
the background process visualizer continuously displaying
the status of the query (shown in Figure 5), e.g., the query
parameters, execution time of each of the steps in query pro-
cessing, result size, and total query time. It proves handy
when debugging the query execution process. This will also
allow demo attendees to understand the intellectual merits
and technical details of Scout.

7. REFERENCES
[1] H. Doraiswamy, H. Vo, C. Silva, and J. Freire. A

GPU-based index to support interactive spatio-temporal
queries over historical data. In ICDE, May 2016.

[2] N. Ferreira, J. Poco, H. Vo, J. Freire, and C. Silva. Visual
exploration of big spatio-temporal urban data: A study of
new york city taxi trips. IEEE TVCG, 19(12), 2013.

[3] L. Lins, J. Klosowski, and C. Scheidegger. Nanocubes for
Real-Time Exploration of Spatiotemporal Datasets. IEEE
TVCG, 19(12), 2013.

[4] Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. IEEE TVCG, 20(12), 2014.

[5] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual
querying of big data. In EuroVis, 2013.

Figure 4: Query Result as Heatmap

Figure 5: Background Processing

[6] A. Michotte. The Perception of Causality. Basic Books,
1963.

[7] M. Mokbel, T. Ghanem, and W. Aref. Spatio-temporal
access methods. IEEE Data Engineering Bulletin, 26(2),
2003.

[8] New york taxi data. http://www.nyc.gov/html/tlc/html/
about/trip record data.shtml.

[9] Orange cell phone records. https://www.technologyreview.
com/s/514476/a-motherlode-of-cell-phone-data/.

[10] C. Stolte and P. Hanrahan. Polaris: A system for query,
analysis and visualization of multi-dimensional relational
databases. In Proceedings of the IEEE Symposium on
Information Vizualization 2000, 2000.

[11] Twitter and ibm partnership.
https://blog.twitter.com/2015/
twitter-and-ibm-a-year-of-changing-how-business-decisions-are-made.

[12] Uber ride statistics.
https://uberexpansion.com/uber-statistics-infographic/.

[13] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and
N. Polyzotis. SeeDB: Efficient Data-driven Visualization
Recommendations to Support Visual Analytics. PVLDB,
8(13), 2015.

1694

