
A Delay-Constrained Shor test Path Algor ithm for Multicast Routing in
Multimedia Applications

Mohamed F. Mokbel
Department of Computer Science

Purdue University
West Lafayette, Indiana 47907
e-mail: mokbel@cs.purdue.edu

Wafaa A. El-Haweet
Department of Computer Science

and Automatic Control,
Alexandria University, Egypt.

e-mail: w_elhaweet@yahoo.com

M. Nazih El-Derini
Department of Computer Science

and Automatic Control,
Alexandria University, Egypt.
e-mail: nazih-s@safwa.com

Abstract
A new heuristic algorithm is proposed for constructing
multicast tree for multimedia and real-time applications.
The tree is used to concurrently transmit packets from
source to multiple destinations such that exactly one copy
of any packet traverses the links of the multicast tree.
Since multimedia applications require some Quality of
Service, QoS, a multicast tree is needed to satisfy two
main goals, the minimum path cost from source to each
destination (Shortest Path Tree) and a certain end-to-end
delay constraint from source to each destination. This
problem is known to be NP-Complete. The proposed
heuristic algorithm solves this problem in polynomial time
and gives near optimal tree. We first mention some related
work in this area then we formalize the problem and
introduce the new algorithm with its pseudo code and the
proof of its complexity and its correctness by showing that
it always finds a feasible tree if one exists. Other heuristic
algorithms are examined and compared with the proposed
algorithm via simulation.
Keywords: Multicast Routing, Multimedia Applications,
Real-Time Networks, Delay Constrained Tree.

1. Introduction

Handling group communication is a key requirement for
numerous applications that have one source sends the
same information concurrently to multiple destinations.
Multicast routing refers to the construction of a tree rooted
at the source and spanning all destinations. Generally,
there are two types of such a tree, the Steiner tree and the
shortest path tree. Steiner tree or group-shared tree tends
to minimize the total cost of the resulting tree, this is an
NP-Complete problem, number of heuristics to this
problem can be found in [1,2]. Shortest path tree or
source-based trees tends to minimize the cost of each path
from source to any destination, this can be achieved in
polynomial time by using one of the two famous
algorithms of Bellman [3] and Dijkstra [4] and pruning the

undesired links. Recently, with the rapid evolution of
multimedia and real-time applications like audio/video
conferencing, interactive distributed games and real-time
remote control system, certain QoS need to be guaranteed
in the resulted tree. One such QoS, and the most important
one, is the end-to-end delay between source and each
destination, where the information must be sent within a
certain delay constraint ∆. By adding this constraint to the
original problem of multicast routing, the problem is
reformulated and the multicast tree should be either delay-
constrained Steiner tree, or delay-constrained shortest path
tree. Delay constrained Steiner tree is an NP-Complete
problem [5], several heuristics are introduced for this
problem [5,6,7,8,9,10] each trying to get near optimal tree
cost, without regarding to the cost of each individual path
for each destination. Delay-constrained shortest path tree
is also an NP-Complete problem [12]. An optimal
algorithm for this problem is presented at [5], but its
execution time is exponential and used only for
comparison with other algorithms. Heuristic for this
problem is presented in [11], which tries to get a near
optimal tree from the point of view of each destination
without regarding the total cost of the tree. An exhaustive
comparison between the previous heuristics for the two
problems can be found in [12,13]. In this paper we
investigate the problem of delay constrained shortest path
tree since it is appropriate in some applications like Video
on Demand (VoD), where the multicast group has a
frequent change, and every user wants to get his
information in the lowest possible cost for him without
regarding the total cost of the routing tree. Also shortest
path tree always gives average cost per destination less
than Steiner tree. We present a new heuristic algorithm
that finds the required tree in polynomial time. The paper
is arranged as follows: the problem is defined in section 2,
the new algorithm is proposed in section 3 with the proof
of its complexity and its correctness. Performance analysis
by comparing the new algorithm with other previous
algorithms is introduced in section 4. Section 5 contains
the conclusions and the main contribution of this paper.

2. Problem Definition

The communication network is modeled as a directed,
simple, connected weighted graph G=(V,E), where V is the
set of nodes and E is the set of directed links. Each link e
in E connects two nodes u, v in V and is represented as
e(u,v). Two non-negative real value functions are
associated with each link, the cost function Cost(u,v)
represents the utilization of the link and the delay function
Delay(u,v) represents the delay that the packet experiences
through passing that link including switching, queuing,
transmission and propagation delays. Links are
asymmetrical, Cost(u,v) and Delay(u,v) do not necessarily
equal Cost(v,u) and Delay(v,u). A sequence of links that
connects two nodes u, v are represented by a Path(u,v)
with Cost(Path(u,v)) which is equal to the sum of the costs
of all its links and Delay(Path(u,v)) which is equal to the
sum of the delays of all its links.

Multicast group M⊆V is a set of nodes that receives
packets from source S∈M. The least cost tree (LC) is a tree
originating at the source S and spanning all members of M
with minimum cost for each of them individually. The
least delay tree (LD) is a tree originating at the source S
and spanning all members of M with minimum delay for
each of them individually.

The Optimal Delay Constrained Shortest Path Multicast

Routing (ODCSP) problem is to find a route from source S
and spanning all members of M satisfying the following
conditions:

1 - Minimum Cost (Path (S , v)) ∀ v ∈ M
2 - Delay (Path (S, v)) < ∆ ∀ v ∈ M

Where ∆ is the maximum delay permitted for any
destination. The example shown in Fig. 1 shows the
difference between the three trees. Fig. 1.a contains the
topology of the network, Fig 1.b and Fig 1.c contain the
least cost/delay tree which can be easily achieved by
applying Dijkstra algorithm on the cost/delay of links, it
always returns the optimal tree in O(n2) . Fig 1.d, shows
the Optimal Delay Constrained Shortest Path Multicast
Routing (ODCSP) problem, which is known to be NP-
Complete. The figure shows that for ODCSP problem, the
result can be represented as Directed Acyclic Graph
(DAG). So, to send packets from A to D, the packets
follow the route ABD, while to send packets from A to E,
the packets follow the route ACBE, this can be adjusted
from the routing table at node A. In this paper we propose
a new algorithm that finds a near optimal DAG for
ODCSP problem.

3. Delay Constrained Shortest Path Multicast
Algor ithm (DCSP)

DCSP, its pseudo code is presented in the appendix, is a
heuristic algorithm to find a near optimal DAG for delay
constrained shortest path problem. DCSP is based on
flooding, where it starts with a single token at the source
node S. The token is continuously duplicated from node to
node yielding a set of tokens where each token keeps track
with the cost and delay it experiences so far, also it keeps
track with the path from source node S to the node it
currently belongs to. Tokens are collected at the
destinations to determine the winner token which reaches
with the least cost and satisfies the delay constraint ∆. The
winner tokens from all destinations are combined together
each with its path from source to destination to construct
the required DAG.

To prevent the excessive increase of tokens in the
network and hence the exponential execution time, we
limit the number of tokens that can be concurrently in any
node by the number K which can be ranged from 1 to N
where N is |V|, the number of nodes in the network. This
will control the duplication of tokens and assure a
polynomial time execution. To achieve this, we consider
four constraints tested for any token to be duplicated from
node u to node v and if any one of them is satisfied we will
not duplicate the token, the four constraints are:
1. The sum of the token’s delay and the link delay

between nodes u, v will exceed the delay constraint ∆.
So, there is no need to complete the token’s trip.

2. The token T visited node v before, so, it is going to
make a loop. This can be achieved by checking whether
node v stamped token T before or not.

D(1 , 2) B

(5 , 2) E C

A

(4 , 1)

(2 , 3)

(1 , 1) (1 , 4)

(a) Original graph

D(1 , 2) B

E

A

(2 , 3)

(1 , 4)

D(1 , 2) B

(5 , 2) E C

A

(4 , 1)

(1 , 1)

D(1 , 2) B

E C

A

(4 , 1)

(2 , 3)

(1 , 1) (1 , 4)

(b) Least Cost Tree with
Average Cost = 3,
Average Delay = 6,
Maximum Delay = 7

(c) Least Delay Tree with
Average Cost = 7.5,
Average Delay = 3.5,
Maximum. Delay = 4

(d) Optimal DAG with Average
Cost = 4.5, Average Delay
= 5.5, Maximum Delay = 6.

Fig. 1 The difference between Least Cost Tree, Least
Delay Tree and Optimal Directed Acyclic Graph for

Minimum Shortest Path with Delay Constraint

3. There was a token T` visited node v before and it is
better than token T. So, there is no use to continue token
T since any result come from it will be dominated by
token T `.

4. Node v has already K tokens and there is no room for a
new token, in this case we will choose a victim token
from K+1 tokens. According to our heuristic, we will
choose the one with maximum delay, this is because
such a token has the least probability to continue its trip.
Another point for choosing this token is that we need to
guarantee finding a feasible path, so we have to keep the
token with minimum delay.
Constraint 1 can be tested by keeping track of the

token’s delay by adding the delay of each link it passes.
Constraint 2 requires that every node u that token passed
put its stamp on the token. Constrains 3 and 4 require that
we keep a history list with length K associated with each
node to keep track with the best K tokens passed on this
node so far. This list is sorted in ascending order w.r.t
token’s delay and in descending order w.r.t token’s cost.
Any two consecutive tokens T ` and T `` must have TD

`<TD
``

and TC
`>TC

``. Any new token T should be compared to the
history list and find its appropriate place w.r.t its delay, the
place where TD

`<TD<TD
``, then we look for TC which can

be one of the following three cases :
1. TC

`<TC , in this case token T` is better than token T
where it has less cost and less delay. So, we will not
duplicate token T.

2. TC
``>TC, in this case token T is better than token T``

where it has less cost and less delay. So, we will
duplicate token T and delete token T`` from the list.

3. TC
`>TC >TC

``, in this case we can not favor any token
to another, so we will duplicate token T and add it to
the history list.

Lemma I : DCSP algorithm always finds a DAG if one
exists and if DCSP fails to find it, then there is no other
algorithm can find it.
Proof : The optimal solution for delay constrained shortest
path multicasting problem can be found by exhaustively
examining all the paths from source node S to each
destination individually and select the best path for each
one. In our algorithm, if we do not put any constraints in
duplicating the tokens, then the tokens will increase
exponentially and span all the possible paths in the
network as in flooding, and we will find a token for each
path which will permit us to choose the best one for each
destination easily. The effect of the four constraints
described above in the algorithm will be as follows:
Constraints 1, 2 and 3 tends to cancel the tokens (paths)
that will not be optimal in its early stages and hence
reducing the complexity but without any effect on the
optimality. Constraint 4, which is the heuristic constraint,
kills the token with the maximum delay of K+1 tokens,
there is no way to prove that the cancelled token will not
be in an optimal path. But, this heuristic guarantees that

we will find a solution if one exists, since even with K=1,
the least value of K, we will have two tokens to choose
one of them and, we will cancel the one with maximum
delay and keep the other with least delay, then at this
extreme case we will always keep track with the least
delay token (path) that yields the least delay tree (LD)
which means that there is no tree can give less delay for
any destination than this tree. So, if LD tree does not
satisfy the delay constraint, then there is no other tree can
satisfy it. Since DCSP is reduced to LD algorithm when
K=1, then if DCSP fails to find a feasible tree, then no
other algorithm can find it.
Lemma 2: The worst case complexity of DCSP is
O(K2N2), where K is an integer value ranged from 1 to N
and N is |V| the number of nodes in the Network.
Proof : The algorithm is continuously looping till all the
tokens in the network finish their trips, and since the
maximum length of any trip is bounded by the number of
nodes in the network N, then the algorithm will loop at
most O(N) times in duplicating tokens. For each time of
duplication the algorithm checks all the N nodes for
existence of tokens, so checking nodes will be O(N2) . For
each node, we will process each token in it and since there
will be at most K tokens in each node then tokens will be
processed O(KN2). For each token we will test whether it
can be duplicated or not for all neighbor nodes, so, if we
assume that the network has and average degree d, then
token duplication will be tested O(dKN2). If, at the worst
case, all the tested tokens will be duplicated and we insert
the duplicated token in a sorted list with size K which can
be achieved in O(K) by insertion sort, then the whole
algorithm can be executed in O(dK2N2). But since we use
real networks which always has a small node degree, we
can consider that d is a small constant number, so the
complexity of DCSP will be O(K2N2).

4. Per formance Analysis

4.1 Random Graph Generator

To guarantee fair simulation results, we use the same

graph generator [14] that is used in all problems related to
multicasting. N nodes are randomly distributed over a
rectangular area with size 2000 × 2000 where each node
placed at a location with integer coordinates. The
probability of edge existence between any two nodes u, v
can be calculated from the function:

Where d(u, v) is the distance between nodes u, v. L is the
maximum distance between any two nodes. α and β are
two parameters used to adjust the degree of the graph and
the density of short and long edges. After calculating the
above function for each pair, the resulted graph does not

��
�

�
��
�

� −=
α

β
L

vud
vuP

),(
exp),(

necessary to be connected, so, we add random edges to
obtain a connected graph. The cost of any edge e(u, v)
equals to the distance d(u, v) and the delay is a random
value between 1 and 10. Finally, for each algorithm to be
correctly evaluated, we run it on 3000 different graphs and
taking the average.

4.2 Simulation Results

We compare our algorithm DCSP with three different

values of K against the least delay tree LD, that comes
from applying Dijkstra algorithm, and CDKS algorithm
[11] which comes from combining least cost tree and least
delay tree. The optimal result is plotted in each graph to
show how far each algorithm is from the optimal.

In Fig. 2, we change the network size while keeping the

delay limit=20, average degree=8 and the multicast group
is 10% from the network size. It can be observed that
DCSP is always dominating CDKS even when K=1. The
three line of K=10, K=20 and OPT are almost identical
which means that K=10 is sufficient to get the optimal
solution in this case of delay limit, average degree and
group size even when the network size increases. Also, as
the network size increases the difference between DCSP
and CDKS increases which means that DCSP performs
better with the increasing of network size.

In Fig. 3, we set network size to 50 nodes, delay
limit=20 and average degree=10, while changing the
group size from 5 (10% of network) to 50 (broadcasting).
The results show that, as previous, DCSP is always
dominating CDKS even with K=1. K=5 is sufficient to get
the optimal results. The performance difference between
algorithms is almost constant with the increasing of group
size, this can be deduced from the fact that CDKS and
DCSP are based on Dijkstra and flooding algorithms

which designed for broadcasting and then pruning the
undesired links.

In Fig. 4, we also set network size to 50 nodes, delay

limit=20 and group size=5. The average degree of the
graphs is changed from 4 to 16 yields that for the small
degrees CDKS gives the same results as DCSP with K=1
while with the increase of average degree DCSP
dominated CDKS. Results also show that DCSP with
K=10 gives the same results as OPT.

In Fig. 5 and Fig. 6, we investigate the effect of relaxing

the delay constraint. In the two figures, we can see that for
small delay limit, DCSP is always better than CDKS. As
the delay limit relaxed, CDKS is going towards OPT this
is because CDKS first computes the least cost tree and as
the delay limit increased the problem tends to be finding
the least cost tree without constraints. In Fig. 5, we use
graphs with averaged degree=4 while in Fig. 6 we use
graphs with average degree=10. This makes that in low

Fig. 2 Effect of network size with multicast
group=10%, delay limit = 20, average degree = 8

130

140

150

160

170

180

190

200

10 20 30 40 50 60 70 80 90

Network Size

A
vg

. C
os

t /
 P

at
h

LD CDKS K=1
K=10 K=20 OPT

Fig. 3 Effect of multicast group size with network
size = 50, delay limit = 20, average degree = 10

125

130

135

140

145

150

155

160

165

170

175

180

185

5 10 15 20 25 30 35 40 45 50

Group Size

A
vg

. C
os

t /
 P

at
h LD CDKS

K=1 K=5
K=10 OPT

Fig. 4 Effect of average degree with network size = 50,

multicast Group = 5, delay limit = 20

130

150

170

190

210

230

250

270

290

310

330

350

4 6 8 10 12 14 16

Average Degree

A
vg

. C
os

t /
 P

at
h

LD CDKS K=1
K=10 K=20 OPT

average degree it is sufficient for K=5 to get the optimal
results and the average cost per path is much higher than
in graphs with high average degree which need K=10 to
get optimal results.

In Fig. 7 and Fig. 8, an optimal value of parameter K is

determined. Only DCSP with different values of K and
OPT algorithms are simulated. The value of K is growing
exponentially toward the optimal solution. In Fig. 7, with
average degree=4, the optimal result is achieved at K=7,
while in Fig. 8 with Average degree=8, the optimal result
is achieved at K = 16.

5. Conclusion

In this paper we propose a polynomial time heuristic
algorithm that computes the shortest path tree with delay
constraint. The algorithm has a running time O(K2N2)
where K is a variable adjusted from 1 to N and N is the

number of nodes in the network. Simulation experiments
have been done to compare the efficiency of the new
algorithm with other previous algorithms and with the
optimal results. Empirical results show that our algorithm
is always dominating previous algorithms and gives
optimal results with certain value of K. Simulations are
also done to determine the appropriate value of K that
gives the optimal result. It is clear that a small value of K
could be enough which makes the running time of the
algorithm near O(N2).

The work in this algorithm can be extended in three
ways. Firstly, a distributed version of this algorithm could
be introduced by limiting the data kept in each node.
Secondly, the dynamic change of group members should
be considered to be embedded on the algorithm and not to
start the algorithm from the beginning. Finally, this
algorithm should be incorporated in an appropriate
protocol to be used in real networks.

References

[1] P. Winter, “Steiner Problem in Networks: A Survey“ ,

Networks, vol. 17, no. 2, pp. 129-167, summer 1987,

Fig. 5 Effect of delay limit with network size = 50,

multicast group = 5, average degree = 4

Fig. 6 Effect of delay limit with network size = 50,

multicast group = 5, average degree = 10

300

320

340

360

380

400

420

440

460

10 20 30 40 50 60

Delay Limit

A
vg

. C
os

t /
 P

at
h

LD CDKS K=1
K=5 K=10 OPT

130

135

140

145

150

155

160

165

170

175

180

185

190

10 20 30 40 50 60

Delay Limit

A
vg

. C
os

t /
 P

at
h

LD CDKS K=1
K=10 K=20 OPT

Fig. 8 Effect of K with network size = 50, multicast

group = 5, delay limit = 20, average Degree = 10

Fig. 7 Effect of K with network size = 50, multicast

group = 5, delay limit = 20, average degree = 4

300

303

306

309

312

315

318

321

324

327

330

333

1 2 3 4 5 6 7

K

A
vg

. C
os

t /
 P

at
h

DCSP Optimal

139.3

139.5

139.7

139.9

140.1

140.3

140.5

140.7

2 4 6 8 10 12 14 16

K

A
vg

. C
os

t /
 P

at
h

DCSP Optimal

[2] F .Hwang and D. Richards, “Steiner Tree Problems”,
Networks, vol. 22, no. 1, pp 55-89, January 1992.

[3] R. Bellman, Dynamic Programming. Princeton University
Press, 1957.

[4] J. A. Dossey, A. D. Otto, L.E. Spence,and C.V. Eynden
Discrete Mathematics, Second Edition, Harper Collins
College Publishers, 1993

[5] V. Kompella, J. Pasquale, and G. Polyzos, “Multicast
Routing for Multimedia Communication” , IEEE/ACM
Transactions on Networking, vol.1, no. 3, pp 286-292,June
1993.

[6] V. Kompella, J. Pasquale, and G. Polyzos, “Multicasting for
Multimedia Applications” , in Proceedings of IEEE
INFOCOMM’92, pp. 2078-2085, 1992.

[7] R. Widyono, ”The Design and Evaluation of Routing
Algorithms for Real-Time Channels” , Tech. Rep. ICSI TR-
94-024, University of California at Berkeley, International
Computer Science Institute, June 1994.

[8] S. Wi and Y.Choi, “A Delay-Constrained Distributed
Multicast Routing Algorithms,” in Proceeding of the twelfth
International Conference on Computer Communication
(ICCC ’95), pp. 883-838, 1995.

[9] Q. Zhu, M. Parsa, and J. Garcia-Luna-Aceves, “A Source-
Based Algorithm for Delay-Constrained minimum-Cost
Multicasting” , in Proceeding of IEEE INFOCOM’95, pp.
337-385, 1995.

[10] X. Jia, “A Distributed Algorithm of Delay-Bounded
Multicast Routing for Multimedia Applications in Wide Area
Networks” IEEE/ACM Transactions on Networking, Vol. 6,
No.6, pp. 828-837, December 1998

[11] Q.Sun and H. Langendoerfre, “Efficient Multicast Routing
for Delay-Sensitive Applications” , in Proceedings of the
second Workshop on Protocols for Multimedia Systems
(PROMS ’95), pp. 452-458, October 1995.

[12] H. Salama, “Multicast Routing for Real-Time
Communication on High-Speed Networks,” PhD. Dissertion,
North Carolina State University. Department of Electrical
and Computer Engineering.

[13] H. Salama, D. S. Reeves and Y. Viniotis, “Evaluation of
Multicast Routing Algorithms for Real-Time Communication
on High-Speed Networks” , IEEE Journal on Selected Areas
of Communication, Vol. 15, No. 3, pp. 332-345 April 1997.

[14] B. Waxman, “Routing of Multipoint Connections“ , IEEE
Journal on Selected Areas of Communication, Vol. 6, No. 9,
pp. 1617-1622 December 1988.

Appendix

/* Delay Constrained Shortest Path Multicasting
Algorithm, the inputs to the algorithm are:
1- Graph G with nodes V and links E, G (V, E).
2- Source Node S 3- Multicast Group M
4- Delay Constraint ∆∆∆∆ 5– Constant K
The algorithm outputs a DAG, which contains all the links
needed for routing in the shortest path. */
DAG DCSP (G(V,E) , S , M , ∆ , K)
 {
 Insert a token in S
 No. Of Tokens = 1

 While (No. of Tokens > 0)
 for each Node v in V
 for each Token T currently in Node v
 { for each neighbor Node u to Node v
 { if Can_Duplicate (T, v , u) Duplicate the token
 if Node u ∈ M update the winner Token so far.}
 No. Of Tokens = No. Of Tokens – 1 }
 for each Node v in M
 Insert all links from v’s winner Token in DAG
 Return DAG
 } /* for DCSP */

/* Function Can_Duplicate takes the input :
1 - Token T
2 - The Node v that currently hold the token
3 – The Node u that the token wants to duplicate.
Then the function outputs either False when the Token T
can’ t be duplicated from v to u or True when the token can
safely be duplicated from v to u */
Boolean Can_Duplicate (T , v , u)
 {
 /* The Token will exceed the Delay Limit */
 if (TD + Delay (v , u)) > ∆
 Return False
 /* The Token will make a loop */
 if Node u stamped Token T before
 Return False
 /* We got a better token before */
 /* Compare the current token by the history kept at node
u to see if there was a better token in terms of delay and
cost w.r.t current token */
if Node u got a better token before
 Return False
/* There is no room for the new Token */
/* We limit the number of tokens that can be kept by any
Node by the number K, So if we have a token after the
first K, we have to choose a victim from the K +1 tokens,
our heuristic is to choose the token with the highest delay
*/
if there are K tokens in Node u
 if Token T has the highest delay among all tokens in
node u
 Return False
/* Now the Token T is valid for duplication, and we have
to put it in the history of Node u as one of the best tokens
so far */
I f the history list of Node u has K entries
 Delete the one with the highest delay
Insert Token T in the history list of Node u
 Return True
 } /* for Can_Duplicate * /

