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Abstract 
A new heuristic algorithm is proposed for constructing 
multicast tree for multimedia and real-time applications. 
The tree is used to concurrently transmit packets from 
source to multiple destinations such that exactly one copy 
of any packet traverses the links of the multicast tree. 
Since multimedia applications require some Quality of 
Service, QoS, a multicast tree is needed to satisfy two 
main goals, the minimum path cost from source to each 
destination (Shortest Path Tree) and a certain end-to-end 
delay constraint from source to each destination. This 
problem is known to be NP-Complete. The proposed 
heuristic algorithm solves this problem in polynomial time 
and gives near optimal tree. We first mention some related 
work in this area then we formalize the problem and 
introduce the new algorithm with its pseudo code and the 
proof of its complexity and its correctness by showing that 
it always finds a feasible tree if one exists. Other heuristic 
algorithms are examined and compared with the proposed 
algorithm via simulation.  
Keywords: Multicast Routing, Multimedia Applications, 
Real-Time Networks, Delay Constrained Tree.    
 
 
1. Introduction 
 

Handling group communication is a key requirement for 
numerous applications that have one source sends the 
same information concurrently to multiple destinations. 
Multicast routing refers to the construction of a tree rooted 
at the source and spanning all destinations.  Generally, 
there are two types of such a tree, the Steiner tree and the 
shortest path tree. Steiner tree or group-shared tree tends 
to minimize the total cost of the resulting tree, this is an 
NP-Complete problem, number of heuristics to this 
problem can be found in [1,2]. Shortest path tree or 
source-based trees tends to minimize the cost of each path 
from source to any destination, this can be achieved in 
polynomial time by using one of the two famous 
algorithms of Bellman [3] and Dijkstra [4] and pruning the 

undesired links. Recently, with the rapid evolution of 
multimedia and real-time applications like audio/video 
conferencing, interactive distributed games and real-time 
remote control system, certain QoS need to be guaranteed 
in the resulted tree. One such QoS, and the most important 
one, is the end-to-end delay between source and each 
destination, where the information must be sent within a 
certain delay constraint ∆. By adding this constraint to the 
original problem of multicast routing, the problem is 
reformulated and the multicast tree should be either delay-
constrained Steiner tree, or delay-constrained shortest path 
tree. Delay constrained Steiner tree is an NP-Complete 
problem [5], several heuristics are introduced for this 
problem [5,6,7,8,9,10] each trying to get near optimal tree 
cost, without regarding to the cost of each individual path 
for each destination. Delay-constrained shortest path tree 
is also an NP-Complete problem [12]. An optimal 
algorithm for this problem is presented at [5], but its 
execution time is exponential and used only for 
comparison with other algorithms. Heuristic for this 
problem is presented in [11], which tries to get a near 
optimal tree from the point of view of each destination 
without regarding the total cost of the tree. An exhaustive 
comparison between the previous heuristics for the two 
problems can be found in [12,13]. In this paper we 
investigate the problem of delay constrained shortest path 
tree since it is appropriate in some applications like Video 
on Demand (VoD), where the multicast group has a 
frequent change, and every user wants to get his 
information in the lowest possible cost for him without 
regarding the total cost of the routing tree. Also shortest 
path tree always gives average cost per destination less 
than Steiner tree. We present a new heuristic algorithm 
that finds the required tree in polynomial time. The paper 
is arranged as follows: the problem is defined in section 2, 
the new algorithm is proposed in section 3 with the proof 
of its complexity and its correctness. Performance analysis 
by comparing the new algorithm with other previous 
algorithms is introduced in section 4. Section 5 contains 
the conclusions and the main contribution of this paper. 



2. Problem Definition 

The communication network is modeled as a directed, 
simple, connected weighted graph G=(V,E), where V is the 
set of nodes and E is the set of directed links. Each link e 
in E connects two nodes u, v in V and is represented as 
e(u,v). Two non-negative real value functions are 
associated with each link, the cost function Cost(u,v) 
represents the utilization of the link and the delay function 
Delay(u,v) represents the delay that the packet experiences 
through passing that link including switching, queuing, 
transmission and propagation delays. Links are 
asymmetrical, Cost(u,v) and Delay(u,v) do not necessarily 
equal Cost(v,u) and Delay(v,u). A sequence of links that 
connects two nodes u, v are represented by a Path(u,v) 
with Cost(Path(u,v)) which is equal to the sum of the costs 
of all its links  and Delay(Path(u,v)) which is equal to the 
sum of the delays of all its links. 

Multicast group M⊆V is a set of nodes that receives 
packets from source S∈M. The least cost tree (LC) is a tree 
originating at the source S and spanning all members of M 
with minimum cost for each of them individually. The 
least delay tree (LD) is a tree originating at the source S 
and spanning all members of M with minimum delay for 
each of them individually. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Optimal Delay Constrained Shortest Path Multicast 

Routing (ODCSP) problem is to find a route from source S 
and spanning all members of M satisfying the following 
conditions: 

1 - Minimum Cost ( Path (S , v) ) ∀  v  ∈  M  
2 - Delay ( Path (S, v) )  <   ∆                   ∀  v  ∈  M  

Where ∆ is the maximum delay permitted for any 
destination. The example shown in Fig. 1 shows the 
difference between the three trees. Fig. 1.a contains the 
topology of the network, Fig 1.b and Fig 1.c contain the 
least cost/delay tree which can be easily achieved by 
applying Dijkstra algorithm on the cost/delay of links, it 
always returns the optimal tree in O(n2) . Fig 1.d, shows 
the Optimal Delay Constrained Shortest Path Multicast 
Routing (ODCSP) problem, which is known to be NP-
Complete. The figure shows that for ODCSP problem, the 
result can be represented as Directed Acyclic Graph 
(DAG). So, to send packets from A to D, the packets 
follow the route ABD, while to send packets from A to E, 
the packets follow the route ACBE, this can be adjusted 
from the routing table at node A. In this paper we propose 
a new algorithm that finds a near optimal DAG for 
ODCSP problem. 
 
3. Delay Constrained Shortest Path Multicast 
Algor ithm (DCSP) 
 

DCSP, its pseudo code is presented in the appendix, is a 
heuristic algorithm to find a near optimal DAG for delay 
constrained shortest path problem. DCSP is based on 
flooding, where it starts with a single token at the source 
node S.  The token is continuously duplicated from node to 
node yielding a set of tokens where each token keeps track 
with the cost and delay it experiences so far, also it keeps 
track with the path from source node S to the node it 
currently belongs to. Tokens are collected at the 
destinations to determine the winner token which reaches 
with the least cost and satisfies the delay constraint ∆. The 
winner tokens from all destinations are combined together 
each with its path from source to destination to construct 
the required DAG. 

To prevent the excessive increase of tokens in the 
network and hence the exponential execution time, we 
limit the number of tokens that can be concurrently in any 
node by the number K which can be ranged from 1 to N 
where N is |V|, the number of nodes in the network. This 
will control the duplication of tokens and assure a 
polynomial time execution. To achieve this, we consider 
four constraints tested for any token to be duplicated from 
node u to node v and if any one of them is satisfied we will 
not duplicate the token, the four constraints are: 
1. The sum of the token’s delay and the link delay 

between nodes u, v will exceed the delay constraint ∆. 
So, there is no need to complete the token’s trip. 

2. The token T visited node v before, so, it is going to 
make a loop. This can be achieved by checking whether 
node v stamped token T before or not. 
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(b) Least Cost Tree with 
Average Cost = 3, 
Average Delay = 6, 
Maximum Delay = 7  

(c) Least Delay Tree with 
Average Cost = 7.5, 
Average Delay = 3.5,  
Maximum. Delay = 4 

 

(d) Optimal DAG with Average 
Cost = 4.5, Average Delay 
= 5.5, Maximum Delay = 6.

Fig. 1 The difference between Least Cost Tree, Least 
Delay Tree and Optimal Directed Acyclic Graph for 

Minimum Shortest Path with Delay Constraint 



3. There was a token T` visited node v before and it is 
better than token T. So, there is no use to continue token 
T since any result come from it will be dominated by 
token T `.  

4. Node v has already K tokens and there is no room for a 
new token, in this case we will choose a victim token 
from K+1 tokens. According to our heuristic, we will 
choose the one with maximum delay, this is because 
such a token has the least probability to continue its trip. 
Another point for choosing this token is that we need to 
guarantee finding a feasible path, so we have to keep the 
token with minimum delay. 
Constraint 1 can be tested by keeping track of the 

token’s delay by adding the delay of each link it passes. 
Constraint 2 requires that every node u that token passed 
put its stamp on the token. Constrains 3 and 4 require that 
we keep a history list with length K associated with each 
node to keep track with the best K tokens passed on this 
node so far. This list is sorted in ascending order w.r.t 
token’s delay and in descending order w.r.t token’s cost. 
Any two consecutive tokens T ` and T `` must have TD

`<TD
`` 

and TC
`>TC

``. Any new token T should be compared to the 
history list and find its appropriate place w.r.t its delay, the 
place where TD

`<TD<TD
``, then we look for TC which can 

be one of the following three cases : 
1. TC

`<TC , in this case token T` is better than token T 
where it has less cost and less delay. So, we will not 
duplicate token T. 

2.  TC
``>TC, in this case token T is better than token T`` 

where it has less cost and less delay. So, we will 
duplicate token T and delete token T`` from the list. 

3. TC
`>TC >TC

``, in this case we can not  favor any token 
to another, so we will duplicate token T and add it to 
the history list. 

Lemma I : DCSP algorithm always finds a DAG if one 
exists and if DCSP fails to find it, then there is no other 
algorithm can find it. 
Proof : The optimal solution for delay constrained shortest 
path multicasting problem can be found by exhaustively 
examining all the paths from source node S to each 
destination individually and select the best path for each 
one. In our algorithm, if we do not put any constraints in 
duplicating the tokens, then the tokens will increase 
exponentially and span all the possible paths in the 
network as in flooding, and we will find a token for each 
path which will permit us to choose the best one for each 
destination easily. The effect of the four constraints 
described above in the algorithm will be as follows: 
Constraints 1, 2 and 3 tends to cancel the tokens (paths) 
that will not be optimal in its early stages and hence 
reducing the complexity but without any effect on the 
optimality. Constraint 4, which is the heuristic constraint, 
kills the token with the maximum delay of K+1 tokens, 
there is no way to prove that the cancelled token will not 
be in an optimal path. But, this heuristic guarantees that 

we will find a solution if one exists, since even with K=1, 
the least value of K, we will have two tokens to choose 
one of them and, we will cancel the one with maximum 
delay and keep the other with least delay, then at this 
extreme case we will always keep track with the least 
delay token (path) that yields the least delay tree (LD) 
which means that there is no tree can give less delay for 
any destination than this tree. So, if LD tree does not 
satisfy the delay constraint, then there is no other tree can 
satisfy it. Since DCSP is reduced to LD algorithm when 
K=1, then if DCSP fails to find a feasible tree, then no 
other algorithm can find it. 
Lemma 2: The worst case complexity of DCSP is 
O(K2N2), where K is an integer value ranged from 1 to N 
and N is |V| the number of nodes in the Network. 
Proof : The algorithm is continuously looping till all the 
tokens in the network finish their trips, and since the 
maximum length of any trip is bounded by the number of 
nodes in the network N, then the algorithm will loop at 
most O(N) times in duplicating tokens. For each time of 
duplication the algorithm checks all the N nodes for 
existence of tokens, so checking nodes will be O(N2) . For 
each node, we will process each token in it and since there 
will be at most K tokens in each node then tokens will be 
processed O(KN2). For each token we will test whether it 
can be duplicated or not for all neighbor nodes, so, if we 
assume that the network has and average degree d, then 
token duplication will be tested O(dKN2). If, at the worst 
case, all the tested tokens will be duplicated and we insert 
the duplicated token in a sorted list with size K which can 
be achieved in O(K) by insertion sort, then the whole 
algorithm can be executed in O(dK2N2). But since we use 
real networks which always has a small node degree, we 
can consider that d is a small constant number, so the 
complexity of DCSP will be O(K2N2). 
 
4. Per formance Analysis 
 
4.1 Random Graph Generator  

 
To guarantee fair simulation results, we use the same 

graph generator [14] that is used in all problems related to 
multicasting. N nodes are randomly distributed over a 
rectangular area with size 2000 × 2000 where each node 
placed at a location with integer coordinates. The 
probability of edge existence between any two nodes u, v 
can be calculated from the function: 

Where d(u, v) is the distance between nodes u, v. L is the 
maximum distance between any two nodes. α  and  β are 
two parameters used to adjust the degree of the graph and 
the density of short and long edges. After calculating the 
above function for each pair, the resulted graph does not 
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necessary to be connected, so, we add random edges to 
obtain a connected graph. The cost of any edge e(u, v) 
equals to the distance d(u, v) and the delay is a random 
value between 1 and 10. Finally, for each algorithm to be 
correctly evaluated, we run it on 3000 different graphs and 
taking the average. 

 
4.2 Simulation Results 

 
We compare our algorithm DCSP with three different 

values of K against the least delay tree LD, that comes 
from applying Dijkstra algorithm, and CDKS algorithm 
[11] which comes from combining least cost tree and least 
delay tree. The optimal result is plotted in each graph to 
show how far each algorithm is from the optimal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Fig. 2, we change the network size while keeping the 

delay limit=20, average degree=8 and the multicast group 
is 10% from the network size. It can be observed that 
DCSP is always dominating CDKS even when K=1. The 
three line of K=10, K=20 and OPT are almost identical 
which means that K=10 is sufficient to get the optimal 
solution in this case of delay limit, average degree and 
group size even when the network size increases. Also, as 
the network size increases the difference between DCSP 
and CDKS increases which means that DCSP performs 
better with the increasing of network size. 

In Fig. 3, we set network size to 50 nodes, delay 
limit=20 and average degree=10, while changing the 
group size from 5 (10% of network) to 50 (broadcasting). 
The results show that, as previous, DCSP is always 
dominating CDKS even with K=1.  K=5 is sufficient to get 
the optimal results. The performance difference between 
algorithms is almost constant with the increasing of group 
size, this can be deduced from the fact that CDKS and 
DCSP are based on Dijkstra and flooding algorithms 

which designed for broadcasting and then pruning the 
undesired links. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Fig. 4, we also set network size to 50 nodes, delay 

limit=20 and group size=5. The average degree of the 
graphs is changed from 4 to 16 yields that for the small 
degrees CDKS gives the same results as DCSP with K=1 
while with the increase of average degree DCSP 
dominated CDKS. Results also show that DCSP with 
K=10 gives the same results as OPT. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 5 and Fig. 6, we investigate the effect of relaxing 

the delay constraint. In the two figures, we can see that for 
small delay limit, DCSP is always better than CDKS. As 
the delay limit relaxed, CDKS is going towards OPT this 
is because CDKS first computes the least cost tree and as 
the delay limit increased the problem tends to be finding 
the least cost tree without constraints. In Fig. 5, we use 
graphs with averaged degree=4 while in Fig. 6 we use 
graphs with average degree=10. This makes that in low 

Fig. 2 Effect of  network size with multicast 
group=10%, delay limit = 20, average degree = 8 
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Fig. 3 Effect of multicast group size with network 
size = 50,  delay limit = 20, average degree = 10 
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Fig. 4 Effect of average degree with network size = 50, 

multicast Group = 5, delay limit = 20 
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average degree it is sufficient for K=5 to get the optimal 
results and the average cost per path is much higher than 
in graphs with high average degree which need K=10 to 
get optimal results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 7 and Fig. 8, an optimal value of parameter K is 

determined. Only DCSP with different values of K and 
OPT algorithms are simulated. The value of K is growing 
exponentially toward the optimal solution. In Fig. 7, with 
average degree=4, the optimal result is achieved at K=7, 
while in Fig. 8 with Average degree=8, the optimal result 
is achieved at K = 16. 
 
5. Conclusion 
 

In this paper we propose a polynomial time heuristic 
algorithm that computes the shortest path tree with delay 
constraint. The algorithm has a running time O(K2N2) 
where K is a variable adjusted from 1 to N and N is the 

number of nodes in the network. Simulation experiments 
have been done to compare the efficiency of the new 
algorithm with other previous algorithms and with the 
optimal results. Empirical results show that our algorithm 
is always dominating previous algorithms and gives 
optimal results with certain value of K. Simulations are 
also done to determine the appropriate value of K that 
gives the optimal result. It is clear that a small value of K 
could be enough which makes the running time of the 
algorithm near O(N2). 

The work in this algorithm can be extended in three 
ways. Firstly, a distributed version of this algorithm could 
be introduced by limiting the data kept in each node. 
Secondly, the dynamic change of group members should 
be considered to be embedded on the algorithm and not to 
start the algorithm from the beginning. Finally, this 
algorithm should be incorporated in an appropriate 
protocol to be used in real networks. 
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Appendix   
 
/*  Delay Constrained Shortest Path Multicasting 
Algorithm, the inputs to the algorithm are: 
1- Graph G with nodes V and links E, G (V, E). 
2- Source Node S               3- Multicast Group M  
4- Delay Constraint  ∆∆∆∆       5– Constant K 
The algorithm outputs a DAG, which contains all the links 
needed for routing in the shortest path. */     
DAG  DCSP ( G(V,E) , S , M , ∆ , K ) 
 {   
  Insert a token in S 
  No. Of Tokens = 1 

  While  ( No. of Tokens >  0 )  
    for  each Node v in V 
      for  each Token T currently in Node v 
       {  for  each neighbor Node u to Node v  
          {  if  Can_Duplicate (T, v , u ) Duplicate the token 
             if  Node u ∈ M  update the winner Token so far.}  
         No. Of Tokens = No. Of Tokens – 1 }  
  for  each Node v in M 
        Insert all links from v’s winner Token in DAG 
  Return DAG 
    }    /*  for DCSP */ 
 
/*  Function Can_Duplicate takes the input : 
1 - Token T 
2 - The Node v that currently hold the token 
3 – The Node u that the token wants to duplicate. 
Then the function outputs either False when the Token T 
can’ t be duplicated from v to u or True when the token can 
safely be duplicated from v to u */    
Boolean Can_Duplicate ( T , v , u ) 
  {  
    /*  The Token will exceed the Delay Limit */ 
    if ( TD + Delay ( v , u  ) ) > ∆ 
             Return False 
    /*  The Token will make a loop */  
    if Node u stamped Token T before  
          Return False  
 /*  We got a better token before */ 
 /*  Compare the current token by the history kept at    node 
u to see if  there was a  better token in terms of delay and 
cost  w.r.t current  token */ 
if Node u got a better token before 
        Return False 
/*  There is no room for the new Token */ 
/*  We limit the number of tokens that can be kept by any 
Node by the number K, So if we have a token after the 
first K, we have to choose a victim from the K +1 tokens, 
our heuristic is to choose the token with the highest delay 
*/ 
if there are K tokens in Node u 
    if Token T has the highest delay among all tokens in 
node u 
 Return False 
/*  Now the Token T is valid for duplication, and we have 
to put it in the history of Node u as one of the best tokens 
so far */ 
I f the history list of Node u has K entries   
 Delete the one with the highest delay 
Insert Token T in the history list of Node u  
           Return True 
 }     /*  for Can_Duplicate * /  


