
Towards Efficient Search on Unstructured Data :
An Intelligent-Storage Approach

Aravindan Raghuveer, Meera Jindal, Mohamed F. Mokbel, Biplob Debnath, David Du
DTC Intelligent Storage Consortium (DISC), University of Minnesota

Minneapolis, Minnesota, USA
{aravind, jindal, mokbel, du}@cs.umn.edu, debna004@umn.edu

ABSTRACT
Applications that create and consume unstructured data have grown
both in scale of storage requirements and complexity of search
primitives. We consider two such applications: exhaustive search
and integration of structured and unstructured data. Current block-
based storage systems are either incapable or inefficient to address
the challenges bought forth by the above applications. We propose
a storage framework to efficiently store and search unstructured and
structured data while controlling storage management costs. Ex-
perimental results based on our prototype show that the proposed
system can provide impressive performance and feature benefits.
Categories and Subject Descriptors: H.3.0 [Information Storage
and Retrieval]: General
General Terms: Algorithms, Design, Performance

1. INTRODUCTION
Storage systems for scientific applications are becoming ex-

tremely complex due to the scale and variety of data. For instance,
experiments at Mayo clinic (Rochester, Minnesota) have an aver-
age storage requirement of 1TB per 9 days [8]. Applications that
require complex search primitives on unstructured data are also
becoming increasingly common. For instance, query-by-example
and data summarization applications exhaustively search through
all files because either the query model is fuzzy or indices are ex-
tremely expensive to maintain for high dimensional data. Support-
ing exhaustive search is not among the primary design criteria of
today’s filesystems and database systems. Therefore the problem
of where and how to store unstructured data in order to search it
efficiently, needs a fresh re-assessment. Furthermore, unstructured
data is often created, updated and queried in the context of struc-
tured data. Although, there is a lot of research in providing a unified
access at the query level, there is still lack of research in providing
a scalable storage platform for integrating structured and unstruc-
tured data. In the presence of petabytes of data and Information
Lifecycle Management (ILM) regulations like HIPAA, controlling
storage management costs is extremely challenging. In this paper,
we present one complete solution to tackle three highly intercon-
nected sub-problems: efficiently storing and searching a wide va-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

riety of unstructured data, integrating unstructured and structured
data, controlling storage management costs.

The block interface, widely prevelant among todays’ systems,
does not allow for any form of communication between the appli-
cation and the underlying storage subsystem. With complex appli-
cations operating on petabyte scale storage, this disconnect leads
to scalability problems, performance degradation and high cost of
storage management. Object-based storage [4, 6] addresses all the
drawbacks of block-based storage by revamping the narrow block
interface with an extensible and expressive object interface. In
object-based storage devices (OSD, for short), the storage man-
agement component of the filesystem or the database is migrated
to the storage device. Therefore, the tasks of managing free space
and mapping object IDs to physical disk locations is delegated to
the storage system. This division of labor enhances scalability, en-
ables communication through a richer interface and empowers the
storage to perform smarter data-specific optimizations to improve
application performance.

Custom storage systems have been researched in the past to over-
come the limitations of block storage. The Google Filesystem [2]
uses an object-based storage system to provide high storage per-
formance through parallel, direct access I/O paths. The Active
Disk [5] project demonstrated that large scale data mining and mul-
timedia applications benefit from embedding search functionalities
into the storage system.

Storage systems that integrate structured and unstructured data
can be broadly classified into three categories. (1) The Database-
only approach: unstructured data is stored as binary large objects
(BLOBs) within a database. (2) The database-plus-filesystem ap-
proach: structured data is stored in a database, unstructured data
is stored in a filesystem and path names are used to link the data
together (3) Custom Architectures: The Google Bigtable [1] inte-
grates structured data and text. It uses the google filesystem be-
neath to store and manage data. Native XML stores can also be
used to integrate structured data and text.

Our solution tackles the three subproblems (namely: storing and
searching unstructured data, integration with structured data and
controlling storage management costs)in two steps. First, we we
propose an application-aware storage system called an Intelligent
Storage Node (ISN, in short) that can efficiently store and search
unstructured data. The underlying principle behind the proposed
ISN is that when the storage system is aware of the application, it
can map application access patterns to storage-device specific op-
timizations to improve application performance. We demonstrate
this principle through a storage embedded exhaustive search algo-
rithm that performs upto six times better than conventional tech-
niques.

Second, we use ISNs as a building block to build a system called

951

OSD Command Interpreter

Object Filesystem Fragment

Indexer Layout-aware

Search Planner Object

Metadata

Block-based Disk

Firmware Disk Queue

QUERYREAD, WRITE,

GET/SET ATTRIBUTE

Object Interface

Figure 1: Architecture of an Intelligent Storage Node: Shaded
boxes represent the new modules that an ISN adds to a tradi-
tional OSD

SQUAD that enables seamless and storage-centric integration of
structured and unstructured data. SQUAD stores unstructured data
on ISNs and structured data in a traditional database. An entity
called Metadata Server abstracts the ISNs and the database to pro-
vide a unified, query-able view to the client.

2. INTELLIGENT STORAGE FOR UN-
STRUCTURED DATA

In this section, we present the concept of an Intelligent Storage
Node and show that through application-awareness at the storage
level, an ISN can improve the performance of exhaustive search.
An intelligent storage node is an object-based storage device with
storage-device-specific software to make exhaustive search effi-
cient. An ISN could just be a rack server or a commodity PC that
exposes a standardized object interface like OSD T-10 [6]. The
ISN supports a new command OSD QUERY in addition to the OSD
T-10 standard command set to submit exhaustive search queries to
the storage device.

In the filesystem-based approach, exhaustive search is imple-
mented by recursively exploring the filesystem namespace. With
filesystem aging and fragmentation, recursive exploration can end
up being a random scan operation at the disk level leading to ex-
tremely poor performance. This clearly shows that the lack of com-
munication between the filesystem and the storage system leads to
poor performance. Another drawback with current systems is the
lack of performance isolation. Exhaustive search, being a long-
running, I/O intensive task, can increase the response times of other
concurrent filesystems applicatons. Todays’ block-based storage
systems cannot differentiate between requests from two host appli-
cations to provide any form of performance isolation. We show that
through application-awareness at the storage level, the ISN boosts
performance and provides performance isolation. We discuss these
two features of the ISN in the next two subsections: Search Strat-
egy and Search Suspend-and-Resume.

2.1 Search Strategy
The principle of our search approach is to exploit application-

awareness at the storage device to transform application requests to
an access pattern that is most efficient at the storage device. For the
exhaustive search application, we read all the objects in the ISN in
a specific order that gives near-sequential performance.

An ISN stores data objects as a set of non-contiguous fragments.
Each fragment is a contiguous run of logical blocks on disk that are
assigned to a particular object. In an exhaustive search operation,

all object fragments on the ISN need to be examined. Therefore
the order in which they are retrieved is not important. We leverage
on this characteristic feature of the exhaustive search application to
plan the search operation such that we visit the fragments in an or-
der that minimizes random seeks. By minimizing random seeks, we
get close to sequential performance. Another critical point to note
here is that since we operate at the granularity of a fragment, the
extent of fragmentation on the ISN does not affect the performance
of the exhaustive search significantly. On the other hand, filesystem
level exhaustive search will be severely affected by fragmentation
since it operates at the granularity of files or objects. Our approach
assumes that the fragments of the objects can be visited in any or-
der. With large main memory available in modern storage devices,
this assumption is valid for most unstructured data like text, video,
images and audio. Also, since objects that do not satisfy the query
are not returned back to host, interconnect bandwidth is not wasted.

Figure 1 gives the architecture of the proposed ISN with embed-
ded exhaustive search functionality. The shaded boxes represent
the application-aware intelligence that we introduce to a regular
object-based storage device. In the front-end, we have an OSD
command interpreter which exposes a standard object interface [6].
The object filesystem performs disk-space management routines
and maps a given object-ID to the fragments it occupies on the disk.
The Fragment Indexer maintains the fragments in efficient visit or-
der. The fragment indexer interacts with the object filesystem to
update the index whenever object fragments are created, updated
or deleted. The Search Planner module is the heart of the exhaus-
tive search system. Given the current position of the disk head, the
search planner consults the fragment indexer to find the most effi-
cient order to visit the fragments. The search planner operates at a
higher granularity when compared to the scheduler that resides on
the disk firmware. Based on an estimate of the disk’s current head
position, the planner selects the set of fragments closest to head and
queues requests to those fragments inside the disk firmware queue.
The disk may re-order these requests to find the most efficient or-
der to visit them. So the search planner works in concert with the
native command queuing available at the disk to discover the best
possible search plan.

The proposed exhaustive search technique shows how to effi-
ciently search a large disk drive and not what to search. Therefore,
any application that needs to read the entire filesystem fits our re-
quirement for a search application. We assume that storage is the
bottleneck in the system and the application can process the data
close to sequential disk bandwidth. Recent trends indicate that stor-
age blades with extremely fast processors and large buffer mem-
ory are becoming common. The reader is referred to the Diamond
project [3] for exhaustive search applications and a storage-level
programming model for such applications.

2.2 Search Suspend-and-Resume
Upon receiving a real-time request, an ongoing exhaustive search

process is suspended. It is resumed after servicing the real-time re-
quest. When a suspended search operation is resumed, the search
resumes exactly from where it left off. For instance, assume the
disk head is over fragment number fi and the next fragment in the
search plan is fi+1, when a real-time request for block b arrives at
the disk. The search planner first finishes retrieving fragment fi.
It then suspends the search and repositions the disk head at logical
block b for servicing a real-time request. On resumption, the search
proceeds from fragment fi+1 irrespective of the physical distance
between fi+1 and b. Therefore, on every resume operation, the
static plan mode may incur costly seek operation. However the re-
sume operation is very straightforward to implement and has very

952

little state information to be maintained, namely, last fragment vis-
ited. Also the search plan is computed just once and it remains
static until the search is completed.

3. INTEGRATING STRUCTURED AND
UNSTRUCTURED DATA

Structured and unstructured data have entirely different storage
access techniques. Structured data is best placed within the slot-
ted page structure of databases while filesystems have been proven
to handle unstructured data better [7]. This impedance mismatch
forms the underlying challenge in integrating structured and un-
structured data at the storage level.

To address the above challenge, we propose SQUAD: a uni-
fied framework for storing and querying structured and unstruc-
tured data. In SQUAD, structured data is stored in a traditional
database system and the unstructured data lives in the ISNs as ob-
jects. Relationships between structured and unstructured data are
maintained through object identifiers. The Metadata Server (MDS)
forms a wrapper around the database and the ISNs to expose a sin-
gle, query-able integrated data store. The SQUAD client uses a set
of APIs exposed by the Metadata Server to provide intuitive tools
for the user to seamlessly store and search mixed data. The client
also has an object filesystem that exposes a traditional hierarchical
namespace while internally using object devices to store the data.
In the rest of the section we explain how the simple SQUAD frame-
work provides integration at the storage and query dimensions.
Integration at the Storage Level: The database uses object IDs
to keep track of the unstructured data related to a particular tuple.
Since object identifiers are application, filesystem path and location
independent, integration is generic. Furthermore, the extra indirec-
tion provided by object IDs enables loose coupling between the
database and the ISNs. Consequently, the database is relieved from
handling filesystem artifacts (e.g., path names and access control
lists) and the filesystem is relieved from handling database features
(e.g., integrity constraint violation checks). All tasks that fall in
the intersection of filesystem and databases are now delegated to
the MDS. The MDS is responsible for ensuring that any changes
in the filesystem’s state do not render the database inconsistent and
vice versa. For instance, the MDS commits a delete only when
the operation does not violate any integrity constraints of tuples as-
sociated with the object. However, read/write of objects from/to
the ISNs happens without the intervention of the MDS. This clear
separation of control and data paths provides high parallel access
performance [2, 4, 6].
Integration at the Query Level: In SQUAD, ISNs and the
database form a distribution query execution framework. The
database executes queries on structured data while the ISNs exe-
cute exhaustive search queries on unstructured data. Exhaustive
search is one example to show how application awareness at stor-
age can be used to improve performance. Concepts like extended
attributes and sessions in object-based storage systems can be used
to provide differentiated service based on the type of data and ap-
plication [4,6]. In SQUAD, the client submits a mixed query to the
MDS. The MDS then decomposes the query into its structured and
unstructured components, dispatches sub-queries to the database
and ISNs respectively, stitches the results together and relays it
back to the client.

4. PROTOTYPE IMPLEMENTATION
We have built a prototype SQUAD system with all the compo-

nents shown in Figure 2. In the following subsections, we explain
in detail, some critical implementation aspects of our prototype.

ISN ISN ISN ISN ISN

Database
EngineInfrastructureServer

Interconnection

Storage Farm

Metadata

and Legacy Apps
SQUAD Tools

Client

and Legacy Apps
SQUAD Tools

Client

 OSDFS OSDFS

Figure 2: The SQUAD framework

An ISN is an enhanced version of an object-based storage device.
We extended an open source implementation of an object target
available from the DISC-OSD project [9]. The DISC-OSD target
is a user-level program, that exposes the T10 object interface over
iSCSI transport. The DISC-OSD target internally stores objects as
files on the Linux extended filesystem (ext3). We implemented two
modules within the target to support exhaustive search : fragment
indexer and search planner. The fragment indexer maintains effi-
cient search order of object fragments as they are created, updated
or deleted. We use a persistent B-Tree to maintain fragment infor-
mation (namely, object ID and fragment number) in increasing or-
der of logical block addresses (LBA). The search planner consults
the fragment index to construct a search plan that sweeps from start
to the end of the disk.

To compare the performance of our approach versus a filesystem
level exhaustive search, we construct search plans for both cases.
The filesystem search plan visits each object in the order as seen by
a filesystem (e.g., alphabetic order). The search plan constructed
by our technique visits the objects at a fragment granularity and in
an order that is as close to sequential as possible. We have imple-
mented the Query Executor which reads the entire filesystem con-
tents based on the two search plans. The Query Executor uses the
SCSI generic (sg) driver [10] to construct SCSI READ commands
and queue them at the disk.

To observe the effect of fragmentation on the performance of our
scheme, we implemented a synthetic aging tool that performs file
create, delete and append operations. We use a generalized version
of storage age metric introduced in [7] to quantify the extent of
fragmentation of a storage system. The storage age of a volume is
defined as the ratio between the number of bytes of modified data
(written/deleted) and the number of bytes in use on the volume. We
first bulk load a filesystem with binary data to the required occu-
pancy level of l%. Since the filesystem is new and unfragmented,
the age is zero. Then, we start the aging tool and fragment the
filesystem to the required age. We ensure that while aging, the size
of the filesystem is always (l+

−

0.5)%.

5. PERFORMANCE ANALYSIS
In this section, we evaluate the performance of the proposed ISN

and the SQUAD framework using our prototype system.
The ISN is set up on a Dell PowerEdge 2650 Server that has two

Intel Xeon 2GHz processors, 2 GB RAM and three direct-attached
Seagate Cheetah 15K rpm, 73G SCSI hard drives (ST 373454LC).
The PostgreSQL database is set up on another Dell PowerEdge
2650 Server with the same hardware configuration as above. The

953

Figure 3: Speedup provided by an ISN for
the exhaustive search operation compared
to a filesystem-level search.

Figure 4: Suspend-Resume exhaustive
search on ISN (filesystem size=20G, age=5)

Figure 5: Time taken to execute queries
Qicon

1 and Qicon

2 on SQUAD, DB+FS.

MDS code is set up on a Dell Power Edge 2950 that has two, dual
core Intel Xeon 3GHz processors, 2GB RAM and three Fujitsu
15K rpm, 73G direct-attached SAS hard drives (MAX3073RC).
The client is set up on a commodity PC that has an Intel Pentium
III, 1 Ghz processor, 512 MB RAM and a direct attached Seagate
30G SATA hard drive. All the above components are connected
through a gigabit Ethernet network.

5.1 Intelligent Storage Node
In the first set of experiments, we examine the performance of

an ISN for exhaustive search queries and compare it with the tradi-
tional filesystem approach. We set up an ext3 filesystem on a par-
tition of size 63GB. We use the aging tool mentioned in Section 4
to control the extent of storage fragmentation. We populate the
filesystem with random binary objects with an average of 256KB.

In the first experiment, we vary both the age of the storage system
and filesystem occupancy and find the times taken to perform ex-
haustive search using filesystem level search and ISN-based layout-
aware search (see Figure 3). The vertical axis shows the search
speedup which is the ratio of Filesystem Search Time to ISN Search
Time. We see that that when the filesystem is new (age = 0), both
the filesystem level search and the ISN-based search have the same
performance (i.e., speedup = 1). But as the filesystem ages, the
performance of the filesystem level exhaustive search degrades.
ISN-based search however is able to maintain the performance by
re-ordering search requests to obtain near-sequential performance,
consequently leading to upto six times speedup.

Figure 4 gives the time taken to perform exhaustive search on
an ISN (filesystem size=20G, age=5) in the presence of real-time
traffic. The real-time requests were READ operations on one sec-
tor randomly chosen within the filesystem boundary. The horizon-
tal axis gives the inter-arrival time between two real-time requests.
Therefore as we move to the right, the real-time requests are less
frequent. The vertical axis gives the exhaustive search time. We
see that when the real-time traffic is high, the performance of the
exhaustive search suffers. This can be attributed to the incurred
random seek operations.

5.2 The SQUAD Framework
We now evaluate the performance of the SQUAD framework for

mixed queries. The mixed queries are of the form (Q = Qs ∩Qu),
where Qs is a SQL query on structured data and Qu is an exhaus-
tive search query. We use the following schema in our experiments:
Wiki(pageID, date, HTML, icon). pageID is an indexed attribute
and date is a non-indexed attribute. The icon field stores a pointer to
data stored outside the database. Depending on the whether we use

the database-plus-filesystem (DB+FS) approach or SQUAD, this
pointer is a filesystem path name or objectID. Exhaustive search is
used for queries on icon. pageID and date form the structured com-
ponent of the database while HTML and icon constitute the unstruc-
tured component. We populate the table with roughly half million
rows. We use the 5G wikipedia dump for the HTML attribute.

We evaluate the performance of SQUAD for two mixed queries.
The structured component Qs has two variations, Q1 and Q2;
where Q1 = (date > 10/3/2000) and Q2 = (date >
10/3/2000)AND(objectID > 4000). Therefore we have two
mixed queries that are represented as : Qicon

1 and Qicon

2 .
We compare the performance of SQUAD with the DB+FS ap-

proach for the queries Qicon

1 and Qicon

2 (See Figure 5). In both
approaches, the database first executes Qs. On the resulting set of
objectIDs from Qs, Qu is executed on either the filesystem or the
ISN. We observe that SQUAD performs better than the DB+FS ap-
proach for both queries. The performance advantage is because of
the layout-aware search available at the ISNs. However in this case,
the ISNs do not perform an exhaustive search but instead search a
subset as found by Qs. From the above experiments, we can con-
clude that for mixed queries involving exhaustive search, SQUAD
has significant better performance than the DB+FS approach. The
performance advantage stems from the fact that the SQUAD design
embeds search functionalities in components based on where they
can be performed best. Specifically, executing Qs is embedded in
the database and executing Qu is embedded in the ISN.

6. REFERENCES
[1] F. Chang, J. Dean, S. Ghemawat, and et. al. Bigtable: A distributed storage

system for structured data. In OSDI, pages 205–218, 2006.
[2] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In

Proceedings of the nineteenth ACM SOSP, pages 29–43, 2003.
[3] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G. R.

Ganger, E. Riedel, and A. Ailamaki. Diamond: A Storage Architecture for
Early Discard in Interactive Search. In Proceedings of the International
Conference on File and Storage Technologies, FAST, 2004.

[4] M. Mesnier, G. Ganger, and E. Riedel. Object-based storage. IEEE
Communications Magazine, 41(8):84–90, August 2003.

[5] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage for large-scale data
mining and multimedia. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB,
pages 62–73, 24–27 1998.

[6] SCSI Object-Based Storage Device Commands -2 (OSD-2). Project
T10/1721-D, Revision 0, October 2004.

[7] R. Sears and C. van Ingen. Fragmentation in Large Object Repositories. In
CIDR, 2007.

[8] N. Spillers. Storage Challenges in the Medical Industry. In The 4th Intelligent
Storage Workshop, Digital Technology Center, University of Minnesota, 2006.

[9] The DISC-OSD T10 Reference Implementation.
http://sourceforge.net/projects/disc-osd.

[10] The Linux SCSI Generic (sg) Driver . http://sg.torque.net/sg/.

954

