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ABSTRACT

A spacefilling curve is a way of mapping the multi-
dimensional space into the one-dimensional space. It acts
like a thread that passes through every cell element (or
pixel) in the D-dimensional space so that every cell is vis-
ited exactly once. There are numerous kinds of space-filling
curves. The difference between such curves is in their way
of mapping to the one-dimensional space. Selecting the ap-
propriate curve for any application requires knowledge of
the mapping scheme provided by each space-filling curve.
A space-filling curve consists of a set of segments. Each
segment connects two consecutive multi-dimensional points.
Five different types of segments are distinguished, namely,
Jump, Contiguity, Reverse, Forward, and Still. A descrip-
tion vector V = (J,C,R,F,S) , where J,C,R, F, and S,
are the percentages of Jump, Contiguity, Reverse, Forward,
and Still segments in the space-filling curve, encapsulates
all the properties of a space-filling curve. The knowledge of
V facilitates the process of selecting the appropriate space-
filling curve for different applications. Closed formulas are
developed to compute the description vector V for any D-
dimensional space and grid size IV for different space-filling
curves. A comparative study of different space-filling curves
with respect to the description vector is conducted and re-
sults are presented and discussed.

1. INTRODUCTION

Space-Filling Curves (SFCs) have been extensively used
as a mapping scheme from the multi-dimensional space into
the one-dimensional space. A space-filling curve is a thread
that goes through all the points in the space while visit-
ing each point only one time. Thus, a space-filling curve
imposes a linear order of points in the multi-dimensional
space. Space-Filling curves are discovered by Peano [15]
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where he introduces a mapping from the unit interval to the
unit square. Hilbert [9] generalizes the idea to a mapping of
the whole space. Following Peano and Hilbert curves, many
space-filling curves are proposed, e.g., [4, 5]. For a historical
survey and more types of space-filling curves, the reader is
referred to [16].

With the variety of space-filling curves and the wide
spread of multi-dimensional applications, the selection of
the appropriate space-filling curve for a certain application
is not a trivial task [12]. The objective of this paper is
to provide a systematic and a scalable framework for se-
lecting the appropriate space-filling curve for any applica-
tion. To achieve this objective, we divide any space-filling
curve into segments. Each segment connects two consecu-
tive multi-dimensional points. Thus, a D-dimensional space-
filling curve with grid size N would have NP-1 segments
that connect N points. We distinguish among five differ-
ent segment types Jump, Contiguity, Reverse, Forward, and
Still. A space-filling curve SFC is described by its descrip-
tion vector V = (J,C, R, F, S), where J,C,R, F, and S, are
the percentages of Jump, Contiguity, Reverse, Forward, and
Still segments, respectively. Then, with only looking at the
description vector V', one can choose the right space-filing
curve for a given application.

Although space-filling curves were discovered in the last
century [9, 15], their use in computer science applications is
not discovered until recently. The use of space-filling curves
is motivated by the emergence of multi-dimensional appli-
cations. Space-filling curves are used in spatial join [14],
range queries [6], nearest neighbor queries [11], spatial access
methods [7], packing R-Tree [10], disk scheduling [1], and im-
age processing [17]. The properties of different space-filling
curves is explored in [2, 12, 13]. In [2], the properties of sev-
eral space filling curves in the two- and three-dimensional
spaces is discussed, and new measures to describe the be-
havior of any space-filling curve is presented. The notion of
irregularity is presented in [12] as a quantitative measure of
how irregular a space-filling curve is. In [13], the clustering
properties of the Hilbert SFC is analyzed by deriving closed
formulas for the number of clusters in a given query region.

The rest of this paper is organized as follows. Different
types of segments in space-filling curves are presented in
Section 2. Section 3 develops closed formulas to compute the
description vector for the Peano, Gray and Hilbert SFCs. In
Section 4, we conduct a comprehensive comparison among
different space-filling curves. Finally, Section 5 concludes
the paper.



2. SEGMENT TYPES IN SPACE-FILLING
CURVES

A D-dimensional space-filling curve with grid size N has
NP-1 segments that connect N° points. Each segment is
classified as one or more of five segment types: Jump, Conti-
guity, Reverse, Forward, and Still. In this section, we give a
precise definition of each segment type along with an itera-
tive equation to compute the number of segments from each
type for each dimension. For the rest of the paper, we use
the term P; = (u1,u2,- - ,ux) to indicate the ith point in a
space-filling curve. Also, P;.uj indicates the kth dimension
in the #th point in a space-filling curve.

2.1 Jump

Definition 1. A Jump in an SFC is said to happen when
the distance, along any of the dimensions, between two con-
secutive points in the SFC is greater than one.

Formally, for any two consecutive multi-dimensional
points P;, Piy; in an SFC, a Jump occurs in dimension
k iff abs(P;.ur — Pi+1.ux) > 1. The total number of
Jump segments in a dimension k in a D-dimensional space
with grid size N is: J(k,N,D) = Ef]:z_Q fi(i, k) where
fr(G, k) = 1 iff abs(Piup — Piy1.ux) > 1 and 0 other-
wise. The total number of Jump segments in an SFC is:
Jr(N,D) = Y025 J(k, N, D)

A Jump in a space-filling curve reflects the locality of the
consecutive points in the order implied by the space-filling
curve. The lack of Jump segments indicates more ability for
clustering. However, Jump may or may not be a favorable
property based on the application type. For example, in a
disk-head scheduling [1], Jumps are considered bad, as they
result in a longer seek time without retrieving any data. On
the other side, in multi-priority scheduling, Jumps are con-
sidered good, as the ability of fast moving among different
priority types is required.

2.2 Contiguity

Definition 2. A Contiguity in an SFC is said to happen
when the distance, along any of the dimensions, between
two consecutive points in the SFC is equal to one.

Formally, for any two consecutive multi-dimensional
points P;, P;41 in an SFC, a Contiguity occurs in dimen-
sion k iff abs(P;.ur — Piy1.ur) = 1. The total number of
Contiguity segments in a dimension k£ in a D-dimensional

space with grid size N is: C(k,N,D) = Efv:?)d fc (i, k)
where fc(i,k) = 1 iff abs(P;.ur — P;41.ux) = 1 and 0 other-
wise. The total number of Contiguity segments in an SFC
is: Cr(N,D) =0~ C(k,N,D)

Contiguity reflects the ability of a space-filling curve to
go continuously along any of the dimensions. A high ratio
of Contiguity indicates a lower ratio in Jump. As in Jumps,
Contiguity may or may not be favorable, depending on the
underlying application.

2.3 Reverse

Definition 3. A segment in an SFC is termed a Reverse
segment if the projection of its two consecutive points, along
any of the dimensions, results in scanning the dimension in
decreasing order.

Formally, for any two consecutive multi-dimensional
points P;, P;y1 in an SFC, a Reverse occurs in dimension &
iff Piy1.ur < P;.uk. The total number of Reverse segments
in a dimension k£ in a D-dimensional space with grid size
N is: R(k,N,D) = N2 fr(i, k) where fr(i, k) = 1 iff
P;11.u, < Pioug and 0 otherwise. The total number of Re-
verse segments in an SFC is: Ry (N, D) = Y p~' R(k, N, D)

A Reverse segment is also classified as either a Jump or
a Contiguity one. Whether reverse segments is favorable or
not relates to the semantic of the sorted parameter. For
example, consider the real-time applications. When apply-
ing a space-filling curve to a deadline parameter, the sort-
ing from the largest to the smallest, i.e., in reverse order,
means that we visit the points with larger deadline before
the points with smaller deadline. In this case, reverse order-
ing is considered unfavorable. As another example, consider
the case of disk-head scheduling [1]. Based on the disk-head
movement, alternating between forward and reverse order-
ing is favorable. In summary, it is important to point out
and quantify whether or not a space-filling curve exhibits
reverse ordering in its dimensions.

2.4 Forward

Definition 4. A segment in an SFC is termed a Forward
segment if the projection of its two consecutive points, along
any of the dimensions, results in scanning the dimension in
increasing order.

Formally, for any two consecutive multi-dimensional
points P;, P;11 in an SFC, a Forward occurs in dimension &
iff P;y1.ur > P;.ur. The total number of Forward segments
in a dimension k in a D-dimensional space with grid size
Nis: F(k,N,D) = SN0 2 f4(i, k) where fr(i k) = 1 iff
Pit1.ur > P;.ur and 0 otherwise. The total number of For-
ward segments in an SFC is: Fr(N, D) = ’,?:_01 F(k,N,D)

As in Reverse segment, a Forward segment is also clas-
sified as either a Jump or a Contiguity segment. A higher
ratio of Reverse segments indicates a lower ratio of Forward
segments.

2.5 Still

Definition 5. A segment in an SFC is termed a Still seg-
ment when the distance, along any of the dimensions, be-
tween the segment’s two consecutive points in the SFC is
equal to zero.

Formally, for any two consecutive multi-dimensional
points P;, P;y1 in an SFC, a Still occurs in dimension k
iff Piy1.ur = P;.ur. The total number of Still segments
in a dimension k£ in a D-dimensional space with grid size
Nis: S(k,N,D) = Y02 fs(i, k) where fs(i,k) = 1 iff
P;11.ur, = P;.up, and 0 otherwise. The total number of Still
segments in an SFC is: S7(N,D) =S¢~ S(k, N, D)

A segment is considered as a Still segment if it does not
match any of the other types. Still segments is the closure of
other types. For example, a segment that is neither a Jump
nor a Contiguity is considered as a Still. Also, a segment that
is neither a Reverse nor a Forward segment is considered as a
Still. In general, the number of Still segments in a dimension
k indicates the percent that this dimension is ignored to
visit other dimensions. Unlike other segment types, a Still
segment can not be classified as another segment type.



2.6 Relation between segment types

The five segment types can be divided into two categories.
The first category, termed the distance category, is con-
cerned with the segment length. This includes Jump, Conti-
guity, and Still segments where the segment length is greater
than, equal, or less than one, respectively. The second cat-
egory, termed the direction category is concerned with the
direction of the segment. This includes Reverse, Forward,
and Still segments. Notice that the Still segments belong to
the two categories where it serves as the closure of each cat-
egory. The relation between segment types is summarized
in the following Lemma.

LeMMA 1. For any dimension k in o D-dimensional
space with grid size N, the following equalities always hold.

J(k,N,D) + C(k,N,D) + S(k,N,D) = N” —1
R(k,N,D) + F(k,N,D) + S(k,N,D) = N” —1
Jr +Cr+Sr = D(N” 1)
Rr + Fr+ Sr=D(N” - 1)

PrOOF. The proof is omitted for brevity. The reader is
referred to [3] for a detailed proof. [

From Lemma 1, we can derive the following corollary.

COROLLARY 1. To compute the description vector V', it
is enough to compute only three segment types with at least
one from each category. The other two segment types can be
computed from Lemma 1

3. CASE STUDIES

The time complexity for calculating the number of seg-
ments of any type in a D-dimensional space with grid size
N is O(NP). Consider the case of 20 dimensions with grid
size 16, we need 162° operations to compute the number of
Jumps of a space-filling curve. To avoid this excessive op-
eration, we derive closed formulas that compute the num-
ber of segments of each type for any dimension k£ in a D-
dimensional space with grid size N. In this paper, we con-
centrate only on the following recursive space-filling curves:
Peano, Gray, and Hilbert SFCs. For closed formulas of other
space-filling curves and the proofs of all the equations pre-
sented in this section, the reader is referred to [3]. For the
rest of the paper we use the term Vr = (Jr, Cr, Rr, Fr, St)
to denote the total description vector, where Jr,Cr, Rr, Fr,
and St represent the total number of Jump, Contiguity, Re-
verse, Forward, and Still segments, respectively. Notice that
V =Vr/D(NP —1).

3.1 Case Study I: The Peano SFC

The Peano SFC is introduced by Peano [15] and is also
known as Morton encoding, quad code, bit-interleaving, N-
order, locational code, or Z-order. The Peano SFC is con-
structed recursively as in Figure 1. The basic step (Fig-
ure la) contains four points in the four quadrants of the
space. Figure 1b contains four repeated blocks of Figure 1a
at a finer resolution and is visited in the same order as in
Figure la. Similarly, Figure 1c contains four repeated blocks
of Figure 1b at a finer resolution. For details about extend-
ing the Peano SFC to multi-dimensional space, the reader
is referred to [12].

LEMMA 2. In a D-dimensional space with grid size N,
the number of Jump, Contiguity, Reverse, Forward, and Still
segments in any dimension k for the Peano SFC is:

NP —22P) (2" - 2)
922D—k (2D — 1)
S(k,N,D) = N (1 - 2’“‘”“)
C(k,N,D) = N —1—J(k, N, D) — S(k, N, D)
2k (NP —2P) (2P —2)
2D (20 — 1)
F(k,N,D) = N” —1— R(k,N, D) — S(k, N, D)

PRrROOF. The proof is omitted for brevity. The reader is
referred to [3] for a detailed proof. [

+2F 1

J(k,N,D) = (

R(k,N,D) = +2F 1

LEMMA 3. The total description vector Vr for the D-
dimensional Peano SFC with grid size N is Vp =
(J7,Cr, Ry, Fr,St) where:

Jr = (%)D(l—zl‘[’) +1-D

o= (3) (120

RTzND(1—21_D)+1—D
Fr=nNP_1
Sy = NP (21_D+D—2)

The description vector V = Vp/D(NP — 1)

PrOOF. The proof is omitted for brevity. The reader is
referred to [3] for a detailed proof. [

3.2 Case Study Il: The Gray SFC

The Gray SFC uses the Gray code representation in con-
trast to the binary code representation as in the Peano SFC.
Figure 1 gives the recursive construction of the Gray SFC.
The basic step (Figure 1d) contains four points in the four
quadrants of the space. Figure le contains four repeated
blocks of Figure 1d at a finer resolution and is visited in
Gray order. Unlike the Peano SFC, the first and the fourth
blocks have the same orientation as those of Figure 1d, while
the second and the third blocks are constructed by rotating
the block of Figure 1d by 180°. Similarly, Figure 1f is con-
structed from two blocks of Figure le at a finer resolution
and two blocks of the rotation of Figure le by 180°. For
details about extending the Gray SFC to multi-dimensional
space, the reader is referred to [12].

LEMMA 4. In a D-dimensional space with grid size N,
the number of Jump, Contiguity, Reverse, Forward, and Still
segments in any dimension k for the Gray SFC is:

(N7~ 2?) NP
J(kyN;D)=m ) C(k;N,D)=2D,k
S(k,N,D) = N” —1— J(k,N, D) — C(k, N, D)

NP —2P
R(0,N,D) = @D 1)

2F-1 (NP —1)
R(k,N,D)_W, k>0

F(k,N,D)=N"” —1— R(k,N, D) — S(k,N, D)
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Figure 1: Recursive SFCs: (a),(b),(c) The Peano SFC. (d),(e),(f) The Gray SFC. (g),(h),(i) The Hilbert SFC.

PrOOF. The proof is omitted for brevity. The reader is
referred to [3] for a detailed proof. [

LEMMA 5. The total description vector Vr for the D-
dimensional Gray SFC with grid size N is Vp =
(JT, CT, RT,FT, ST) where:

N\P A
JT—<?> —1 OT_(E) (2 —1)
NP —2 NP
= F = —
Ry 2 T 5

Sy =(D—-1)(N? -1)
The description vector V = Vr/[D(NP — 1)

PrOOF. The proof is omitted for brevity. The reader is
referred to [3] for a detailed proof. [

3.3 Case Study I1l: The Hilbert SFC

Figure 1 gives the recursive construction of the Hilbert
SFC. The basic block of the Hilbert SFC (Figure 1g) is the
same as the basic block of the Gray SFC (Figure 1d). The
basic block is repeated four times at a finer resolution in the
four quadrants, as given in Figure 1h. The quadrants are
visited in their gray order. The second and third blocks in
Figure 1h have the same orientation as in Figure 1g. The
first block is constructed from rotating the block of Figure
1g by 90°, while the fourth block is constructed by rotating
the block of Figure 1g by —90°. Figure 1i is constructed
from Figure 1h in an analogous manner.

LEMMA 6. In a D-dimensional space with grid size N,
the number of Jump, Contiguity, Reverse, Forward, and Still
segments in any dimension k for the Hilbert SFC is:
J(k,N,D) =0

D-1

C(k,N,D) = ; 2°C((k + i)modD, g D) + 2C(k, g
C(k,1,D) =0

S(k,N,D) = N —1—J(k,N, D) — C(k, N, D)
R(0,N, D) = (C(0,N,D) — N +1)/2

R(k,N,D) =C(k,N,D)/2, k>0

F(k,N,D)=N"” —1— R(k,N, D) — S(k, N, D)

ProOF. The proof is omitted for brevity. The reader is
referred to [3] for a detailed proof. [

LEMMA 7. The total description vector Vr for the D-
dimensional Hilbert SFC with grid size N is Vp =

D) +2*

(Jr,Cr, Ry, Fr, Sr) where:

Jr=0 Cr=NP-1
Rng(ND’I—l) Fng(ND’1+1)—1

Sr=(D-1)(N”-1)
The description vector V = Vr/D(NP —1)

ProOF. The proof is omitted for brevity. The reader is
referred to [3] for a detailed proof. [

4. PERFORMANCE EVALUATION

In this section, we perform comprehensive experiments to
compare the Peano, Gray, and Hilbert SFCs with respect
to different segment types. The results in this section are
computed using the closed formulas developed in Section 3.
Notice that it is timely infeasible to compute segment types
in high-dimensional space using the definition and iterative
equations from Section 2. For more experiments and com-
parison, the reader is referred to [3].

4.1 Scalability of Space-Filling Curves

In this section, we address the issue of scalability, e.g.,
when the number of dimensions and/or the number of points
per dimension increases. For the following experiments, we
use Lemmas 3, 5, and 7 to compute the description vector
V. Figure 2 gives the result of setting the grid size N=16,
while measuring different segment types (Jump, Reverse,
and Still) for up to 12 dimensions. An interesting result
appears in the Jump segments (Figure 2a) where both the
Peano and Gray SFCs have very low percentage (almost 0%)
of Jumps after six dimensions while the Hilbert SFC has no
Jumps for any dimensions. The fact that the Hilbert SFC
has no Jumps is well-known [8, 13], and it is the main criteria
for choosing the Hilbert SFC in many applications e.g., [8,
10]. However, this experiment emphasizes that both the
Peano and Gray SFCs share the property of no Jumps with
the Hilbert SFC for medium and high dimensionality. The
trend of Contiguity and Forward segments is similar to the
Jump and Reverse segments, respectively, although they are
different in the percent value. The Gray and Hilbert SFCs
have similar behavior for all segment types except for low-
dimensionality in the Jump and Contiguity segments. No-
tice that all segment types except Still are decreasing as the
number of dimensions increases. The reason for this comes
from the Still definition. A Still segment indicates that the
value of one of its dimensions does not change. With a larger
number of dimensions, it is difficult to find a segment that
connects two consecutive multi-dimensional points that are
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Figure 2: Scalability of space-filling curve w.r.t dimensionality.

different in all dimensions. Thus, almost each segment is
counted as a Still for one or more dimensions.

The three space-filling curves almost have constant per-
formance regardless of grid size. This can be noted from the
description vector V', where getting the limy_,o, V gives a
constant value that does not depend on N.

4.2 Fairness of Space-Filling Curves

In this section, we test the fairness! of space-filling curves.
For each segment type T, we use the standard deviation of
the number of T" segments over all dimensions as an indica-
tion for fairness. The lower the standard deviation the more
fair the space-filling curve is. For the experiments of this
section, we use Lemmas 2, 4, and 6 to compute the num-
ber of segments of each type for each individual dimension
rather than the total that is used in the description vector.

Figure 3 gives the standard deviation of Jump, Contiguity,
and Forward segments. Still and Reverse segments have the
same figure as in Contiguity. It is clear that for all segment
types, the Hilbert SFC is the most fair space-filling curve
with very low standard deviation. Also, except for the Jump
segments, the Peano SFC gives the worst behavior. The
interesting result is that both the Peano and Gray SFCs
tend to be more fair as the dimensionality increases while
the Hilbert SFC do the opposite. This indicates that for
very high dimensionality, the Hilbert SFC may not be the
most fair space-filling curve.

4.3 Intentional Bias of Space-Filling Curves

A very critical point for SFC-based applications is how to
assign the different parameters to the space dimensions. In
this section, we explore the intentional bias? of each space-
filling curve by plotting its behavior for each dimension in-
dividually. Figure 4 gives the intentional bias for direction
segments. The experiment is performed for four-dimensional
space with grid size 16. Each dimension is plotted individu-
ally as a stacked bar that contains the percent of distance or
direction segments. The fifth column is the percent of the
total number of segments over all dimensions from each type.

'"We say that a space-filling curve is fair if it has similar
behavior towards all dimensions.

?We say that a space-filling curve is intentionally biased
to a dimension k with respect to segment type 7' if it has
more T segments in dimension k£ with respect to all other
dimensions.

Note that the height of each bar is 100 (refer to Lemma 1).

From Figure 4c, the Hilbert SFC is not biased to any
dimension. The number of Reverse, Forward, and Still seg-
ments is almost equal for all dimensions. This agrees with
the results from the previous section, where the Hilbert SFC
has a very low standard deviation. With respect to Reverse
and Forward, the Peano SFC is biased toward the last di-
mension where the number of these segments is increased
with the dimension number k. On the other side, the num-
ber of Still segment decreases with the dimension number.
The Gray SFC has similar behavior as in the Peano SFC,
however, the increase/decrease in Reverse and Forward/ Still
segments is slower. The same analysis applies to distance
segments. The Hilbert SFC is extremely fair, while in the
Peano and Gray SFCs, the number of Contiguity segments is
increasing rapidly with the dimension number. The number
of Jump segments is very low compared to Contiguity and
Still segments.

5. CONCLUSION

Space-filling curves are used as a mapping scheme from
the multi-dimensional space into the one-dimensional space.
The behavior of different space-filling curves in the D-
dimensional space is analyzed. A description vector V is
proposed to give a brief description for each space-filling
curve. Closed formulas that depend on the space dimension-
ality and grid size are derived to compute V. The main idea
is to divide the space-filling curve into a set of connected
segments. Each segment connects two consecutive multi-
dimensional points. Five segment types are distinguished,
namely, Jump, Contiguity, Reverse, Forward, and Still. The
description vector V' contains the percent of each segment
type. Several experiments are conducted to show the scal-
ability and fairness of space-filling curves with respect to
segment types.
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