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ABSTRACT

The emergence of location-aware services calls for new real
time spatio-temporal query processing algorithms that deal
with large numbers of mobile objects and queries. Online
query response is an important characterization of location-
aware services. A delay in the answer to a query gives in-
valid and obsolete results, simply because moving objects
can change their locations before the query responds. To
handle large numbers of spatio-temporal queries efficiently,
we propose the idea of sharing as a means to achieve scal-
ability. In this paper, we introduce several types of sharing
in the context of continuous spatio-temporal queries. Exam-
ples of sharing in the context of real-time spatio-temporal
database systems include sharing the execution, sharing the
underlying space, sharing the sliding time windows, and
sharing the objects of interest. We demonstrate how sharing
can be integrated into query predicates, e.g., selection and
spatial join processing. The goal of this paper is to outline
research directions and approaches that will lead to scalable
and efficient location-aware services.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
spatial databases and GIS.

General Terms

Design, Performance.
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1. INTRODUCTION

Combining the functionality of personal locator technolo-
gies, global positioning systems (GPSs), wireless and cel-
lular telephone technologies, and information technologies
enables new environments where virtually all objects of in-
terest can determine their locations. These technologies are
the foundation for pervasive location-aware environments
and services. Such services have the potential to improve
the quality of life by adding location-awareness to virtually
all objects of interest such as humans, cars, laptops, eye-
glasses, canes, desktops, pets, wild animals, bicycles, and
buildings.

By enabling an upward link, the data sent from the mo-
bile objects to the servers enables an environment in which
objects are aware of the locations of surrounding objects as
well as other related information. Applications can range
from locating lost or stolen objects, to tracking little chil-
dren and alerting parents when their children step out of
the back yard, or completely automating traffic and vehicle
navigation systems.

A location-aware server is characterized by the large num-
ber of mobile and stationary objects and comparatively
small number of fixed regional servers. Mobile and station-
ary objects have the ability to issue ad hoc spatio-temporal
queries. Spatio-temporal queries are queries where both the
objects and the query region may change their locations
and/or shapes over time. We distinguish between snapshot
and continuous queries. Snapshot queries are queries that
can be answered using data that is already collected, either
in one of the fixed regional servers or in a large repository
server. Continuous queries are queries whose responses de-
pend on data progressively accumulating into the servers.
A continuous query may either report accumulated results
at regular intervals of time or may be triggered to report
a result when a certain event happens. A key point in
the design of a location-aware server is to provide efficient
data structures and query optimization techniques to pro-
vide fast query responses. In a location-aware environment,
where objects are continuously moving, any delay in query
response results in an invalid and an obsolete answer. The
ability of having a fast query response in a location-aware
server is hindered by two main reasons:

1. Scalability. Location-aware environments are char-
acterized by the large number of moving objects, and
a large number of issued continuous and snapshot
queries. In the context of spatio-temporal databases,
several spatio-temporal access methods [22] are pro-



posed that are scalable in terms of the number of
moving objects that can be supported (e.g., see [5,
24, 25, 27, 28, 32, 34]). The scalability in terms of
the number of spatio-temporal queries and moving ob-
jects is addressed in [25]. In addition, each spatio-
temporal access method is concerned with a specific
type of spatio-temporal queries (e.g., range queries [28,
34], nearest neighbor queries [31, 33], reverse nearest-
neighbor queries [4], historical queries [24, 32], NOW
queries [25], and future queries [27, 28]). Thus even if a
spatio-temporal access method is scalable with respect
to a certain query type, there is no guarantee that the
location-aware server can be scalable with respect to
the wide variety of spatio-temporal queries.

2. Complexity. Unlike traditional queries, spatio-
temporal queries are both CPU and I/O-intensive.
Spatial comparisons may require complex geometric
algorithms. Efficient algorithms are needed to avoid
unnecessary complex computations.

In this paper, we aim to provide research directions to-
wards achieving scalability in location-aware servers. By
scalability, we mean the ability of the location-aware server
to provide fast responses to a large number of continuous
concurrent spatio-temporal queries of different types. We
focus on scalability for continuous queries for two reasons:
(1) Continuous queries are natural in the highly dynamic
location-aware environments. (2) Snapshot queries can be
considered as a special case of continuous queries, if the
period of execution of the continuous query is very small.
Efficient algorithms to handle continuous queries have been
introduced in the context of append-only databases [36], in-
ternet queries [17, 18], stream processing [3, 21], and spatio-
temporal queries [31, 33]. Scalable approaches to handle
multiple concurrent continuous queries mainly focus on trig-
gers [15], and internet queries [9, 19]. Scalability in han-
dling continuous spatio-temporal range queries is addressed
in [25]. However, the focus is on a specific instance of
range queries, where the query regions are stationary and
the queries are interested only in the current locations of
moving objects. Up to the authors’ knowledge, scalability
in handling a variety of continuous spatio-temporal queries
has not yet been addressed.

A key technique towards achieving scalability in location-
aware servers is sharing. Examples of sharing in the con-
text of real-time spatio-temporal database systems include
sharing the execution of multiple yet similar queries, shar-
ing the underlying space, sharing the sliding time windows,
and sharing the objects of interest. The sharing concept
has been introduced in the context of traditional queries [6,
26, 29], continuous queries in the web environment [8, 9],
and continuous streaming queries [7, 14, 21]. In this paper,
we focus on sharing as a means of achieving scalability for
continuous spatio-temporal queries.

The rest of the paper is organized as follows: Section 2 de-
scribes a typical location-aware environment that is designed
as part of the Pervasive Location-Aware Computing Envi-
ronments (PLACE) project [2], developed at Purdue Uni-
versity. In Section 3, spatio-temporal queries are classified
into different categories. Section 4 introduces the concept
of sharing in continuous spatio-temporal queries. Spatio-
temporal join as the main block for sharing is discussed in
Section 5 . Finally, Section 6 concludes the paper.
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Figure 1: The Pervasive Location-Aware Environ-
ment (PLACE) Architecture.
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2. THE PLACE PROJECT

In this section, we give an outline of the Perva-
sive Location-Aware Computing Environments (PLACE)
project [2], developed at Purdue University. Figure 1
sketches a hierarchical architecture of the location-aware
computing environment. Location detection devices (e.g.,
GPS devices) provide the objects with their geographic loca-
tions. Objects connect directly to regional servers that form
the lowest level in this hierarchy. Regional servers handle
the incoming data and process time-critical spatio-temporal
queries. Regional servers communicate with each other, as
well as with the high level servers i.e., the repository servers.
Repository servers archive the past locations of moving ob-
jects.

The servers are interconnected by high bandwidth links.
However, the mobile links between the regional servers and
objects have low bandwidth and a high cost per connec-
tion. For data that is being sent from the moving objects to
the regional servers (i.e., uplink direction), we regulate the
amount of data collected (resolution), and the rate at which
it is sent (upload frequency). For query results and other
data being sent from the location-aware regional servers to
the objects (i.e., the downlink direction), an alternative to
the point-to-point mobile links is allowed. Servers can trans-
mit data to a satellite that broadcasts the information over
the air to all objects. Broadcasting allows a server to send
data to a large number of listening objects [1, 13].

In traditional applications, GPS devices tend to be pas-
sive, i.e., they do not exchange any information with other
devices or systems. More recently, GPS devices are becom-
ing active entities that transmit and receive information that
is used to affect processing. Examples of these new applica-
tions include vehicle tracking, identification of closet emer-
gency vehicles, and Personal Locator Services.

3. SPATIO-TEMPORAL QUERIES

Unlike traditional and spatial queries, in spatio-temporal
queries, both objects and query regions may change their



locations and/or shapes over time. Dealing with time results
in a wide variety of spatio-temporal queries. In this section,
we give classification of a variety of spatio-temporal queries
that are supported in the PLACE server.

We give two classifications of spatio-temporal queries that
are based only on the time dimension. Thus, the following
classifications can be applied to both continuous and snap-
shot queries. Also, the classifications apply to many types
of queries, e.g., range queries, nearest-neighbor queries, and
reverse nearest-neighbor queries [4].

The first classification is based on the time of the query.
Spatio-temporal queries can ask about information related
to the past, current, or future times:

e Historical Spatio-temporal Queries. Historical
queries ask about the past data (data that is stored
at the repository servers in Figure 1). An example
of historical queries is ”Find the locations of a certain
object between 7 AM and 8 AM today”. A continuous
version of this query is: “Continuously, Find the lo-
cations of a certain object in the last hour”. In this
case, the continuous query time interval (last hour) is
a sliding time window. To support historical queries,
a location-aware server stores only the locations of the
moving objects at different times. Once a location of
a moving object is updated, the old location is sent
to the repository server along with the time the old
location was reported. Examples of spatio-temporal
access methods that support historical queries include
the TB-tree [24], the MV3R-tree [32], and SETI [5].

e NOW Spatio-temporal Queries. NOW queries
are interested only on the current location of moving
objects. An example of a NOW query is “Based on
my current location, what is the nearest gas station?”.
Due to the highly dynamic environment that is sup-
ported by location-aware servers, dealing with NOW
queries is challenging [10]. To answer NOW queries,
a location-aware server keeps track of the latest lo-
cations of all moving objects. Examples of spatial ac-
cess methods that support NOW queries include hash-
ing [30], the VCI-Index [25], the Q-Index [25], and the
LUR-tree [16].

e Future Spatio-temporal Queries. Future queries
are interested in predicting the locations of moving
objects. Additional information (e.g., the velocity or
destination) need to be sent from the moving objects
to the regional servers in Figure 1. An example of a
future query is ”Alert me if a non-friendly airplane
is going to cross a certain region in the next 30 min-
utes”. Notice that in this query, the alert is sent before
the actual event happens, hence, is termed a future or
predicting query. Examples of spatio-temporal access
methods that support future queries include R-tree
based structure (e.g., the TPR-tree [28], the RZXP-
tree [27], and the TPR*-tree [34]) and quadtree-based
structures (e.g. [35]).

The second classification of spatio-temporal queries is
based on the mutability of both objects and queries. Spatio-
temporal queries allow stationary queries on moving objects,
moving queries on stationary objects, and moving queries on
moving objects:

e Stationary Queries on Moving Objects. In this
category, the query regions are stationary, while ob-
jects are moving. Example of these queries include
” How many trucks are within the city boundary?” and
"Find the nearest 100 tazis to a certain hotel”. In
these queries, the query regions (city boundary and
hotel neighborhood) are fixed, while the objects of in-
terest (trucks and cars) are moving. Two approaches
can be used to support continuous fized queries. The
first approach is to index the moving object with a
spatio-temporal access method [27, 28, 34]. The sec-
ond approach is to index the fized queries with a spatial
access methods [25, 37].

Moving Queries on Stationary Objects. In this
category, query regions are moving, while objects are
stationary. An example of this category is “As I am
moving in a certain trajectory, show me all gas sta-
tions within 8 miles of my location”. This category
of queries employ traditional methods to organize the
fixed objects (e.g., fractals [11] or R-trees [12]). Effi-
cient algorithms that utilize the R-tree are proposed
for the continuous single nearest-neighbor queries [33]
and the continuous K-nearest neighbor queries [31].

Moving Queries on Moving Objects. In this cat-
egory, both query regions and objects are moving. An
example of such queries is ”As I (the sheriff) am mov-
ing in the space, make sure that the number of po-
lice cars within 3 miles of my location is more than
a certain threshold”. In this case, the query region
is moving. Also, the objects of interest (police cars)
are moving. To support moving queries in a location-
aware server, moving objects need to be indexed using
a TPR-tree like structure (e.g., [27, 28, 34]). Then,
special algorithms are developed to process moving
queries in TPR-tree-like structures.

4. USE OF SHARING TO ACHIEVE SCAL-
ABILITY

As discussed in Section 3, numerous algorithms and access
methods are proposed for each query category. Scalability
is maintained via efficient implementation of specific algo-
rithms for each category of spatio-temporal queries. In the
PLACE project, we go beyond the idea of developing scal-
able specific algorithms for certain query types. Instead, we
aim to provide a scalable framework to support any kind
of concurrent continuous spatio-temporal queries. Mainly,
we use the sharing concept as a scalability solution. Shar-
ing can be achieved by efficiently grouping spatio-temporal
queries into different groups. Figure 2 sketches the main
design of the query processor in the PLACE server. Contin-
uous queries are registered into the PLACE server, and is
passed to the Query Parser module. The main functionality
of the parser is to exploit the structure and requirements of
continuous queries. The output from the query parser is an
intermediate format of the continuous query that represents
its structure, signature, and requirements. Based on this
intermediate format, the Query Optimizer classifies the con-
tinuous queries into one of M groups. As will be discussed
later, spatio-temporal queries within each group can exploit
some kind of sharing.
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Figure 2: A sketch of the scalable query processor
in a location-aware server.

The sharing concept is introduced in the context of tra-
ditional databases to provide an optimal global plan for
a set of multiple concurrent queries with common sub-
expressions [6, 26, 29]. Common sub-expressions are eval-
uated once, where their output is shared among different
queries. However, such an approach is limited in three as-
pects: (1) This approach is not scalable, where it is designed
for a limited number of queries. (2) All queries should be
known apriori. To optimize for new queries, the whole op-
timization plan needs to be recomputed. (3) Multi-query
optimization deals with snapshot queries only. The concept
of sharing as a solution of scalability for continuous queries is
introduced in the NiagaraCQ project [8, 9]. The main idea
is to apply the sharing between queries that have similar
query signatures. Thus, sharing is not limited to common
sub-expressions, but is extended to common computations.
New continuous queries can be added to the already existing
groups. In the context of data streams, sharing is introduced
as a scalable solution for continuous queries over streaming
data [7, 14, 21]. Due to the unbounded nature of streams,
queries over streams are often defined in terms of sliding win-
dows. Thus, sharing in continuous stream queries focus on
sharing the computations for different sliding windows [14].

In the PLACE project, we aim to extend the concept of
sharing to support continuous spatio-temporal queries. Un-
like traditional queries that are supported by the NiagaraCQ
project [9] and streaming queries that are supported by the
PSoup project [7], spatio-temporal queries introduce new
kinds of sharing. In the following sections, we introduce
several kinds of sharing along with the challenges that need
to be addressed to efficiently support each kind of sharing.

e Example: For the rest of this section, we use the
following example as a way to demonstrate our ideas
about sharing: Assume that in a vehicle naviga-
tion system, a location-aware server keeps track of
all moving vehicles in a certain state. The informa-
tion on moving vehicles is stored in the table vehi-
cles(ID,location,time,speed,type) where ID is the vehi-
cle identifier, location is the last reported location of
the vehicle, t¢éme is the last time that the vehicle re-
ports its location to the server, speed is the vehicle
velocity, and type indicates whether the vehicle is car,
truck, or motorcycle. For simplicity, we assume that
all queries are continuous and ask about the current
time (NOW queries). No future information is stored.
However, the same concepts and challenges can be gen-
eralized to future and historical queries.
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Figure 3: Example of sharing the space in contain-
ment queries.

4.1 Sharing the Space

Based on the spatial properties, spatio-temporal queries
can share the underlying spatial domain. Two spatio-
temporal range queries are considered to have the Spatial
Containment property if one of them is included in the other.
For example, two spatio-temporal range queries with regions
R; and R», where R1 C Ro, have the Spatial Containment
property. In this case, we say that the first query is spatially
contained in the second query. From the sharing prospec-
tive, both queries share the area Ri:. Thus, the area R
needs to be evaluated once, where the answer is utilized by
both queries. The spatial containment property can greatly
reduce the amount of computation needed by a location-
aware server. The two previous range queries with regions
Ry and R» can be evaluated with only one comparison. For
example, If a certain vehicle is determined to be inside re-
gion Ri, then, we know that it also inside R». Similarly,
if we know that a certain vehicle is outside R2, then, we
know also, that this vehicle is outside R;. However, some
cases still need two comparisons. For example, if an object
is determined that it does not lie inside Ri, then a second
comparison with Ry is needed.

Spatio-temporal queries that have the spatial containment
property are very frequent in location-aware servers. For
example, consider the following two queries: “How many
vehicles are inside the city of West Lafayette?” and “How
many vehicles are inside the Purdue University campus?”.
Since the Purdue University campus is located inside West
Lafayette, the second query is spatially contained in the first
query.

The sequence of evaluating spatially contained range
queries is challenging. Even the simple case where there
exist only two range queries is not trivial. Cost models need
to be provided to decide the optimal sequence of evaluating
spatially contained spatio-temporal queries. Figure 3a gives
an example of two range queries Ri, R2, where Ry C R;.
The bold rectangle is Figure 3a indicates the universe space.
Assuming that the distribution of moving objects in the uni-
verse is uniform, and that the area of the universe space is
one, then the probability that a certain object lies inside
region R; is the area of R;. We assume that the probabil-
ity that a certain object lies inside R1 and R2 is z1 and
x2, respectively (x2 < x1). Figure 3b gives the sequence of
evaluating R; before Ry in a Decision Tree format. Each
circle represents a query evaluation, the left link indicates
the sequence when the query is satisfied, while the right link
indicates the sequence when the query is not satisfied. A la-
bel on any link indicates the probability that this link is
used in the evaluation plan.

In Figure 3b, the two queries can be evaluated using only
one comparison with probability (1 — z1) (i.e., if a moving



object is not inside R;, then it is definitely not inside Rj).
However, two comparisons may be needed with probability
z1 (i.e., if a moving object is inside Ri, then we need to
test whether it is inside R2 or not). The expected number
of comparisons in this plan is By = (2)(z1) + (1)(1 — 1) =
1+ z1. Figure 3c gives the counter plan for evaluating R»
before R;. The expected number of comparisons in this
case is B> = (1)(x2) + (1 — 22)(2) = 2 — x2. Comparing the
expected number of comparisons yields the following results:

1. If 1 < 1 — x2, then executing R first is optimal as in
Figure 3b.

2. If £1 > 1 — 2, then executing R first is optimal as in
Figure 3c.

3. If xy = 1 — z2, then both query plans are equivalent
where they result in the same expected number of com-
parisons.

To illustrate with a numerical example, assume that 1 =
0.7 and z2 = 0.1. Then, E; = 1.7, while E» = 1.9. In this
case, evaluating R, first would be optimal with an average
1.7 comparisons for each moving object. On the other side,
if 1 = 0.8 and z2 = 0.5, then F1 = 1.8, while E> = 1.5.
In this case, evaluating R first would be optimal with av-
erage number of comparisons 1.5. Notice that organizing
R; and R inside an R-tree-like structure always requiring
two comparisons to evaluate R; and R. The main reason
is that most likely that both R; and Ry will lie in the same
R-tree node. Thus, the space sharing technique can be ap-
plied within an R-tree node, as well as combined with other
sharing techniques.

Utilizing the spatial containment property for continuous
spatio-temporal queries is challenging. In the following,
we point out some challenges in utilizing the spatial con-
tatnment property to support continuous spatio-temporal
queries:

1. In Figure 3, we illustrate the alternative query plans
for only two range queries with spatial containment
property. Generalizing the idea to multiple spatially
contained queries is challenging.

2. Similar cost model can be used in case of non-
overlapping queries; two range queries R; and Ry,
where R1 N Ry = ¢. This case is trivial, where eval-
uating the larger query first is always better. Notice
that if a certain object is determined to lie inside Ra,
then it definitely does not lie inside R;. Thus, the two
queries are evaluated with only one comparison. How-
ever, if the moving object does not lie in R, we still
need another comparison with R;. The generalization
of multiple non-overlapping queries is straightforward.
Range queries are sorted based on their areas; queries
with large areas are evaluated first. Although this case
is trivial, it lays out the foundation for extending the
idea of sharing the space into overlapped queries.

3. The same concept of sharing the space can be ex-
tended to overlapping queries that share some part of
the space. We consider two range queries with areas
R and R» are overlapping if R1 N R # ¢, and there is
no spatial containment between R; and R». Figure 4a
gives three different range queries with regions R1, R,

(8) Three range queries (b) The optimal decision tree
Figure 4: Example of sharing the space in ovrelap-
ping queries.

and R3. The optimal query plan in a decision tree for-
mat is given in Figure 4b. The main idea is to start
by evaluating R: where R: has the largest area. If a
moving object is determined to be inside R, then, we
deal with R; as if it is the universe. In this case, we
consider only the areas from Ry and R3 that are over-
lapped with R; (the gray area). Since the gray area of
R is larger than the gray area of R3, then we evalu-
ate Ry first then, R3. On the other hand if a moving
object is determined that it is not inside Ri, then we
consider only the white areas of Ry and R3. In this
case, R3 need to be evaluated before R>. Notice that
the order of evaluating R» and R3 depends on the re-
sult of evaluating R;. Systematic or heuristic methods
for building such decision trees need to be developed
to achieve a scalable location-aware server.

4.2 Sharing the Query Operator

Basically all queries that query the Vehicles table share
the same underlying structure (e.g., the Vehicles Table).
This kind of sharing is common to all environments and
is exploited in details in [8, 9]. However, as we will see be-
low, several challenges need to be addressed in the context
of spatio-temporal queries. Examples of queries that share
the same underlying structure include: “Continuously, how
many vehicles are in region Ry 2”7, and “Alert me if the num-
ber of vehicles in region Ry is above a certain threshold from
now onwards”. These two queries share the following SQL
part:

SELECT V.ID
FROM Vehicles V
WHERE V.location inside R;

where “inside” is a spatial operator that checks whether a
point lies inside a rectangular region R; or not. A typical
query evaluation plan for each query is: (1) read the Vehicle
table, (2) Compare each vehicle location to the query re-
gion using a point-rectangle inclusion test. Figure 5a gives
the query evaluation plan for two range queries with dif-
ferent regions R; and R3. The Table Scan operation is re-
peated twice for the two queries. This can be generalized if a
location-aware server receives IV different range queries with
N different regions (R1, R2,--- , Rn). Then, the expensive
Table Scan operation is repeated N times. In a location-
aware environment where there is a large number of moving
objects, the Table Scan operation becomes an I/O-intensive
operation.

By utilizing the concept of sharing, the query regions can
be stored in the Region(RID,Extents) table, where RID is
the query identifier, and Eztents is the rectangular query
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(@) Local query plan for two range queries (b) A global shared plan for two range queries
Figure 5: An example of sharing a global plan be-
tween two range queries.

region. In this case, the Vehicles table can be read only
once, and joined with the Region table as in Figure 5b. The
output of the join is the tuples (VID,location,RID), indicat-
ing that a vehicle VID satisfies the query region RID. New
continuous range queries received by the parser in Figure 2
are translated into Insert queries that insert a new record
in the Region table with new RID, and the Extents as the
query region.

To justify using the shared global plan, we need to make
sure that the cost of the join operation between the Vehicles
table and the Region table is less than the cost of reading the
Vehicles table N times. For example, if a non-indexed nested
loop join is used where the outer relation is the Region table,
while the Vehicles table is the inner relation, this would
be equivalent to handling each query individually. Thus,
an efficient implementation of the join operation is needed.
This can be achieved as follows:

e For Stationary Queries, where only the objects are
moving, it is better to build an R-tree-like spatial in-
dex on query regions [25]. Then, an indexed nested
loop join is used where the Vehicles table is the outer
relation, while the inner table is the Region table. The
standard R-tree point-in-rectangle query is used to find
which vehicles satisfies which queries. Notice that in
such highly dynamic environment, it is not practical
to build an index on moving objects. A spatial index
on moving objects cannot afford the high frequency of
updating object locations. Notice that moving objects
update only their current location information and do
not send their velocity information. Thus, a TPR-like
structure cannot be used in this case.

e For Moving Queries on Stationary Objects, it is bet-
ter to build an R-tree like index for points locations.
Then, an indexed nested loop join is used with the Re-
gion table is the outer relation. The standard range
query algorithm for R-tree is used.

e For the case of Moving Queries on Mowving Objects,
having an index on any of the tables would not help in
such a highly dynamic environment. Thus, the prob-
lem is transformed to a non-indexed spatial join prob-
lem, where one of the relations contain spatial objects
with no extents (i.e., points), while the other relation
contains rectangular objects. A variation of the spatial
hash join [20, 23] can be used to efficiently perform the
join operation.

Figure 6: Queries that share the same interest.

4.3 Sharing the Object Interest

Some spatio-temporal queries may be interested in specific
types of objects. For example, consider the following contin-
uous queries: “How many cars are in Purdue Campus from
now onwards?” and “How many trucks are in Purdue Cam-
pus from now onwards?”. Although the two queries share
the underlying structure (e.g., the Vehicles table), however
the two queries have different interests. The first query is
interested only in vehicles with type “car”, while the second
query is interested in vehicles with type “truck”. These two
queries share the following SQL part:

SELECT Count(V.ID)
FROM Vehicles V
WHERE V.type = type
AND V.location inside R

Applying the shared global query evaluation plan given
in Figure 5b results in unnecessary joined tuples. Queries
that have interest only in cars may be joined with moving
trucks. Similarly, queries that have interest only in trucks
may be joined with moving cars. Figure 6 gives a query
evaluation plan for spatio-temporal queries that share the
same interest. A Region(RID,Eztents) table is constructed
for each object of interest. In Figure 6, we have two Region
tables one for cars and the other for trucks. The Vehicle
table is read once. Based on the selection predicate, tuples
are forwarded to one of the join operators. Thus, the join
is performed only between queries and objects of the same
interest. Notice that the selection condition is performed
before the join. This approach is termed as the PushDown
approach [8], where the selection operator is pushed below
the join operator.

Research issues in this kind of sharing include: (1) Devel-
oping a cost model that justifies pushing the selection down,
rather than performing the join then having the selection.
(2) Study the trade-offs of keeping two separate Region ta-
bles rather than having only one Region table followed by
a selection operator. (3) The selectivity estimation should
be employed to decide whether it is worth to have a sepa-
rate table for a specific object type. (4) Object types can
be grouped into categories, with one table per group rather
than one table per type.



4.4 Sharing the Selection

In this kind of sharing, spatio-temporal queries are inter-
ested in an attribute that can have continuous values (e.g.,
the speed attribute in the Vehicles table). For example, con-
sider the following continuous queries: “Continuously, find
all vehicles with speed greater than 30 in Purdue Campus”
and “How many vehicles with speed greater than 40 in Pur-
due Campus from now onwards?”. Both queries share some
results. A vehicle with speed 50 satisfies both queries. These
two queries share the following SQL part:

SELECT V.ID

FROM Vehicles V
WHERE V.speed > speed
AND V.location inside R

Applying the shared global plan in Figure 5b results in un-
necessary joins. For example, vehicles with speed 20 will be
joined with the two queries. In addition, vehicles with speed
35 is joined with queries that are interested in speed over
40. Also, applying the plan in Figure 6 results in inefficient
performance. Although, there will not be any unnecessary
joins, many redundant tuple joins will be performed. For
example, consider the case where most of the objects have
speed above 40. These objects will be joined twice with each
query table. Since both queries have the same space domain
(Purdue campus), then the join operation is redundantly re-
peated.

A better approach is to use the Filter PullUP approach [8].
The main idea is to pull up the selection predicates after
the join operator. Thus, the Vehicles table is joined with
the Region table, then the selection criteria is applied. In
this case, redundant joins are avoided. However, there is
a chance of unnecessary joins that can result from moving
vehicles with speed below 30. To avoid these unnecessary
joins, a filter is used. The filter is another selection operator
that is inserted before the join. The selection condition is
the union of all the selections. In this case, the filter is
to select vehicles with speed above 30. In this approach,
there is still a chance of unnecessary join for vehicles with
speed that is between 30 and 40. However, the cost of these
unnecessary joins is amortized by the gain from sharing the
selection operator.

4.5 Sharing the window join

This kind of sharing is very relevant to continuous stream
queries [7, 14, 21]. The main idea is to share the join op-
eration among different moving objects. Since objects are
moving continuously, then the join is defined in terms of a
sliding window. Examples of these queries include: “Contin-
wously, find the cars that passed by the same location that a
truck passed by in the last hour” and “Continuously, find the
cars and trucks with the same speed in the last 10 minutes”.
These queries deal with the moving objects as a stream of
spatio-temporal data. The shared part in these queries is
the sliding time window. Joins need to performed in a way
that share the execution of the inner sliding window [14].

5. SPATIO-TEMPORAL JOIN

As discussed in the previous section, most of the sharing
techniques require a join between the objects table and the
queries table. The contents of at least one of these tables

(&) Abstraction of moving objects

Figure 7: The abstraction of moving objects and
moving queries.

is continuously changing over time. An efficient implemen-
tation of spatio-temporal join is a key point in supporting
sharing as a means of scalable location-aware servers.

On the abstract level, spatio-temporal join can be con-
sidered as a spatial join. Figure 7 gives the abstraction of
moving objects, moving circular range queries, and moving
rectangular range queries. The current time is represented
by the shaded area. The solid hyper rectangle represents
the historical data, while the dashed hyper rectangle repre-
sents the future predicted movement. Moving objects (Fig-
ure 7a) are abstracted as points in the current time, lines
in the future time, and trajectories in the past time. Mov-
ing circular range queries are abstracted as circle, cylinder,
and a sequence of cylinders in the current, future, and past
times, respectively. Similarly, rectangular range queries are
abstracted as rectangles, hyper-rectangles, and sequence of
hyper-rectangles in the current, future, and past times, re-
spectively.

For NOW continuous queries (e.g., queries that ask about
the current location), the spatio-temporal join in the context
of sharing is abstracted as a spatial join where one of the re-
lations contains points (objects with no extents), while the
other relation contains rectangles. Due to the highly dy-
namic environment, it will be difficult to maintain spatial
indicies. Thus, a spatial index algorithm that does not uti-
lize any index on the relations can be employed (e.g., see [20,
23]). Future queries are abstracted as a spatial join where
one of the relations contains lines, while the other relation
contains hyper-rectangles. Again, a non-index-based spa-
tial join algorithm can be utilized. Similarly, the historical
queries can be abstracted as a spatial join. However, spa-
tial joins in historical queries are complicated due to the
complexity of object and query representations.

As an alternative to the abstraction approach, we can
use spatio-temporal join algorithms that utilize the exist-
ing spatio-temporal access methods. However, there is no
much research in this area. For example, spatio-temporal
join algorithms need to be developed for the TB-tree [24]
to support historical queries, and for the TPR-tree [28] to
support future queries.

6. CONCLUSIONS

Location-aware services are characterized by the large
number of mobile and stationary objects, and by the large
number of continuous concurrent queries. In this paper,
we address the problem of scalability of location-aware ser-
vices as part of the Pervasive Location-Aware Computing

(b) Abstraction of moving circular range queries (<) Abstraction of rectangular moving range queries



Environments (PLACE) project at Purdue University. By
scalability, we mean the ability of a location-aware server to
provide real-time responses to a large number of continuous
concurrent spatio-temporal queries. We propose the shar-
ing concept as a means for achieving scalability in location-
aware servers. Several types of sharing are introduced that
are specific to the spatio-temporal domain. Location-aware
servers can also utilize the state-of-the-art sharing concepts
from other environments (e.g., web continuous queries [9]
and streaming continuous queries [7]). Research issues and
challenges toward achieving a scalable location-aware server
are discussed.
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