
Continuous Query Processing of Spatio-temporal Data

Streams in PLACE

Mohamed F. Mokbel, Xiaopeng Xiong, Moustafa A. Hammad1, and
Walid G. Aref ∗

Department of Computer Science, Purdue University, West Lafayette, IN
E-mail:{mokbel,xxiong,aref}@cs.purdue.edu
1Department of Computer Science, University of Calgary, Calgary, Alberta
E-mail:hammad@cpsc.ucalgary.ca

Abstract. The tremendous increase in the use of cellular phones, GPS-like devices,
and RFIDs results in highly dynamic environments where objects as well as queries
are continuously moving. In this paper, we present a continuous query processor
designed specifically for highly dynamic environments (e.g., location-aware environ-
ments). We implemented the proposed continuous query processor inside the PLACE
server (Pervasive Location-Aware Computing Environments); a scalable location-
aware database server developed at Purdue University. The PLACE server extends
data streaming management systems to support location-aware environments. These
environments are characterized by the wide variety of continuous spatio-temporal
queries and the unbounded spatio-temporal streams. The proposed continuous query
processor includes: (1) New incremental spatio-temporal operators to support a wide
variety of continuous spatio-temporal queries, (2) Extended semantics of sliding
window queries to deal with spatial sliding windows as well as temporal sliding
windows, and (3) A shared-execution framework for scalable execution of a set
of concurrent continuous spatio-temporal queries. Experimental evaluation shows
promising performance of the continuous query processor of the PLACE server.

Keywords: Spatio-temporal databases, continuous queries, data stream manage-
ment systems, location-aware services.

1. Introduction

The rapid increase in spatio-temporal applications calls for new query
processing techniques to deal with both the spatial and temporal do-
mains. Examples of these applications include location-aware services,
traffic monitoring, and enhanced 911 service. Such applications con-
tinuously receive data from mobile objects (e.g., moving vehicles in
road networks). The streaming nature of incoming spatio-temporal
data poses new challenges that require combining and/or modifying
the recent advances in both spatio-temporal database systems and data
stream management systems.

∗ This work was supported in part by the National Science Foundation under
Grants IIS-0093116, IIS-0209120, and 0010044-CCR.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

PLACEJournal3.tex; 6/12/2004; 19:04; p.1



2

Recent research efforts for continuous spatio-temporal query pro-
cessing, e.g., see (Hadjieleftheriou et al., 2003; Iwerks et al., 2003; Kwon
et al., 2002; Lazaridis et al., 2002; Lee et al., 2003; Mokbel et al.,
2004a; Prabhakar et al., 2002; Saltenis et al., 2000; Tao et al., 2002; Tao
et al., 2003a) rely mainly on the ability of storing and indexing spatio-
temporal data. Given the dynamic environment of spatio-temporal
applications, the main idea is to modify traditional data indices to sup-
port frequent updates. Examples of these indices include modified grid
structures, e.g., (Gedik and Liu, 2004; Mokbel et al., 2004a), modified
B-trees, e.g., (Jensen et al., 2004), modified R-trees, e.g., (Kwon et al.,
2002; Lee et al., 2003), and time-parameterized R-trees, e.g., (Saltenis
and Jensen, 2002; Saltenis et al., 2000; Tao et al., 2003a). Although
these indexing schemes give better support for updates than their coun-
terpart traditional indices, issues of high arrival rates of both objects
and queries, infinite source of data, and spatio-temporal streams are
overlooked by these approaches. With the notion of spatio-temporal
streams, only in-memory algorithms for continuous queries need to be
realized.

Numerous research efforts are devoted to stream query process-
ing (e.g., see (Arasu et al., 2004; Abadi et al., 2003; Chandrasekaran
et al., 2003; Cranor et al., 2003; Hammad et al., 2004; Motwani et al.,
2003; Yao and Gehrke, 2002)). The main focus is to provide the ability
to process incoming data streams online against a set of outstanding
and continuous queries. However, the spatial and temporal properties
of both data and queries are overlooked. A spatio-temporal data stream
distinguishes itself from a traditional data stream in the following:
(1) Queries as well as data have the ability to change their locations
continuously. Thus, the arrival of a new data item (e.g., the location)
of an object, say p, at some time t2 (t2 > t1) may result in expiring the
previous location information of p at time t1 (predicate-based sliding
window). This is in contrast to traditional data streams where data is
expired only as it becomes old in the system (time-based expiration in
sliding window queries). (2) An object may be added to or removed
from the answer set of a spatio-temporal query (positive and negative

answers). For example, consider a set of moving vehicles that move
in and out of a certain range query. Thus the query answer may be
represented progressively by a sequence of positive and negative updates.
This is in contrast to traditional queries where only an addition to the
query answer is permitted. (3) Due to the mobility of both objects and
queries, any delay in processing spatio-temporal queries may result in
an obsolete answer. Consider a query that asks about moving objects
that lie in a certain region. If the query answer is delayed, the answer
may be outdated where objects are continuously changing their loca-

PLACEJournal3.tex; 6/12/2004; 19:04; p.2



3

tions. These distinguishing characteristics of spatio-temporal streams
require revisiting traditional data stream management systems to have
special handling of spatio-temporal streams.

In this paper, we present the PLACE server (Pervasive Location-
Aware Computing Environments) (Aref et al., 2003; Mokbel et al.,
2004b); a scalable location-aware database server currently being
developed at Purdue University. The PLACE server extends the
Nile (Hammad et al., 2004) data stream management system to support
continuous query processing of spatio-temporal streams. The PLACE
server aims to bridge the areas of spatio-temporal databases and data
stream management systems. The main idea is to furnish traditional
data stream management systems with the basic functionalities that
support processing incoming spatio-temporal streams against a set of
outstanding continuous spatio-temporal queries. In particular, the con-
tinuous query processor of the PLACE server (Mokbel et al., 2004c)
has the following distinguishing characteristics:

1. Predicate-based window queries: The PLACE continuous
query processor extends the processing of continuous sliding win-
dow queries beyond time-based and tuple-count windows to ac-
commodate for the so called predicate-based window queries. In
predicate-based window queries, objects are qualified to be part of
the window once they satisfy a certain query predicate. Similarly,
objects are expired only when they no longer satisfy a certain pred-
icate. Predicate-based windows are a generalization of time-based
and tuple-count sliding windows.

2. Incremental evaluation. The PLACE continuous query proces-
sor employs an incremental evaluation paradigm by continuously
updating the query answer. We distinguish between two types of up-
dates; namely positive and negative updates (Mokbel et al., 2004a).
A positive/negative update indicates that a certain object needs to
be added to/removed from the query answer.

3. Spatio-temporal operators. The PLACE continuous query pro-
cessor goes beyond the idea of implementing high level algorithms
for continuous spatio-temporal queries. Instead, the PLACE server
encapsulates the spatio-temporal query algorithms into a set of
primitive spatio-temporal pipelined operators (e.g., INSIDE and
kNN operators) that can be part of a larger query plan. Having a
set of primitive spatio-temporal operators results in supporting a
wide variety of continuous spatio-temporal queries and in having
flexible query optimizers where multiple candidate query plans can
be produced.

PLACEJournal3.tex; 6/12/2004; 19:04; p.3



4

4. Scalability. We use a shared-execution paradigm as a means
of achieving scalability in terms of the number of outstanding
continuous spatio-temporal queries.

The rest of the paper is organized as follows. Section 2 highlights the
challenges in realizing the continuous query processor of the PLACE
server along with the related work of each challenge. In Section 3, we
present an overview of the data model and SQL language used by the
PLACE server. Section 4 presents predicate-based window queries. The
incremental evaluation of the PLACE server is discussed in Section 5.
The scalability in terms of the number of outstanding spatio-temporal
queries is addressed in Section 6. The GUI interfaces for the PLACE
server and PLACE clients are presented in Section 7. Section 8 presents
experimental results that evaluate the performance of the PLACE
server. Section 9 highlights the basic features of the Nile data stream
query processor in which the PLACE continuous query processor is
based on. Finally, Section 10 concludes the paper.

2. Challenges and Related Work

In this section, we highlight some challenges in realizing the continuous
query processor of the PLACE location-aware server. With each chal-
lenge, we summarize the related work in the areas of spatio-temporal
databases and data streams. Then, we highlight briefly how the PLACE
continuous query processor deals with these challenges.

2.1. Challenge I: Massive Size of Incoming Spatio-temporal
Data Streams

Spatio-temporal databases. Existing continuous query processors
for spatio-temporal databases assume explicitly that all incoming data
can be stored in secondary storage. A wide variety of spatio-temporal
access methods (e.g., see (Mokbel et al., 2003b) for a survey) has
been introduced to deal with massive sizes of spatio-temporal data.
However, with the streaming input, only in-memory algorithms are
feasible. There is limited work that exploits the spatial and/or temporal
properties of data streams. The spatial properties of data streams are
addressed recently in (Cormode and Muthukrishnan, 2003; Hershberger
and Suri, 2004) to solve geometric problems, e.g., computing the convex
hull (Hershberger and Suri, 2004). In (Sun et al., 2004), spatio-temporal
histograms are used as synopses for approximate query processing on
spatio-temporal data streams. Up to the authors’ knowledge, there

PLACEJournal3.tex; 6/12/2004; 19:04; p.4



5

is no existing work that addresses continuous query processing for
spatio-temporal streams.
Data stream management systems. A common challenge for all
data stream management systems is the infinite size of the incoming
data streams. With the inability to store all the incoming data into
memory, data stream management systems tend to store only data that
is of interest to any outstanding continuous query. Once a stored data
becomes out of interest of all outstanding queries, it is expired from the
memory leaving its space to a more important incoming tuple. One ap-
proach of expiring in-memory data is to use punctuation (Tucker et al.,
2003). A punctuated tuple indicates the expiration of a certain set of
stored tuples. To decide whether a certain incoming tuple is important
or not, every continuous query is associated with a historical window
that limits the important tuples to the most recent ones. A historical

window could be time-based (e.g., the last 1 hour) or tuple-based (e.g.,
the last 100 tuples). Such queries are termed sliding-window queries
(e.g., see (Arasu et al., 2004; Babu and Widom, 2001; Chandrasekaran
et al., 2003; Golab et al., 2004; Hammad et al., 2003b; Kang et al.,
2003; Madden et al., 2002; Srivastava and Widom, 2004)). In sliding-

window queries, tuples are dropped (expired) from the system in a
first-in-first-expire policy. In case of large window sizes, load shedding

techniques, e.g., (Babcock et al., 2003; Babcock et al., 2004; Tatbul
et al., 2003) are utilized to drop some tuples from memory.
The PLACE approach. Trying to deploy the idea of sliding-window

queries from traditional data streams would result in limiting the
functionality of the PLACE server. A wide variety of continuous spatio-
temporal queries are considered as NOW queries (Clifford et al., 1997)
(i.e., no historical information is needed). Thus, in the PLACE server,
we generalize the time-based and tuple-based sliding window queries
to predicate-based window queries. A tuple is considered important if
it satisfies at least one query predicate from all outstanding contin-
uous queries. Once a tuple no longer satisfies any query predicate,
it is expired from the server. This implies that tuple expiration is
predicate-based rather than first-in-first-expire as in the commonly
used time-based or tuple-count data streams. Expiration in predicate-

based window queries is different from punctuated streams (Tucker et al.,
2003) in that tuples in predicate-based windows are expired one at a
time, rather than expiring a set of tuples using a certain punctuated

tuple.

PLACEJournal3.tex; 6/12/2004; 19:04; p.5



6

2.2. Challenge II: Continuous Evaluation of Continuous
Queries

Spatio-temporal databases. Most of the existing techniques in
spatio-temporal databases abstract the continuous query into a se-
ries of snapshot queries executed at regular interval times. Mainly,
three different approaches are investigated: (1) The validity of the
results (Zhang et al., 2003; Zheng and Lee, 2001). With each query
answer, the server returns a valid time (Zheng and Lee, 2001) or a
valid region (Zhang et al., 2003) of the answer. Once the valid time is
expired or the client goes out of the valid region, the client resubmits
the continuous query for reevaluation. (2) Caching the results. The
main idea is to cache the previous result either in the client side (Song
and Roussopoulos, 2001) or in the server side (Lazaridis et al., 2002).
Previously cached results are used to prune the search for the new
results of k-nearest-neighbor queries (Song and Roussopoulos, 2001)
and range queries (Lazaridis et al., 2002). (3) Precomputing the re-
sult (Lazaridis et al., 2002; Tao et al., 2002). If the trajectory of query
movement is known apriori, then by using computational geometry for
stationary objects (Tao et al., 2002) or velocity information for moving
objects (Lazaridis et al., 2002), we can identify which objects will be
nearest-neighbors (Tao et al., 2002) to or within a range (Lazaridis
et al., 2002) from the query trajectory. If the trajectory information
changes, then the query needs to be reevaluated. Up to the authors’
knowledge, our earlier work, SINA (Mokbel et al., 2004a), is the only
work that addresses incremental evaluation of continuous queries in
spatio-temporal databases.
Data stream management systems. Due to the newly intro-
duced sliding-window queries, several algorithms are proposed for each
query operator, e.g., window join (Golab et al., 2004; Hammad et al.,
2003a; Hammad et al., 2003b; Kang et al., 2003; Srivastava and Widom,
2004) and window aggregates (Arasu and Widom, 2004; Datar et al.,
2002). All window algorithms for traditional data streaming provide
progressive updates of the query answer.
The PLACE approach. A distinguished characteristic of spatio-
temporal streams is that we need to have the ability to remove some
parts of the query answer (e.g., an object moves out of the range query).
This feature is not available in traditional data streams where the query
answer is append-only. In the PLACE server, we apply a progressive
evaluation paradigm by extending the ideas of SINA (Mokbel et al.,
2004a) to be applicable to spatio-temporal streams rather than being
tied to disk storage.

PLACEJournal3.tex; 6/12/2004; 19:04; p.6



7

2.3. Challenge III: Wide Variety of Continuous Query
Types

Spatio-temporal databases. A major challenge for spatio-temporal
query processors is the wide variety of spatio-temporal query types
(e.g., see (Mokbel et al., 2003a) for a thorough classification of spatio-
temporal queries). Thus, it becomes a difficult task to provide a
database system with the ability to support all kinds of spatio-temporal
queries. The DOMINO database system (Wolfson et al., 2002; Wolfson
et al., 1999) is the first attempt to build a database of moving objects
on top of existing DBMSs (Wolfson et al., 1998). One main focus of
DOMINO is to support new kinds of spatio-temporal attributes and
query language for moving objects. However, the query processing is-
sues are not addressed. Other than DOMINO, most of the existing
query processing techniques focus on solving special cases of continu-
ous spatio-temporal queries, e.g., (Song and Roussopoulos, 2001; Tao
et al., 2002; Zhang et al., 2003; Zheng and Lee, 2001) focus on moving

queries on stationary objects while (Cai et al., 2004; Gedik and Liu,
2004; Hadjieleftheriou et al., 2003; Prabhakar et al., 2002) focus on
stationary range queries on moving objects. Other work focuses on
aggregate queries (e.g., see (Hadjieleftheriou et al., 2003; Sun et al.,
2004; Tao et al., 2004)), k-NN queries (e.g., see (Iwerks et al., 2003; Song
and Roussopoulos, 2001)) and reverse nearest-neighbor queries (Benetis
et al., 2002).
Data stream management systems. Existing data stream man-
agement systems (e.g., Aurora (Abadi et al., 2003), Telegraph (Chan-
drasekaran et al., 2003), Gigascope (Cranor et al., 2003), Nile (Hammad
et al., 2004), STREAM (Motwani et al., 2003), and Cougar (Yao
and Gehrke, 2002)) provide new algorithms for (almost) all tradi-
tional query operators. However, there is no special handling and/or
optimization for spatio-temporal queries.
The PLACE approach. In the PLACE server, we go beyond the
idea of having tailored high-level algorithms for each specific spatio-
temporal query. Instead, we furnish existing data stream management
systems by a set of primitive spatio-temporal pipeline operators (e.g.,
the INSIDE and kNN operators). Spatio-temporal operators are com-
bined with traditional streaming operators to provide the ability of
having complex query plans that represent a wide variety of continu-
ous spatio-temporal queries. In addition, the PLACE server provides a
uniform framework that is applicable to all mutability combinations
of objects and queries, e.g., moving queries on stationary objects,
stationary queries on moving objects, and moving queries on moving

objects.

PLACEJournal3.tex; 6/12/2004; 19:04; p.7



8

2.4. Challenge IV: Large Number of Concurrent
Continuous Queries

Spatio-temporal databases. Most of the existing spatio-temporal
algorithms focus on evaluating only one spatio-temporal query
(e.g., (Benetis et al., 2002; Iwerks et al., 2003; Lazaridis et al.,
2002; Song and Roussopoulos, 2001; Tao et al., 2002; Tao et al.,
2003b; Zhang et al., 2003; Zheng and Lee, 2001)). Optimization tech-
niques for evaluating a set of continuous spatio-temporal queries are
addressed recently for centralized (Mokbel et al., 2004a; Prabhakar
et al., 2002) and distributed environments (Cai et al., 2004; Gedik
and Liu, 2004). In centralized environments, the Q-index (Prabhakar
et al., 2002) is presented as an R-tree-like index structure to index
the stationary queries instead of objects. SINA (Mokbel et al., 2004a)
uses a shared grid structure to index both objects and queries. Then,
evaluating a set of continuous queries is abstracted as a spatial join
(using the grid index) between objects and queries. In distributed en-
vironments, the main idea of (Cai et al., 2004; Gedik and Liu, 2004) is
to ship part of the query processing down to the moving objects, while
the server acts mainly as a mediator among moving objects.
Data stream management systems. There is a lot of research
in sharing the execution of concurrent continuous queries (e.g., Ni-
agaraCQ (Chen et al., 2002; Chen et al., 2000) and PSoup (Chan-
drasekaran and Franklin, 2002; Chandrasekaran and Franklin, 2003)).
The main idea is to have a shared query plan for all continuous queries.
Other forms of sharing at the operator level are investigated, for win-
dow join (Golab and Ozsu, 2003; Hammad et al., 2003b) and window
aggregate operators (Arasu and Widom, 2004).
The PLACE approach. In the PLACE server, we employ a shared-

execution paradigm similar to that in NiagaraCQ (Chen et al., 2000)
and SINA (Mokbel et al., 2004b). The execution of a set of concurrent
continuous spatio-temporal queries is performed as a spatial join be-
tween two incoming streams. The first stream represents the streaming
objects while the second stream represents the streaming queries.

3. The PLACE Server

In this section, we present the data modelling and SQL language used
by the PLACE server.

PLACEJournal3.tex; 6/12/2004; 19:04; p.8



9

3.1. Data Model

By subscribing with the PLACE server, moving objects are required
to send their location updates periodically to the PLACE server. A
location update from the client (moving object) to the server has the
format (OID, x, y), where OID is the object identifier, (x, y) is the
location of the moving object in the two-dimensional space. An update
is timestamped upon its arrival at the server side. Once an object stops
moving (e.g., an object reaches its destination or the cellular phone is
shut down) it sends to the server a disappear message that indicates
that the object is no further moving.

Due to the highly dynamic nature of location-aware environments
and the infinite size of incoming spatio-temporal streams, we cannot
store all incoming data. Thus, the PLACE server employs a three-
level storage hierarchy. First, a subset of the incoming data streams is
stored in in-memory buffers. In-memory buffers are associated with the
outstanding continuous queries at the server. Each query determines
which tuples are needed to be in its buffer and when these tuples are
expired, i.e., deleted from the buffer. Second, we keep an in-disk storage
that keeps track with only one reading of each moving object and
query. Since, we cannot update the disk storage every time we receive
an update from moving objects, we sample the input data by chosing
every kth reading to flush to disk. Moreover, we cache the readings of
moving objects/queries and flush them once to the secondary storage
every T time units. Data on the secondary storage are indexed using
a simple grid structure (Mokbel et al., 2004a). Third, every Tarchive

time units, we take a snapshot of the in-disk database and flush it to a
repository server. The repository server acts as a multi-version struc-
ture of the moving objects that supports historical queries. Stationary
objects (e.g., gas stations, hospitals, restaurants) are preloaded to the
system as relational tables that are infrequently updated.

3.2. Extended SQL Syntax

As the PLACE server (Mokbel et al., 2004b) extends both PREDA-
TOR (Seshadri, 1998) and NILE (Hammad et al., 2004), we extend the
SQL language provided by both systems to support spatio-temporal
operators. Mainly, we add the INSIDE and kNN operators to support
continuous range queries and k-nearest-neighbor queries respectively.
A continuous query is registered at the PLACE server using the SQL:

REGISTER QUERY query name AS

SELECT select clause

FROM from clause

PLACEJournal3.tex; 6/12/2004; 19:04; p.9



10

WHERE where clause

INSIDE inside clause

kNN knn clause

WINDOW window clause

The REGISTER QUERY statement registers the continuous query
at the PLACE server with the query name as its identifier. The
select clause, from clause, and where clause are inherited from the
PREDATOR (Seshadri, 1998) database management statement.
The window clause is inherited from the NILE (Hammad et al.,
2004) stream query processor to support continuous sliding window
queries (Hammad et al., 2003b). A continuous query is dropped form
the system using the SQL DROP QUERY query name.

The inside clause may represent stationary/moving rectangular or
circular range queries. Moving queries are tied to focal objects. As the
focal object reports movement update to the server, we update the
query region. One focal object may issue several queries. A rectangular
range query can have one of the following two forms:

− Static range query (x1, y1, x2, y2), where (x1, y1) and (x2, y2) repre-
sent the top left and bottom right corners of the rectangular range
query.

− Moving rectangular range query (′M ′, ID, xdist, ydist), where ′M ′

is a flag to indicate that the query is moving, ID is the identifier
of the query focal point, and xdist and ydist are the length and
width of the query rectangle.

A circular range query has the same syntax except that we define
only the radius instead of (x, y). Similarly, the knn clause for continuous
k-nearest-neighbor queries may have one of the following two forms:

− Static kNN query (k, x, y), where k is the number of the neighbors
to be maintained, and (x, y) is the center of the query point.

− Moving kNN query (′M ′, k, ID), where ′M ′ is a flag to indicate
that the query is moving, k is the number of neighbors to be
maintained, and ID is the identifier of the query focal point.

4. Predicate-based Sliding Windows

With the unbounded incoming spatio-temporal streams, it becomes
infeasible to store all incoming tuples. However, some input tuples may

PLACEJournal3.tex; 6/12/2004; 19:04; p.10



11

be buffered in memory for a limited time. The choice of the stored tuples
is mainly query dependent, i.e., we store only the tuples that are of
interest to any outstanding continuous query. In addition, there should
be a mechanism to expire (delete) some of the stored tuples and replace
them with other tuples that become more relevant to the outstanding
continuous queries. The PLACE server employs a predicate-based win-
dow policy, where each query is associated with a certain predicate.
Only tuples that satisfy at least one query predicate are stored in
memory. Based on predicate-based window queries, the PLACE server
supports three types of tuple expiration, namely, temporal expiration
(sliding-window queries), spatial expiration, and predicate-based expi-
ration. Data expiration in punctuated streams (Tucker et al., 2003) can
be represented as a special case of predicate-based expiration.

4.1. Temporal Expiration

Temporal expiration is used commonly to support continuous sliding-
window queries in data streams. A sliding window query involves a
historical time window w. Any object that has a timestamp within
the current sliding window of any outstanding query Q is buffered in-
memory with the associated buffer of Q. Stored tuples follow strictly a
first-in-first-expire policy.

An example for a historical sliding window query submitted to the
PLACE server is: Q1: “Continuously, report the number of cars that

passed by region R in the last hour”.

SELECT COUNT(ObjectID)
FROM MovingObjects
WHERE type = Car

INSIDE R

WINDOW 1 hour

Notice that Q1 buffers all incoming tuples during the previous hour.
A tuple is expired (i.e., deleted from the query buffer) once it goes out
of the sliding time window (i.e., when the car tuple becomes more than
one hour old).

4.2. Spatial Expiration

NOW queries are more common in spatio-temporal data stream appli-
cations than historical queries. For example, monitoring applications
are concerned with the actual current answer not the accumulated
historical one. Such applications cannot be realized using only temporal
expiration. Thus, the PLACE server introduces a new type of expiration
that depends on the spatial location of the moving objects instead of

PLACEJournal3.tex; 6/12/2004; 19:04; p.11



12

Answer = (P  , P  , P  )
Spatial Query Answer = (P  , P  , P  )

Temporal Query Answer = (P  , P  , P  )

P
re

di
ca

te
 w

in
do

w

Time window

P
re

di
ca

te
 w

in
do

w

Time Time
Time window

Predicate Predicate

P

P1

P

P3

4
P

4

2

P

P5

1

2

w

(b) Snapshot at time T1

T

3P

(a) Snapshot at time T0

P
w

wT

P

3

P

w

4 53

51 4
3 51

P

5

P

Figure 1. Temporal and spatial expiration.

their timestamps. An incoming tuple, say o, is stored in the in-memory
buffer associated with a query Q only if o satisfies the spatial window
(e.g., region) of Q. A stored tuple is expired only when it steps out of
the spatial window.

An example of a spatial expiration query is: Q2: “Continuously,

report the number of cars in a certain area.” Notice that unlike Q1, in
Q2, we are concerned about the actual current number of cars not the
number of cars in the recent history. The SQL of Q2 is similar to that
of Q1 with only the removal of the window statement.

Figure 1 gives the difference between a temporal-expiration and
a spatial-expiration in a range query. Figure 1a gives a snapshot of
the database at time T0. The vertical bold line represents the spatial
predicate window in the one-dimensional space (along the y axis). The
shaded rectangular area represents the temporal window along the time
dimension (the x axis). A query with a temporal window is interested
in objects that lie in the shaded area while a query with a spatial
window is interested in the actual objects that lie in the spatial region
regardless of their timestamps. The answer to both the temporal and
spatial window queries at time T0 is (P1, P3, P5). Figure 1b gives a
snapshot of the database at time T1. Only objects P3 and P4 change
their locations (the new locations are plotted as white circle while the
old location of P3 is plotted as a gray circle). For the temporal query,
although P1 still satisfies the query spatial predicate, P1 is discarded
from the server. Also, although P3 becomes out of the query predicate,
the old value of P3 has not yet expired. Thus, the temporal query
answer at T1 would be (P3, P4, P5). However, the answer of the spatial
window query would be (P1, P4, P5).

4.3. Predicate-based Expiration

Predicate-based expiration generalizes both the temporal- and spatial-
based expiration methods. An incoming tuple is stored in-memory only

PLACEJournal3.tex; 6/12/2004; 19:04; p.12



13

when it satisfies a certain query predicate. A predicate could be as
simple as a temporal or a spatial predicate. Due to the nature of spatio-
temporal streams, other forms of predicates may arise. For example,
consider the query Q3: “For each moving object, continuously report

the elapsed time between each two consecutive readings”. Such a query
contains a self-join where objects from the stream of moving objects
are self-joined based on the object identifier. The query buffer needs
to maintain only the latest reading of each moving object. Once the
reading of a certain object is reported, the previous reading is expired.
Punctuation-based expiration (Tucker et al., 2003) can be considered
as a special case of predicate-based when we consider the predicate as
the arrival of a certain artificial tuple (the punctuated tuple).

5. Incremental Evaluation

To avoid reevaluating continuous spatio-temporal queries, we employ
an incremental evaluation paradigm in the PLACE continuous query
processor. The main idea is to only report the changes of the answer
from the last evaluation time. By employing incremental evaluation,
the PLACE server achieves the following goals: (1) Fast query evalua-
tion, since we compute only the updates of the answer not the whole
answer. (2) In a typical location-aware server, query results are sent to
the users via satellite servers (Acharya et al., 1996; Hambrusch et al.,
2001). Thus, limiting the amount of transmitted data to the updates
only rather than the whole query answer saves in network bandwidth.
(3) When encapsulating incremental algorithms into physical pipelined
query operators, limiting the tuples that go through the whole query
pipeline to only the updates reduces the flow in the pipeline. Thus,
efficient query processing is achieved.

To realize the incremental evaluation processing in the PLACE
server, we go through three main steps. First, we define the high
level concept of incremental updates, by defining two types of updates;
positive and negative updates (Mokbel, 2004; Mokbel et al., 2004a).
Second, we encapsulate the processing of incremental algorithms into
pipelined query operators. Third, we modify traditional pipelined query
operators (e.g., distinct and join) to deal with the concept of negative
tuples (Hammad et al., 2003c).

5.1. Positive/Negative Updates

Incremental evaluation is achieved through updating the previous query
answer. Mainly, we distinguish between two types of updates; positive

PLACEJournal3.tex; 6/12/2004; 19:04; p.13



14

X

Y

X

Y

(b) Snapshot at time T1

8P
7P

2P

0(a) Snapshot at time T

Q

7P6P

5P
1P

2P

8P

9P

5Q

3Q

4Q 4P

1

3

P

Q

2Q2Q

1P
5P

1Q

6P

4Q
3P

4P 5Q
9P

3

Figure 2. Incremental evaluation of range queries

updates and negative updates. A positive/negative update indicates
that a certain object needs to be added to/removed from the query
answer. A query answer is represented in the form (QID,OList), where
QID is the query identifier and OList is the query answer. The PLACE
server continuously updates the query answer with updates of the form
(QID,±, OID) where ± indicates the type of the update and OID is
the object identifier.

Figure 2 gives an example of applying the concept of posi-
tive/negative updates on a set of continuous range queries. The
snapshot of the database at time T0 is given in Figure 2a with nine
moving objects, p1 to p9, and five continuous range queries, Q1 to Q5.
The answer of the queries at time T0 is represented as (Q1, P5), (Q2, P1),
(Q3, P6, P7), (Q4, P3, P4), and (Q5, P9). At time T1 (Figure 2b), only the
objects p1, p2, p3, and p4 and the queries Q1, Q3, and Q5 change their
locations. As a result, the PLACE server reports the following updates:
(Q1,−P5), (Q3,−P6), (Q3,+P8), and (Q4,−p4).

5.2. Spatio-temporal Incremental Pipelined Operators

Two alternative approaches can be utilized in implementing spatio-
temporal algorithms inside the PLACE server: using SQL table func-

tions (Reinwald and Pirahesh, 1998) or by encapsulating the algorithms
in physical query operators. Since there is no straightforward method
for pushing query predicates into table functions (Reinwald et al.,
1999), the performances is limited and the approach does not give
enough flexibility in optimizing the issued queries. In the PLACE server
we encapsulate our algorithms inside physical pipelined query opera-
tors that can be part of a query execution plan. By having pipelined
query operators, we achieve three goals: (1) Spatio-temporal operators
can be combined with other operators (e.g., distinct, aggregate, and
join operators) to support incremental evaluation for a wide variety of
continuous spatio-temporal queries. (2) Pushing spatio-temporal oper-
ators deep in the query execution plan reduces the number of tuples

PLACEJournal3.tex; 6/12/2004; 19:04; p.14



15

Q1 Q2

R1
R2

Q2Q1
Select ID Where

location inside R1

Select ID Where

location inside R2

File Scan File Scan File Scan File Scan

Spatial
Join

Moving Objects Moving Objects Moving Objects Moving Queries

(a) Local query plan for two range queries (b) A global shared plan for two range queries

Figure 3. Shared-execution of continuous queries.

in the query pipeline. This reduction comes from the fact that spatio-
temporal operators act as filters to the above operators. (3) Flexibility
in the query optimizer where multiple candidate execution plans can
be produced.

The main idea of spatio-temporal operators is to keep track of the
recently reported answer of each query Q in a query buffer termed
Q.Answer. Then, for each newly incoming tuple P , we perform two
tests: Test I: Is P part of the previously reported Q.Answer? Test II:
Does P qualify to be part of the current answer? Based on the results
of the two tests, we distinguish among four cases:

− Case I: P is part of Q.Answer and P still qualify to be part of the
current answer. As we process only the updates of the previously
reported result, P will not be processed.

− Case II: P is part of Q.Answer, however, P does not qualify to
be part of the answer anymore. In this case, we report a nega-

tive update P− to the above query operator. The negative update
indicates that P is spatially expired from the answer.

− Case III: P is not part of Q.Answer, however, P qualifies to be
part of the current answer. In this case, we report a positive update
to the above query operator.

− Case IV: P is not part of Q.Answer and P still does not qualify
to be part of the current answer. In this case, P has no effect on
Q.

6. Scalability

The PLACE continuous query processor exploits a shared-execution

paradigm (Mokbel et al., 2003a; Mokbel et al., 2004a; Xiong et al.,

PLACEJournal3.tex; 6/12/2004; 19:04; p.15



16

Figure 4. Server GUI.

2004) as a means for achieving scalability in terms of the number of
concurrently executing continuous spatio-temporal queries. The main
idea is to group similar queries in a query table. Then, the evaluation
of a set of continuous queries is modelled as a spatial join between mov-
ing objects and moving queries. Similar ideas of shared-execution have
been exploited in the NiagaraCQ (Chen et al., 2000) for web queries
and PSoup (Chandrasekaran and Franklin, 2002; Chandrasekaran and
Franklin, 2003) for streaming queries.

Figure 3a gives the execution plans of two simple continuous spatio-
temporal queries, Q1: “Find the objects inside region R1”, and Q2:
“Find the objects inside region R2”. With shared-execution, we have
the execution plan of Figure 3b. Shared-execution for a collection of
spatio-temporal range queries can be expressed in the PLACE server
by issuing the following continuous query:

SELECT Q.ID, O.ID
FROM QueryTable Q, ObjectTable O
WHERE O.location inside Q.region

PLACEJournal3.tex; 6/12/2004; 19:04; p.16



17

Figure 5. Client GUI.

7. User interface in PLACE

Figures 4 and 5 give snapshots of the server and client graphical user
interface (GUI) of PLACE, respectively. The server GUI displays all
moving objects on the map1. The client GUI simulates a client end-
device used by the users. Users can choose the type of query from
a list of available query types (stationary/moving queries and station-
ary/moving k-nearest-neighbor queries). The spatial region of the query
can be determined using the map of the area of interest. By pressing
the submit button, the client translates the query into SQL language
and transmits it to the PLACE server. The result appears both in the
list of Figure 5 and as moving objects on the map. A client can see
only, on its map, the objects that belong to its issued query.

8. Performance Evaluation

In this section, we present experiments that show the promising per-
formance of the continuous query processor in the PLACE server. We
use the Network-based Generator of Moving Objects (Brinkhoff, 2002)
to generate a set of 100K moving objects and 100K moving queries.

1 The map in Figures 4 and 5 is for the Greater Lafayette area, Indiana, USA.

PLACEJournal3.tex; 6/12/2004; 19:04; p.17



18

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10

A
n
s
w
e
r
 
S
i
z
e
 
(
K
B
y
t
e
s
)

Update rate for objects (%)

Incremental Evaluation
Complete answer

A.
0

200

400

600

800

1000

1200

1400

1600

1 1.2 1.4 1.6 1.8 2

A
n
s
w
e
r
 
S
i
z
e
 
(
K
B
y
t
e
s
)

Query side length (x0.01)

Incremental Evaluation
Complete answer

B. .
Figure 6. A) Moving objects (%). B) Query size

The output of the generator is a set of moving objects that move on
the road network of a given city. We choose some points randomly and
consider them as centers of square range queries.

8.1. Size of Incremental Answer

Figure 6 compares between the size of the incremental answer returned
by utilizing the incremental approach and the size of the complete
answer. The location-aware server buffers the received updates from
moving objects and queries and evaluates the queries every 5 seconds.
Figure 6a gives the effect of the number of moving objects that reported
a change of location within the last 5 seconds. The size of the complete
answer is constant and is orders of magnitude of the size of the worst-
case incremental answer. In Figure 6b, the query side length varies from
0.01 to 0.02. The size of the complete answer increases dramatically to
up to seven times that of the incremental result. The saving in the
answer size affects directly the communication cost from the server to
the clients.

8.2. Pipelined Spatio-temporal Operators

In this section, we compare the implementation of spatio-temporal
algorithms at the application-level (e.g., table functions) with the
encapsulation of the spatio-temporal algorithms inside query operators.

8.2.1. Pipeline with a Select Operator

Consider the query Q:“Continuously report all trucks that are within

MyArea”. MyArea can be either a stationary or moving range query. A
high-level implementation of this query has only a selection operator
that selects only the “trucks”. Then, a high-level algorithm implemen-
tation would take the selection output and produce incrementally the
query result. However, an encapsulation of the INSIDE algorithm into
a physical operator allows for more flexible plans.

PLACEJournal3.tex; 6/12/2004; 19:04; p.18



19

INSIDE

SELECT

FROM        MovingObjects

INSIDE     RegionR

MovingObjects

+/−

SELECT     ObjectID

A.
0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16 32 64

T
u
p
l
e
s
 
i
n
 
t
h
e
 
P
i
p
e
l
i
n
e

Query Selectivity

Stationary Pipelined Query
Moving Pipelined Query

Application level

B.
Figure 7. A. Query SQL and pipeline. B. Pipelined operator with Select.

COUNT

JOIN

INSIDE

+/−

MovingObjects

AvisCars

+/−

SELECT     COUNT(M.ObjectID)

FROM        MovingObjects M, AvisCars A

INSIDE     RegionR

WHERE     M.ObjectID = A.ObjectID

A.
0

500

1000

1500

2000

2500

3000

2 4 8 16 32 64

T
u
p
l
e
s
 
i
n
 
t
h
e
 
P
i
p
e
l
i
n
e

Query Selectivity

Stationary Pipelined Query
Moving Pipelined Query

Application Level

B.
Figure 8. A) Query SQL and pipeline. B) Pipelined operator with Join.

Figure 7 compares the high-level implementation of the above query
with pipelined operators for both stationary and moving queries. The
selectivity of the queries varies from 2% to 64%. The selectivity of the
selection operator is 5%. Our measure of comparison is the number
of tuples that go through the query evaluation pipeline. When algo-
rithms are implemented at the application level, the performance is
not affected by the selectivity. However, when INSIDE is pushed before
the selection, it acts as a filter for the query evaluation pipeline, thus,
limiting the tuples through the pipeline to only the incremental up-
dates. With INSIDE selectivity less than 32%, pushing INSIDE before
the selection affects the performance greatly.

8.2.2. Pipeline with a Join Operator

In this section, we consider a more complex query plan that contains
a join operator. Consider the query Q: “Continuously report moving

objects that belong to my favorite set of objects and lie within MyArea”.
A high-level implementation would probe a streaming database engine
to join all moving objects with my favorite set of objects. Then, the
output of the join is sent to the algorithm for further processing. How-
ever, with the INSIDE operator, we can have a query evaluation plan
as that of Figure 8a where the INSIDE operator is pushed below the
Join operator.

PLACEJournal3.tex; 6/12/2004; 19:04; p.19



20

Figure 8 compares the high-level implementation of the above query
with the pipelined INSIDE operator for both stationary and moving
queries. The selectivity of the queries varies from 2% to 64%. Unlike the
case of selection operators, there is a dramatic increase in performance
(around ten orders of magnitude) when INSIDE is implemented as a
pipelined operator. The main reason in this dramatic gain in perfor-
mance is the high overhead incurred when evaluating the join operation.
Thus, the INSIDE operator filters out the input tuples and limits the
input to the join operator to only the incremental positive and negative

updates.

9. Supporting Negative Tuples in Nile

The PLACE location-aware server is built by modifying and augment-
ing the Nile data stream management (Hammad et al., 2004) system
to support scalable execution of continuous queries, moving queries,
and spatio-temporal operators. The underlying Nile query processor
uses the negative tuple approach (Hammad et al., 2003c) to handle
continuous time-based sliding-window queries. The basic idea is to
introduce a new operator, termed W-Expire, that is responsible for
expiring old tuples. For each expired tuple T , the W-Expire operator
emits a negative tuple T− that has the same value as that of T , however
it is tagged with a negative sign. By having the W-Expire operator at
the bottom of the pipeline, all other operators do not need to be aware
of any timing issues of the incoming tuples.

Figure 9 gives a typical query pipeline in the Nile query processor.
Two incoming streams (A and B) are joined together. Then, the output
is joined with a relational table R. The output of the latter join is sent
to the DISTINCT and COUNT operators. Two W-Expire operators, one
for each stream, are used at the bottom of the pipeline plan. All the
above operators need to have the ability to recognize and process the
incoming negative tuples.

9.1. Negative Tuples in Traditional Operators

The Nile query processor (Hammad et al., 2004) modifies tradi-
tional stream operators to recognize and process the newly introduced
negative tuples. The modifications are mainly the following:

− Selection and Join operators handle negative tuples in the same
way as the regular positive tuples. The only difference is that the
output will be in the form of a negative tuple.

PLACEJournal3.tex; 6/12/2004; 19:04; p.20



21

W−Expire W−Expire

R

DISTINCT

COUNT

Stream A Stream B

+/− +/−

+/−

+/−

+/−

+ +

+

Figure 9. A query pipelined execution plan in the Nile stream query processor.

− Aggregates update their aggregate functions by considering the
received negative tuple.

− The Distinct operator reports a negative tuple at the output only if
the corresponding positive tuple is in the recently reported result.

For more detail about handling the negative tuples in various query
operators, the reader is referred to (Hammad et al., 2003c).

10. Conclusion

In this paper, we presented the continuous query processor of the
PLACE (Pervasive Location-Aware Computing Environments) server;
a database server for location-aware environments currently devel-
oped at Purdue University. The PLACE server extends both the
PREDATOR database management system and the NILE stream query
processor to deal with unbounded spatio-temporal streams. In addition
to the temporal tuple expiration defined in sliding-window queries,
we maintain other forms of tuple expirations (e.g., spatial expira-
tion). To efficiently handle large number of continuous queries, we
employ an incremental evaluation paradigm that contains: (1) Defining
the concept of positive and negative updates, (2) Encapsulating the
algorithms for incremental processing into pipelined spatio-temporal
operators, and (3) Modifying traditional query operators (e.g., distinct
and join) to deal with the negative updates that comes from the spatio-
temporal operators. Shared-execution is employed by the continuous
query processor as a means of achieving scalability in terms of the
number of concurrently continuous queries. Experimental results show
the promising performance of the PLACE continuous query processor.

PLACEJournal3.tex; 6/12/2004; 19:04; p.21



22

References

Abadi, D. J., D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M.
Stonebraker, N. Tatbul, and S. B. Zdonik: 2003, ‘Aurora: A New Model and
Architecture for Data Stream Management’. VLDB Journal 12(2).

Acharya, S., M. J. Franklin, and S. B. Zdonik: 1996, ‘Disseminating Updates on
Broadcast Disks’. In: Proceedings of the International Conference on Very Large
Data Bases, VLDB.

Arasu, A., B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,
U. Srivastava, and J. Widom: 2004, ‘STREAM: The Stanford Data Stream
Management System’.

Arasu, A. and J. Widom: 2004, ‘Resource Sharing in Continuous Sliding-Window
Aggregates’. In: Proceedings of the International Conference on Very Large Data
Bases, VLDB.

Aref, W. G., S. E. Hambrusch, and S. Prabhakar: 2003, ‘Pervasive Location Aware
Computing Environments (PLACE)’. http://www.cs.purdue.edu/place/.

Babcock, B., M. Datar, and R. Motwani: 2003, ‘Sampling from a moving window
over streaming data’. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, SODA.

Babcock, B., M. Datar, and R. Motwani: 2004, ‘Load Shedding for Aggregation
Queries over Data Streams’. In: Proceedings of the International Conference on
Data Engineering, ICDE.

Babu, S. and J. Widom: 2001, ‘Continuous Queries over Data Streams’. SIGMOD
Record 30(3).

Benetis, R., C. S. Jensen, G. Karciauskas, and S. Saltenis: 2002, ‘Nearest Neighbor
and Reverse Nearest Neighbor Queries for Moving Objects’. In: Proceedings of
the International Database Engineering and Applications Symposium, IDEAS.

Brinkhoff, T.: 2002, ‘A Framework for Generating Network-Based Moving Objects’.
GeoInformatica 6(2).

Cai, Y., K. A. Hua, and G. Cao: 2004, ‘Processing Range-Monitoring Queries on
Heterogeneous Mobile Objects’. In: Mobile Data Management, MDM.

Chandrasekaran, S., O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A. Shah:
2003, ‘TelegraphCQ: Continuous Dataflow Processing for an Uncertain World’.
In: Proceedings of the International Conference on Innovative Data Systems
Research, CIDR.

Chandrasekaran, S. and M. J. Franklin: 2002, ‘Streaming Queries over Streaming
Data’. In: Proceedings of the International Conference on Very Large Data Bases,
VLDB.

Chandrasekaran, S. and M. J. Franklin: 2003, ‘PSoup: a system for streaming queries
over streaming data’. VLDB Journal 12(2), 140–156.

Chen, J., D. J. DeWitt, and J. F. Naughton: 2002, ‘Design and Evaluation of Al-
ternative Selection Placement Strategies in Optimizing Continuous Queries’. In:
Proceedings of the International Conference on Data Engineering, ICDE.

Chen, J., D. J. DeWitt, F. Tian, and Y. Wang: 2000, ‘NiagaraCQ: A Scalable
Continuous Query System for Internet Databases’. In: Proceedings of the ACM
International Conference on Management of Data, SIGMOD.

Clifford, J., C. E. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass: 1997,
‘On the Semantics of “Now” in Databases’. ACM Transactions on Database
Systems , TODS 22(2).

PLACEJournal3.tex; 6/12/2004; 19:04; p.22



23

Cormode, G. and S. Muthukrishnan: 2003, ‘Radial Histograms for Spatial Streams’.
Technical Report DIMACS TR: 2003-11, Rutgers University.

Cranor, C., T. Johnson, O. Spataschek, and V. Shkapenyuk: 2003, ‘Gigascope:
a Stream Database for Network Applications’. In: Proceedings of the ACM
International Conference on Management of Data, SIGMOD.

Datar, M., A. Gionis, P. Indyk, and R. Motwani: 2002, ‘Maintaining stream statistics
over sliding windows ’. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, SODA.

Gedik, B. and L. Liu: 2004, ‘MobiEyes: Distributed Processing of Continuously
Moving Queries on Moving Objects in a Mobile System’. In: Proceedings of the
International Conference on Extending Database Technology, EDBT.

Golab, L., S. Garg, and M. T. Ozsu: 2004, ‘On Indexing Sliding Windows over Online
Data Streams’. In: Proceedings of the International Conference on Extending
Database Technology, EDBT.

Golab, L. and M. T. Ozsu: 2003, ‘Processing Sliding Window Multi-Joins in Contin-
uous Queries over Data Streams’. In: Proceedings of the International Conference
on Very Large Data Bases, VLDB.

Hadjieleftheriou, M., G. Kollios, D. Gunopulos, and V. J. Tsotras: 2003, ‘On-Line
Discovery of Dense Areas in Spatio-temporal Databases’. In: Proceedings of
the International Symposium on Advances in Spatial and Temporal Databases,
SSTD.

Hambrusch, S. E., C.-M. Liu, W. G. Aref, and S. Prabhakar: 2001, ‘Query Pro-
cessing in Broadcasted Spatial Index Trees’. In: Proceedings of the International
Symposium on Advances in Spatial and Temporal Databases, SSTD.

Hammad, M. A., W. G. Aref, and A. K. Elmagarmid: 2003a, ‘Stream Window
Join: Tracking Moving Objects in Sensor-Network Databases’. In: Proceedings of
the International Conference on Scientific and Statistical Database Management,
SSDBM.

Hammad, M. A., M. J. Franklin, W. G. Aref, and A. K. Elmagarmid: 2003b,
‘Scheduling for shared window joins over data streams’. In: Proceedings of the
International Conference on Very Large Data Bases, VLDB.

Hammad, M. A., T. M. Ghanem, W. G. Aref, A. K. Elmagarmid, and M. F. Mok-
bel: 2003c, ‘Efficient Pipelined Execution of Sliding-Window Queries Over Data
Streams’. Technical Report TR CSD-03-035, Purdue University Department of
Computer Sciences.

Hammad, M. A., M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin, A. K.
Elmagarmid, M. Eltabakh, M. G. Elfeky, T. M. Ghanem, R. Gwadera, I. F.
Ilyas, M. Marzouk, and X. Xiong: 2004, ‘Nile: A Query Processing Engine for
Data Streams (Demo)’. In: Proceedings of the International Conference on Data
Engineering, ICDE.

Hershberger, J. and S. Suri: 2004, ‘Adaptive Sampling for Geometric Problems over
Data Streams’. In: Proceedings of the ACM Symposium on Principles of Database
Systems, PODS.

Iwerks, G. S., H. Samet, and K. Smith: 2003, ‘Continuous K-Nearest Neighbor
Queries for Continuously Moving Points with Updates’. In: Proceedings of the
International Conference on Very Large Data Bases, VLDB.

Jensen, C. S., D. Lin, and B. C. Ooi: 2004, ‘Query and Update Efficient B+-
Tree Based Indexing of Moving Objects’. In: Proceedings of the International
Conference on Very Large Data Bases, VLDB.

PLACEJournal3.tex; 6/12/2004; 19:04; p.23



24

Kang, J., J. F. Naughton, and S. Viglas: 2003, ‘Evaluating Window Joins over
Unbounded Streams’. In: Proceedings of the International Conference on Data
Engineering, ICDE.

Kwon, D., S. Lee, and S. Lee: 2002, ‘Indexing the Current Positions of Moving
Objects Using the Lazy Update R-tree’. In: Mobile Data Management, MDM.

Lazaridis, I., K. Porkaew, and S. Mehrotra: 2002, ‘Dynamic Queries over Mobile
Objects’. In: Proceedings of the International Conference on Extending Database
Technology, EDBT.

Lee, M.-L., W. Hsu, C. S. Jensen, and K. L. Teo: 2003, ‘Supporting Frequent Up-
dates in R-Trees: A Bottom-Up Approach’. In: Proceedings of the International
Conference on Very Large Data Bases, VLDB.

Madden, S., M. Shah, J. M. Hellerstein, and V. Raman: 2002, ‘Continuously adap-
tive continuous queries over streams’. In: Proceedings of the ACM International
Conference on Management of Data, SIGMOD.

Mokbel, M. F.: 2004, ‘Continuous Query Processing in Spatio-temporal Databases’.
In: Proceedings of the ICDE/EDBT PhD Workshop.

Mokbel, M. F., W. G. Aref, S. E. Hambrusch, and S. Prabhakar: 2003a, ‘Towards
Scalable Location-aware Services: Requirements and Research Issues’. In: Pro-
ceedings of the ACM workshop on Advances in Geographic Information Systems,
ACM GIS.

Mokbel, M. F., T. M. Ghanem, and W. G. Aref: 2003b, ‘Spatio-temporal Access
Methods’. IEEE Data Engineering Bulletin 26(2).

Mokbel, M. F., X. Xiong, and W. G. Aref: 2004a, ‘SINA: Scalable Incremental
Processing of Continuous Queries in Spatio-temporal Databases’. In: Proceedings
of the ACM International Conference on Management of Data, SIGMOD.

Mokbel, M. F., X. Xiong, W. G. Aref, S. Hambrusch, S. Prabhakar, and M. Hammad:
2004b, ‘PLACE: A Query Processor for Handling Real-time Spatio-temporal
Data Streams (Demo)’. In: Proceedings of the International Conference on Very
Large Data Bases, VLDB.

Mokbel, M. F., X. Xiong, M. A. Hammad, and W. G. Aref: 2004c, ‘Continuous
Query Processing of Spatio-temporal Data Streams in PLACE’. In: Proceedings
of the second workshop on Spatio-Temporal Database Management, STDBM.

Motwani, R., J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S. Manku, C.
Olston, J. Rosenstein, and R. Varma: 2003, ‘Query Processing, Approximation,
and Resource Management in a Data Stream Management System’. In: Pro-
ceedings of the International Conference on Innovative Data Systems Research,
CIDR.

Prabhakar, S., Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch: 2002,
‘Query Indexing and Velocity Constrained Indexing: Scalable Techniques for
Continuous Queries on Moving Objects’. IEEE Trans. on Computers 51(10).

Reinwald, B. and H. Pirahesh: 1998, ‘SQL Open Heterogeneous Data Access’. In:
Proceedings of the ACM International Conference on Management of Data,
SIGMOD.

Reinwald, B., H. Pirahesh, G. Krishnamoorthy, G. Lapis, B. T. Tran, and S. Vora:
1999, ‘Heterogeneous Query Processing through SQL Table Functions’. In:
Proceedings of the International Conference on Data Engineering, ICDE.

Saltenis, S. and C. S. Jensen: 2002, ‘Indexing of Moving Objects for Location-Based
Services’. In: Proceedings of the International Conference on Data Engineering,
ICDE.

PLACEJournal3.tex; 6/12/2004; 19:04; p.24



25

Saltenis, S., C. S. Jensen, S. T. Leutenegger, and M. A. Lopez: 2000, ‘Indexing
the Positions of Continuously Moving Objects’. In: Proceedings of the ACM
International Conference on Management of Data, SIGMOD.

Seshadri, P.: 1998, ‘Predator: A Resource for Database Research’. SIGMOD Record
27(1), 16–20.

Song, Z. and N. Roussopoulos: 2001, ‘K-Nearest Neighbor Search for Moving Query
Point’. In: Proceedings of the International Symposium on Advances in Spatial
and Temporal Databases, SSTD.

Srivastava, U. and J. Widom: 2004, ‘Memory-Limited Execution of Windowed
Stream Joins’. In: Proceedings of the International Conference on Very Large
Data Bases, VLDB.

Sun, J., D. Papadias, Y. Tao, and B. Liu: 2004, ‘Querying about the Past, the
Present and the Future in Spatio-Temporal Databases’. In: Proceedings of the
International Conference on Data Engineering, ICDE.

Tao, Y., G. Kollios, J. Considine, F. Li, and D. Papadias: 2004, ‘Spatio-Temporal
Aggregation Using Sketches’. In: Proceedings of the International Conference on
Data Engineering, ICDE.

Tao, Y., D. Papadias, and Q. Shen: 2002, ‘Continuous Nearest Neighbor Search’. In:
Proceedings of the International Conference on Very Large Data Bases, VLDB.

Tao, Y., D. Papadias, and J. Sun: 2003a, ‘The TPR*-Tree: An Optimized Spatio-
temporal Access Method for Predictive Queries’. In: Proceedings of the
International Conference on Very Large Data Bases, VLDB.

Tao, Y., J. Sun, and D. Papadias: 2003b, ‘Analysis of Predictive Spatio-Temporal
Queries’. ACM Transactions on Database Systems , TODS 28(4).

Tatbul, N., U. Cetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker: 2003,
‘Load Shedding in a Data Stream Manager’. In: Proceedings of the International
Conference on Very Large Data Bases, VLDB.

Tucker, P. A., D. Maier, T. Sheard, and L. Fegaras: 2003, ‘Exploiting Punctuation
Semantics in Continuous Data Streams’. IEEE Transactions on Knowledge and
Data Engineering, TKDE 15(3), 555–568.

Wolfson, O., H. Cao, H. Lin, G. Trajcevski, F. Zhang, and N. Rishe: 2002, ‘Manage-
ment of Dynamic Location Information in DOMINO (Demo)’. In: Proceedings
of the International Conference on Extending Database Technology, EDBT.

Wolfson, O., A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain: 1999, ‘DOMINO:
Databases fOr MovINg Objects tracking (Demo)’. In: Proceedings of the ACM
International Conference on Management of Data, SIGMOD.

Wolfson, O., B. Xu, S. Chamberlain, and L. Jiang: 1998, ‘Moving Objects Databases:
Issues and Solutions’. In: Proceedings of the International Conference on
Scientific and Statistical Database Management, SSDBM.

Xiong, X., M. F. Mokbel, W. G. Aref, S. Hambrusch, and S. Prabhakar: 2004, ‘Scal-
able Spatio-temporal Continuous Query Processing for Location-aware Services’.
In: Proceedings of the International Conference on Scientific and Statistical
Database Management, SSDBM.

Yao, Y. and J. Gehrke: 2002, ‘The Cougar Approach to In-Network Query Processing
in Sensor Networks’. SIGMOD Record 31(3).

Zhang, J., M. Zhu, D. Papadias, Y. Tao, and D. L. Lee: 2003, ‘Location-based Spatial
Queries’. In: Proceedings of the ACM International Conference on Management
of Data, SIGMOD.

Zheng, B. and D. L. Lee: 2001, ‘Semantic Caching in Location-Dependent Query
Processing’. In: Proceedings of the International Symposium on Advances in
Spatial and Temporal Databases, SSTD.

PLACEJournal3.tex; 6/12/2004; 19:04; p.25



PLACEJournal3.tex; 6/12/2004; 19:04; p.26


