
Skyline Query Processing for Incomplete Data
Mohamed E. Khalefa Mohamed F. Mokbel Justin J. Levandoski

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
{khalefa,mokbel,justin@cs.umn.edu}

Abstract— Recently, there has been much interest in processing
skyline queries for various applications that include decision
making, personalized services, and search pruning. Skyline
queries aim to prune a search space of large numbers of multi-
dimensional data items to a small set of interesting items by
eliminating items that are dominated by others. Existing skyline
algorithms assume that all dimensions are available for all data
items. This paper goes beyond this restrictive assumption as
we address the more practical case of involving incomplete
data items (i.e., data items missing values in some of their
dimensions). In contrast to the case of complete data where
the dominance relation is transitive, incomplete data suffer
from non-transitive dominance relation which may lead to a
cyclic dominance behavior. We first propose two algorithms,
namely, “Replacement” and “Bucket” that use traditional skyline
algorithms for incomplete data. Then, we propose the “ISkyline”
algorithm that is designed specifically for the case of incomplete
data. The “ISkyline” algorithm employs two optimization tech-
niques, namely, virtual points and shadow skylines to tolerate
cyclic dominance relations. Experimental evidence shows that
the “ISkyline” algorithm significantly outperforms variations of
traditional skyline algorithms.

I. INTRODUCTION

Given a search space of D independent dimensions, u1, u2,
· · · , ud, a point pi is said to dominate another point pj if
the value of pi.uk is better than or equal than that of pj .uk

over all dimensions 1 ≤ k ≤ D and with a dimension l
such that pi.ul > pj .ul. A skyline query over a set S of
D-dimensional points aims to find a set of points Ssky ⊆ S
where any point psky ∈ Ssky is not dominated by any point
in S while each point pi ∈ S − Ssky is dominated by some
point in S. In general, a skyline query reduces the search
space S to only the set of skyline points Ssky that are of
interest to the user. Skyline queries are widely applicable
to multi-criteria decision making applications. For example,
consider the classical scenario where a user wants to reserve
a hotel that is near to the conference site and cheaper in price
among a large set of hotels. A hotel hi is represented as
a two-dimensional point (di, ri) where di and ri represent
the distance and price of the hotel, respectively. Rather than
investigating in the whole space of the hotels, a skyline query
eliminates any hotel hj where there is another hotel hk that is
both cheaper and closer to the conference site than hj . Another
example of skyline queries is a movie rating application (e.g.,
MovieLens [1]) in which D system users rank various movies.

This work is supported in part by the Grant-in-Aid of Research, Artistry,
and Scholarship, University of Minnesota, DTC Digital Technology Initiative
Program, University of Minnesota, and DTC Intelligent Storage Consortium
(DISC), University of Minnesota.

In this case, each movie is represented as a D-dimensional
point where each dimension corresponds to a certain user.
When searching for the best movie, a skyline query eliminates
those movies for which all users agree there exists at least one
other superior (i.e., overall better-ranked) movie.

Due to the importance of skyline queries, several research
efforts have been dedicated to develop efficient skyline query
processors (e.g., see [2], [3], [4], [5], [6], [7]). Almost all
of these algorithms rely mainly on two implicit assumptions:
(1) Data are complete, i.e., all dimensions are available for
all data items. Such an assumption of completeness is not
practical in many cases. For example, consider the movie
rating application [1] with hundreds of users rating thousands
of movies. It is highly unlikely that every single user will
rate all movies. Instead, a user will rate only the movies that
interest her. As a result, each movie will be represented as
a D-dimensional point with several blank (i.e., incomplete)
dimensions. Another example is from the hotel application
where some hotels may not disclose some of their properties.
These undisclosed properties are represented as incomplete
entries within the hotel multi-dimensional point representation.
(2) With the exception of [2], all skyline algorithms assume
transitivity in the dominance relation, i.e., if data item pi

dominates pj while pj dominates pk, then pi dominates
pk. Using the transitivity property, skyline query processing
algorithms exploit various ways of data pruning and indexing.
Unfortunately, as will be seen in this paper, the transitive
dominance relation is not applicable to the case of incomplete
data.

In this paper, we go beyond the completeness assumption
of multi-dimensional input data where we develop new al-
gorithms for efficient computation of skyline queries over
incomplete data sets. The main reason for the need of a new
set of algorithms for incomplete data is that the transitive
dominance relation no longer holds. For example, we could
have three data items pi, pj , and pk, where pi dominates pj ,
pj dominates pk, while pk dominates pi. In this case, we are
not only missing the transitive dominance relation as pi does
not dominate pk, but we also face another problem where we
have a cyclic dominance relation between pi, pj , pk. Under
this cyclic dominance relation, none of these three points can
be considered a skyline as each point is dominated by at least
one other point.

We start by introducing two variations of traditional skyline
algorithms to accommodate the existence of incomplete data,
namely, the Replacement, and the Bucket algorithms. Then, we
introduce the ISkyline algorithm as a specialized algorithm for

the case of incomplete data. The ISkyline algorithm employs
two new concepts, namely, virtual points and shadow skylines
to enable efficient execution of skyline queries over incomplete
data. For an input data item p to be reported as a skyline by the
ISkyline algorithm, it has to pass through three phases where
p should be considered as a local skyline in the first phase,
then, as a candidate skyline in the second phase, and finally,
as a global skyline (i.e., query result) in the third phase. The
ISkyline algorithm does not assume any preprocessing for input
data items as input is streamed into the algorithm directly. In
general, the contributions of this paper can be summarized as
follows:

• We define the dominance relation for incomplete data and
we show that the transitive dominance relation does not
hold for incomplete data.

• We introduce two new algorithms, namely, Replacement
and Bucket algorithms that utilize existing skyline algo-
rithms to accommodate incomplete data.

• We introduce the ISkyline algorithm as a novel algorithm
designed specifically for efficient skyline computation
over incomplete data.

• We provide a proof of correctness for the ISkyline algo-
rithm.

• We give experimental evidence that the ISkyline algo-
rithm is efficient, scalable, and clearly outperforms the
variations of traditional skyline algorithms.

The rest of this paper is organized as follows: Section II
highlights related work. Preliminary discussion and problem
formulation are given in Section III. Section IV provides two
variations of traditional skyline algorithms for incomplete data.
The ISkyline algorithm is introduced in Section V while its
proof of correctness is given in Section VI. Section VII gives
experimental evidence for the efficiency of our algorithms.
Finally, Section VIII concludes this paper.

II. RELATED WORK

The term skyline queries has been coined out in the database
literature [8] to refer to the secondary storage version of the
maximal vector set problem [9], [10]. Since then, several
algorithms have been proposed for skyline queries that include
no preprocessing solutions (e.g., [8], [11]), presorting solutions
(e.g., [3]), and index-based solutions (e.g., [4], [5], [6]). Due
to its practicality, several research efforts have been dedicated
to developing various skyline algorithms for various environ-
ments, e.g., partially-ordered domains [12], high-dimensional
data [2], [13], [7], skyline cube [7], [14], sliding window [15],
[16], continuous skyline computations [17], [18], mobile ad-
hoc networks [19], spatial skylines [20], web information
systems [21], and data mining [22]. Unfortunately, all these
algorithms consider only the case of complete data with no
direct extension of considering the case of incomplete data
where the dominance relation is not transitive.

The closest work to ours is the k-dominant skyline prob-
lem [2] in which a point p is considered to dominate point q
if only a subset of size k of the dimensions in p dominates
the corresponding dimensions in q. Under this definition, the
dominance relation turns to be non-transitive, which is the case

also for incomplete data. The k-dominant skyline algorithm
overcomes the non-transitive property by discarding only those
points that are dominated in all dimensions while keeping
those points that are only dominated in k dimensions. As the
k-dominant skyline algorithm considers only the case of com-
plete data, applying it directly to the case of incomplete data
misses the opportunity to make use of incomplete subspaces
Thus, applying the k-dominant algorithm directly to the case
of incomplete data would result in prohibitive costs that can
be avoided with the knowledge of incomplete dimensions.

III. PRELIMINARIES

This section presents a preliminary discussion about in-
complete data. Throughout the rest of this paper, we denote
incomplete (i.e., unknown) dimensions by a dash “−”. For
example, a three-dimensional point p with values a and b
in the first two dimensions and an unknown value in the
third dimension is represented as (a, b,−). Without loss of
generality, we assume that all dimension values have a total
order in which greater values are considered superior. With
these two considerations, the problem of computing skylines
over incomplete data is formulated as follows:
Problem Formulation. Given a set S of D-dimensional points
where each point P = (u1, u2, · · · , ud) has at least one
known dimension ui, while all other dimensions have a non-
zero probability of being unknown (i.e., there is a non-zero
probability that uk =′ −′, k �= i), find the set of skyline points
Ssky ⊂ S such that every point P ∈ Ssky is not dominated
by any other point in S while every point Q ∈ S − Ssky is
dominated by some other point in S.

A. Dominance Relation for Incomplete Data

For complete data, a point pi is said to dominate point pj

if pi is better than or equal to pj in all dimensions and is
strictly better than pj in at least one dimension. Unfortunately,
with the existence of some incomplete dimensions, we cannot
simply use the traditional definition of the dominance relation
as it is not immediately clear how to compare an incomplete
dimensions with a corresponding compete dimension. For
example, if pi = (1,−, 3) and pj = (−, 2,−), we cannot judge
which point is superior in any of the three dimensions. To
accommodate the existence of incomplete data, we introduce
the following new definition of the dominance relation:

Definition 1: Given any two D-dimensional points P and
Q that may have incomplete dimensions, a point P is said to
dominate another point Q if the following two conditions hold:
(1) There is at least one dimension ui where both P.ui and
Q.ui are known, and P.ui > Q.ui (2) For all other dimensions
j, j �= i, either P.uj is unknown, Q.uj is unknown, or P.uj ≥
Q.uj .

In other words, for any two incomplete points, pi and pj , we
consider only the common dimensions that are known in both
points. Among these common dimensions only, we apply the
traditional dominance relation to decide which point dominates
the other, if any. For example, consider the four-dimensional
points pi = (1,−,−, 3) and pj = (−,−, 3, 1); pi is said to
dominate pj as the only common dimension is the fourth, for

which pi.u4 > pj .u4. As another example, consider the case
where qi = (1,−,−, 3) and qj = (−, 1, 2,−). In this case, no
single dimension u exists for which qi.u and qj .u are known.
Thus, neither qi nor qj dominate the other.
“Cyclic” and “Non-transitive” dominance relation. Un-
fortunately, with this definition of the dominance relation
over incomplete data, we: (1) lose the transitive dominance
property that was the basis of almost all previous skyline query
processing algorithms, and (2) may end up having a cyclic
dominance relation in which none of the points in a data set
is considered a skyline. For example, consider the following
three incomplete points p1 = (4, 3, 4,−), p2 = (2, 1,−, 5),
and p3 = (−,−, 5, 2). According to Definition 1, p1 dominates
p2 as p1 is greater in the common dimensions (i.e., first
and second dimensions). Also, p2 dominates p3 as the only
common dimension is the fourth one in which p2 is greater.
However, when comparing p1 to p3, the third dimension is the
only common dimension in which p3 is greater. Thus, p1 does
not dominate p3 which means that the dominance relation is
non-transitive. Moreover, p3 does nominate p1 which means
that the dominance relation ends to be cyclic. In this case of
cyclic dominance, none of the three points can be considered
a skyline as all of them are dominated.

B. Bitmap Representation

For ease of representation and computation, we represent
a D-dimensional incomplete point P by a bitmap vector
P.B of D bits that include 1’s for all complete dimensions
and 0’s for all incomplete dimensions. For example, points
P=(4,-,5,-) and Q=(-,3,3,2) are represented by the bitmaps
P.B = 1010 and Q.B = 0111, respectively. With bitmap
representation, two points are considered comparable if there
is at least one common complete dimension between their two
bitmaps, i.e., the bitwise AND operation of their bitmaps has
a non-zero value. For example, the previous points P and Q
are comparable as 1010 AND 0111 is 0010. Formally, the
comparable relation is defined as follows:

Definition 2: Two points P and Q are comparable if and
only if the bitwise-and of their bitmaps is not zero.

IV. USING TRADITIONAL SKYLINE ALGORITHMS FOR

INCOMPLETE DATA

As incomplete data suffer from a cyclic and non-transitive
dominance relation, we cannot simply use existing traditional
skyline algorithms. A naive solution for incomplete data is to
do an exhaustive pairwise comparison between all input points
and select only those points that are not dominated. For very
large input sizes, this naive solution is not feasible. In this
section, we improve upon the naive solution by introducing
two new algorithms, namely, the Replacement and the Bucket
algorithms that tailor existing skyline algorithms to work for
incomplete data.
The Replacement Algorithm. The main idea of the Replace-
ment algorithm is to replace any incomplete dimension in a
data item by −∞. By doing so, all incomplete dimensions
are transformed to complete dimensions. Then, we can apply
any traditional skyline algorithm to get the set Ssky−∞ of

P {−, 1, 3, 6}

P {−, 3, 1, 1}

P {−, 4, 1, 3}
P {−, 2, 1, 2}

P {−, 1, 3, 2}

P {−, 1, 7, 1}

Node Q = 1101

P {−, 1, 4, 3}

Node P = 0111 Node R = 1011 Node S = 1110

S {7, 1, 2, −}
S {1, 8, 3, −}
S {4, 3, 4, −}

Q {1, 2, −, 1}

Q {3, 1, −, 5}
Q {9, 1, −, 1}

Q {4, 3, −, 3}

Q {1, 1, −, 4}

1

2

3

4
Q {3, 4, −, 2}

6

8

5

9

P {−, 3, 6, 2}

S {5, 2, 4, −}
R {7, −, 1, 1}

R {3, −, 1, 1}
R {2, −, 2, 3}
R {1, −, 3, 5}
R {1, −, 1, 5}

1

2

3

4

6

7

8

9

R {3, −, 2, 1}5

R {2, −, 3, 4}

S {1, 1, 9, −}
S {1, 3, 4, −}
S {1, 4, 3, −}
S {1, 4, 1, −}9

8

7

6

5

4

3

2

1S {2, 4, 1, −}R {2, −, 4, 3}
R {1, −, 5, 7}

9

4P 3 Q6Q1 Q2 Q3 Q4 QP

8

6

5

3

2

1

4

7

P {−, 3, 4, 2}
Q {4, 2, −, 1}7

P 1 P 2 5 S 4 S 5 S 6

Candidate_Skyline

Q {1, 3, −, 4}
Q {6, 2, −, 2}

3R1 R2 R3 R4 R5 S 1 S 2 S

Fig. 1. The Bucket algorithm

current skylines. Then, for all points in Ssky−∞, we replace
the −∞ values by an incomplete dimension, i.e., return to
the original form. Finally, we perform an exhaustive pairwise
comparison between all incomplete points that are in Ssky−∞
to find the actual skyline points. The replacement algorithm
greatly improves upon the naive method as the exhaustive
pairwise comparison is done only for those points in Ssky−∞
rather than all input data points.

The correctness of this algorithm comes from the fact that
if an incomplete point P is a skyline in a set S, then the point
P−∞ would be a skyline in S−∞. P−∞ and S−∞ are formed
by replacing incomplete dimensions of P and all points in
S by −∞, respectively. The rationale behind this argument
is that if P is a skyline in S, then there is no point Q in
S that dominates P . This means that within the comparable
dimensions of P and Q, P would be superior. So, when
forming P−∞ and Q−∞, we would still maintain the values
of the comparable dimensions as they were in P and Q. Thus,
Q−∞ cannot dominate P−∞ and thus P−∞ would still be a
skyline in S−∞. Notice that although P dominates Q in S,
there is not guarantee that P−∞ would dominate Q−∞. For
example, consider P = (5, 2,−, 2), Q = (3,−, 5, 1), although
P dominates Q, P−∞ = (5, 2,−∞, 2) does not dominate
Q−∞ = (3,−∞, 5, 1). Thus, the skyline points in S−∞ is
a superset of the skyline points in S.
The Bucket Algorithm. The main idea of the Bucket algorithm
is to divide all incoming points into distinct buckets where all
points in each bucket have the same bitmap representation.
By doing so, the transitive dominance relation would hold
among all points within the same bucket. Then, we can apply a
traditional skyline algorithm over all points within each bucket
by ignoring the incomplete dimensions. We would call the set
of skylines for each bucket as a local skyline. Finally, we
collect the points from all local skyline sets and include them
in one list, termed candidate skyline, list in which we perform
an exhaustive pairwise comparison among all points to get the
query answer. The correctness of the Bucket algorithm comes
from the fact that for a point to be a skyline, it has first to be
a local skyline among all points in its bucket. Also, if a point
Pi is a local skyline in bucket P , it needs to be compared
only against all local skyline of other comparable buckets.

Figure 1 gives an example of the Bucket algorithm in which
36 points are divided into four buckets, P , Q, R, and S
based on their bitmaps. For each bucket, we compute the local

4P3Pin PInserting(b) 1VQarrivesare skylines, (a) arrive(c)

Node P = 0111

1P {−, 1, 4, 3}

Node P = 0111 Node P = 0111

Candidate_SkylineCandidate_Skyline

Node Q = 1101

1

P {−, 1, 3, 6}
2P {−, 3, 6, 2}
1P {−, 1, 4, 3}

1VQ {−, 3, −, 4}1Q {1, 3, −, 4}

1Q2P1P

3

Q2P1P

2P {−, 3, 6, 2}

2P {−, 3, 6, 2}
1P {−, 1, 4, 3}

1VQ {−, 3, −, 4}

4P {−, 1, 7, 1}

Fig. 2. Virtual point insertion

skylines separately, depicted by shaded rectangle in Figure 1.
Overall, we have 21 local skyline points that are considered
as candidate skylines in which we perform an exhaustive
pairwise comparison to conclude that Q5 and Q6 are the
skylines over all 36 points.

In general, the Bucket algorithm gives better performance
than the Replacement algorithm for two reasons: (1) The size
of the candidate list in the Bucket algorithm is likely to be
much less than the size of the set Ssky−∞ in the Replacement
algorithm, thus, the exhaustive pairwise comparison would be
cheaper. (2) Applying a traditional skyline algorithm several
times for few data items in each bucket, as in the Bucket
algorithm, is cheaper than applying it once over all data items,
as in the Replacement algorithm.

V. EFFICIENT SKYLINE COMPUTATION FOR INCOMPLETE

DATA

The Bucket algorithm presented in Section IV suffers from
two main drawbacks. First, the size of the candidate skylines
may be excessive as it is the union of all local skylines in
all buckets. With such excessive size, the exhaustive pairwise
comparison among candidate points would dominate the algo-
rithm running time. Second, the local skyline at each bucket is
computed independently from all other buckets, hence, missing
a chance of using other bucket data to reduce the number of
comparisons needed for local skyline computation. In this sec-
tion, we introduce, the ISkyline algorithm for efficient skyline
computation of incomplete data. The ISkyline algorithm avoids
the drawbacks of the Bucket algorithm by introducing two
main concepts, namely, virtual points and shadow skylines. In
the rest of this section, we will introduce and motivate the
concepts of virtual points and shadow skylines. Then we will
discuss the details of the ISkyline algorithm.

A. Virtual Points and Shadow Skylines

Virtual Points. The main purpose of virtual points is to reduce
the number of points in the candidate skyline list. The main
idea is that a point X in a bucket Ni can be used to reduce the
number of local skylines in a bucket Nj where i �= j. By doing
so, the number of local skyline at each bucket can be reduced,
and hence, the number of candidate skylines can be reduced
significantly. Figure 2 illustrates the idea of virtual points when
applied to the example in Figure 1. In this case, we compute
the local skyline for each bucket and the candidate skyline
online while we read the input data, as no pre-processing is
assumed. The current local skyline for node P is P1 and P2;

P {−, 3, 6, 2}
P {−, 1, 3, 6}

P {−, 3, 1, 1}

P {−, 4, 1, 3}
P {−, 2, 1, 2}

P {−, 1, 3, 2}

P {−, 1, 7, 1}

Node P = 0111

3VQ {3, −, −, 5}

4VS {4, −, 4, −}

1R {2, −, 4, 3}

4R {7, −, 1, 1}
2R {1, −, 5, 7}

Q {6, 2, −, −}2V

Node Q = 1101

8

9

R {3, −, 2, 1} S {2, 3, 4, −}
S {1, 1, 9, −}
S {1, 3, 4, −}
S {1, 4, 3, −}
S {1, 4, 1, −}9

8

7

6

5
R {3, −, 1, 1}

7

Node R = 1011 Node S = 1110
9

8

6

5

3

2

4

7

P {−, 3, 4, 2}
R {2, −, 2, 3}
R {1, −, 3, 5}
R {1, −, 1, 5}

Candidate_Skyline

3R {2, −, 3, 4}

6

5

1VS {2, 4, −, −}

4VS {4, 3, −, −}

4Q {9, 1, −, 1}
2Q {6, 2, −, 2}

5Q {3, 4, −, 2}

Q {4, 2, −, 1}7

P {−, 1, 4, 3}1

Q {1, 1, −, 4}8
Q {1, 2, −, 1}9

Q {3, 1, −, 5}3

Q {1, 3, −, 4}1

Q {4, 3, −, 3}6

Q {−, 3, −, 4}

4S6Q2Q 5Q4Q

1VR {2, −, 4, −}
5V

1V

R {−, −, 5, 7}2V

S {7, 1, 2, −}
S {1, 8, 3, −}3

2

1S {2, 4, 1, −}
S {4, 3, 1, −}4

4VQ {9, 1, −, −}
Q {3, 4, −, −}

Fig. 3. Final effect of Virtual points

these points are also inserted into the candidate skyline list.
Figure 2a shows the time instance in which we read Q1 as a
skyline point for node Q. In this case, we compare Q1 against
all points in the candidate skyline list that have comparable
bitmaps to that of Q1, i.e., P1 and P2. Since Q1 dominates
both points, we remove P1 and P2 from the candidate list
while keeping only Q1. Notice that, up to now, this scenario
is also applicable to the Bucket algorithm.

However, the ISkyline algorithm distinguishes itself as it
creates a virtual point Q1v out of Q1. Q1v will be inserted
in node P to reduce the number of local skylines. The main
idea is that for an incoming point Px to be a local skyline
in P , it must not be dominated by Q1v . Q1v is formed by
considering only the common dimensions in the bitmaps of
nodes P and Q. Figure 2b gives an example where Q1v

is formed as (−, 3,−, 4) and inserted into P . Notice that
currently, the local skyline of P includes only Q1v . Figure 2c
gives the process of reading input points P3, P4, and P5. Since
all points are dominated by the virtual point Q1v , we ignore
P3 , P4 and P5 by neither storing them as local skylines nor
propagating them to be candidate skylines. By doing so, we
significantly reduce the size of the candidate skyline list. For
example, compare the local skyline list of P in Figure 2c that
includes only one point, Q1v , to that of Figure 1 that includes
four points P1, P2, P3, and P4. Moreover, as Q1v is a virtual
point, it is not propagated to the candidate skyline list. So,
in the ISkyline algorithm (Figure 2), none of the points in P
becomes candidates, while in the Bucket algorithm (Figure 1),
four points from P are candidates.

Figure 3 gives the end result of local skylines at each bucket
and the candidate skyline list after reading all the input data
and employing the virtual point concept. It can be seen that
employing the virtual point concept reduces the size of the
candidate skyline list to 5 instead of 26, as in the Bucket
algorithm.
Shadow Skylines. With virtual points, we cannot simply
perform an exhaustive pairwise comparison of all points in the
candidate skyline list to get the query result. Instead, a point
X in the candidate list should be compared against any point
Y with a comparable bitmap regardless of Y being a candidate
skyline or not. Thus, in contrast to the Bucket algorithm, we
cannot simply discard a point Y because it is not a local

Q {3, 4, −, −}
Q {9, 1, −, −}

5V
R {2, −, 4, −}

4V

S {2, 4, 1, −}1

1V

2
S {1, 8, 3, −}3

S {7, 1, 2, −}

3VQ {3, −, −, 5}

4VS {4, −, 4, −}

1R {2, −, 4, 3}

3R {2, −, 3, 4}
2R {1, −, 5, 7}

Local Skyline

S {5, 2, 4, −}5

6S {1, 1, 9, −}R {3, −, 2, 1}

Local Skyline

Shadow SkylineShadow SkylineShadow SkylineShadow Skyline
Node S = 1110Node R = 1011Node Q = 1101Node P = 0111

4S {4, 3, 4, −}

Q {6, 2, −, −}2V

R {7, −, 1, 1}

4VS {4, 3, −, −}

4Q {9, 1, −, 1}
2Q {6, 2, −, 2}

5Q {3, 4, −, 2}

6Q {4, 3, −, 3}

3Q {3, 1, −, 5}
1Q {1, 3, −, 4}

4

2

3
P {−, 1, 7, 1}
P {−, 1, 3, 6}
P {−, 3, 6, 2}

1P {−, 1, 4, 3}

S {2, 4, −, −}

4

5

Candidate_Skyline

4S2Q 5Q4Q 6Q

Local Skyline

2VR {−, −, 5, 7}

1VQ {−, 3, −, 4}

Local Skyline

1V

Fig. 4. Final effect of Shadow Skyline

skyline as Y may help later in dominating candidate skylines.
For example, in Figure 3, although P3 is not stored in the local
skyline list of P , it dominates Q4 from the candidate list. To
see how this scenario may take place, consider the case of
Figure 2c in which P3 is not stored in the local skyline list
as it is dominated by Q1v . Whenever Q4 arrives, Q4 will not
be compared to P3 as P3 is not a local skyline. Thus, Q4

will be stored as a candidate skyline although it is dominated
by P3. This scenario does not affect the correctness of the
algorithm, however, it causes an overhead of not being able
to discard any dominated points. Thus, for bucket P , we store
all points P1 to P9, instead of storing only P1 to P4 as in the
Bucket algorithm. It is important to note that even with this
side effect, virtual points still perform better than the Bucket
algorithm as the savings in the size of candidate and local
skylines is much more powerful than the drawback of storing
and comparing all points.

The ISkyline algorithm introduces the concept of shadow
skylines that works together with virtual points to alleviate
the problem of storing and comparing all input data. The main
idea is that we do not need to store all points in each bucket,
instead, we only need to store the skyline set of points not
found in the local skyline list. For example, in bucket P ,
instead of storing all points P1 to P9, we need to store only
P1 to P4 as these are the skyline points of P1 to P9. In this
case, we will call P1 to P4 as the shadow skyline of P . The
shadow skyline of a bucket N is the set of points that are
real skylines among all points in N minus those points that
are stored in the local skyline of N . For example, consider
bucket Q in Figure 1, where the original skyline set includes
points Q1 to Q6. However, with virtual points (Figure 3), only
points Q2, Q4, Q5, and Q6 are stored in the local skyline set
of Q. Thus, the shadow skyline of Q includes Q1 and Q3.
Figure 4 gives the list of local and shadow skylines of each
bucket. Points that are not shown in the figure are discarded
by the ISkyline algorithm. By doing so, the storage increase
of the ISkyline algorithm over the Bucket algorithm is limited
only to the virtual points. Moreover, as we will show in the
algorithm details, the candidate skylines need to be compared
only against points in the shadow skyline rather than all points.

BulkP is a tPoint P Query
candidateslocal skyline

Phase IIIPhase II

Result

Phase I

Candidate Global
Skyline InsertionSkyline Insertion

Local
Skyline Insertion

Fig. 5. Phases of the ISkyline Algorithms

B. The ISkyline Algorithm

This section presents the ISkyline algorithm that employs
the concepts of virtual points and shadow skylines for effi-
cient skyline computation of incomplete data. The ISkyline
algorithm has a tuning parameter t that controls the frequency
of updating the skyline result. Basically, the ISkyline algorithm
bulks t candidate skyline points together and process them
once in order to get the query result. A small value of t
indicates that the query result will be updated more frequently
than that of a high value of t.
Data structure. With each bucket node N associated with the
bitmap N.B, we store three pieces of information: (1) The
local skyline list that may contain both real and virtual points
as shown in Figure 4, (2) The shadow skyline list that contains
only real data points as shown in Figure 4, and (3) A flag
updated that is turned on only when the shadow skyline list
is modified. Such flag significantly prunes the search space
by avoiding looking at unmodified buckets. It is important to
note that the number of buckets we maintain is the same as
the number of distinct bitmaps of all input data. To access
bucket nodes by their bitmaps, we maintain a hash table
with the entry < bitmap, node pointer> that associates each
available bitmap with one bucket node. Finally, we maintain
two lists, candidate skyline and global skyline that maintain
current candidate skylines and the query result, respectively.

Figure 5 gives an overview of the ISkyline algorithm that
reads data sequentially from an input file with no assumptions
about index availability or data preprocessing. The main idea
is that each input point P may pass through up to three phases
(depicted by rectangles in Figure 5). In Phase I, for each
point P in node N , we check if P needs to be (a) stored in
the local skyline list of N , (b) stored in the shadow skyline
list of N , or (c) completely discarded. Only those points
that are stored in the local skyline list go onto Phase II.
For each point P in Phase II, we check if P needs to
be stored in the candidate skyline list. This phase will also
determine whether virtual points should be inserted in other
node buckets based on the comparison of P with other points
in the candidate skyline list. Once we have t points in the
candidate skyline list, we move to Phase III where we update
the list of points in the global skyline list, i.e., the current
query answer.

Algorithm 1 gives the pseudo code of the ISkyline algorithm.
The input to the algorithm is: (1) a set S of data points and
(2) the tuning parameter t. The output of the algorithm is
the set of global skylines. The algorithm starts by initializing
the global skyline and candidate skyline lists. Then, for every
input point P ∈ S, we either retrieve its corresponding node N
from the hash table or create N if it does not exist (Lines 5
to 6 in Algorithm 1). Then, we start in Phase I where we
attempt to insert P into the local skyline list (Line 7 in
Algorithm 1). If P ends up to be a local skyline of N , we start

Algorithm 1 Skyline Computation for Incomplete Data
1: Function ISkyline(Data Set S, Threshold t)
2: global skyline← {},Candidate skyline← {}
3: repeat
4: Read point P from input S
5: Node N ← Node that corresponds to P bitmap from

Hash Table
6: if N = φ, then create and initialize node N with P

bitmap
7: Is skyline ← Insert Local Skyline(P ,N) (see Algo-

rithm 2)
8: if Is skyline = true then
9: Insert Candidate Skyline(P) (see Algorithm 3)

10: if |Candidate Skyline| > t then
11: Update Global Skyline() (see Algorithm 4)
12: Candidate Skyline← {}
13: end if
14: end if
15: until End of input S
16: Update Global Skyline() (see Algorithm 4)
17: return global skyline

Phase II where we attempt to add P to the candidate skyline
list (Line 9 in Algorithm 1). Whenever the number of points
in the candidate skyline list exceeds t, we move to Phase III
where we update the list of global skylines and clear the
candidate skyline list (Lines 11 to 12 in Algorithm 1). Finally,
once we reach to the end of input, we update the list of global
skylines and conclude the algorithm (Line 16 in Algorithm 1).
In the rest of this section, we will discuss in details the three
phases of the ISkyline algorithm.

1) Phase I: Local Skyline Insertion: Algorithm 2 gives the
pseudo code of Phase I in which, for each point P , we either
store it in the local skyline list, store it in the shadow skyline
list, or discard it. Basically, we check if P is not dominated by
any point in the local skyline list. If this is the case, we decide
to store P in the local skyline list, update the entries in both the
local skyline and shadow skyline lists accordingly, and return
true to indicate that P is a skyline for node N (Lines 3 to 5
in Algorithm 2). It is important to note that we do not remove
virtual points from the local skyline even those virtual points
are dominated by P . The main idea is that those virtual points
may dominate other points that cannot be dominated by P . For
example, in Figure 4, although point S4 dominates the virtual
point R1v , we did not remove R1v . By doing so, R1V later
dominated point S3 which is not dominated by S4. Thus, we
intentionally do not remove virtual points as they could help
in reducing the search space for local and candidate skylines.
On the other hand, if P ends up to be dominated by some
point in the local skyline list, we check if P is dominated
only by virtual points. If this is the case, we decide to insert
P in the shadow skyline list of N , set the updated flag of
N to be true to indicate a change in the shadow skyline list,
update the list of shadow skylines accordingly, and return false
(Lines 6 to 11 in Algorithm 2). It is important to note that by
being dominated by virtual points only, P is considered to be

Algorithm 2 Phase I: Local Skyline Insertion
1: Function Insert Local Skyline(Point P, Node N)
2: if P is not dominated by any point in the local skyline

list of N then
3: Insert P into local skyline list of N
4: Delete all real points that are dominated by P from the

local sklyine and shadow skyline lists of N
5: return true
6: else if P is dominated only by a virtual point then
7: Insert P into shadow skyline list of N .
8: N.updated flag ← true
9: Delete all points that are dominated by P from the

shadow skyline list
10: end if
11: return false

a skyline among all current points of the same bitmap. That is
why we keep P in the shadow list. Finally, If P was dominated
by at least one real point from the local skyline list of N , we
simply discard P and return false.

2) Phase II: Candidate Skyline Insertion: Algorithm 3 gives
the pseudo code of Phase II which aims to insert those local
skyline points from Phase I into the candidate skyline list.
Basically, we compare P against all comparable points in
the candidate skyline list (i.e., those points that have common
complete dimensions with P). For each comparable point Q,
we check if either P or Q dominates the other. If it is the case
that P dominates Q, we delete Q from the candidate skyline
list and insert P as a virtual point in the Q’s node (Line 5
in Algorithm 3). For the case where Q dominates P , we just
insert Q as a virtual point in P ’s node (Line 7 in Algorithm 3).
Finally, if no point in the candidate skyline list dominates
P , we insert P into the candidate skyline list (Line 10 in
Algorithm 3).

Inserting a virtual point P into a node N is mainly
performed in three steps: (1) All real points in the lo-
cal skyline list of N that are dominated by P are moved to
the shadow skyline list of N . For example, consider Figure 2a;
when we insert Q1 as a virtual point in P , we find that Q1

dominates both P1 and P2, thus, we move P1 and P2 to the
shadow skyline list as depicted in Figure 4. (2) All virtual
points in the local skyline list of N that are dominated by P
and have complete dimensions that are a superset of, or same
as P ’s complete dimensions are removed. The main idea is
that if two virtual points Piv and Pjv have the same bitmap
and Piv dominates Pjv , then there is no need to store Pjv as
any point that will be dominated by Pjv will also be dominated
by Piv. Similar arguments hold for the case of Pjv having a
superset bitmap of Piv . (3) We insert a virtual point Pv in the
local skyline list of N . Pv is created by copying the values
from P for only the common dimensions of P and N bitmap
while having incomplete in other dimensions.

3) Phase III: Global Skyline Insertion: Algorithm 4 gives
the pseudo code of Phase III in which we propagate qualified
points from being candidate skylines to be global skylines.
At the same time, we validate existing global skyline points

Algorithm 3 Phase II: Candidate Skyline Insertion
1: Procedure Insert Candidate Skyline(Point P)
2: for each point Q ∈ Candidate Skyline where P and Q

are comparable do
3: if P dominates Q then
4: Delete Q from Candidate Skyline list
5: Insert Virtual Point (P , Node N of Q)
6: else if Q dominates P then
7: Insert Virtual Point (Q, Node N of P)
8: end if
9: end for

10: if P is not dominated by any point, then Insert P in
Candidate Skyline list

against newly incoming points that were read since the last
computation of the global skyline. The algorithm mainly has
four steps: (1) Checking existing candidate and global points
against each other for the dominance relation to remove any
points that are dominated in any of these two lists (Lines 2 to
5 in Algorithm 4). The main idea of this step is to early prune
those dominated points as there is no point in processing them
further with the following expensive steps. (2) All remaining
points in the global skyline list are compared against all
shadow skyline lists of comparable but not equal nodes with
a true updated flag. If at least one point in the compared
shadow skyline lists dominates a point P in the global skyline
list, we immediately delete P from the global skylines (Lines 6
to 10 in Algorithm 4). Notice the importance of the updated
flag as an optimization technique that avoids comparing with
shadow skyline lists that did not change recently. Also, it is
important to note that we do not need to compare global
skyline points against the local skyline list of comparable
nodes as any real point in the local skyline list is also stored
in the candidate sklyine list and hence it has been considered
through the first step. (3) This step aims to process remaining
points in the candidate skyline list in the same way as points
in the global skyline list are processed in the second step
with the exception that points in the candidate skyline list
are compared against all comparable nodes regardless of the
status of the updated flag (Lines 11 to 15 in Algorithm 4).
The main idea for ignoring the updated flag is that points
in the candidate skyline list have recently arrived, and thus,
are not compared yet with points in the shadow skyline lists.
(4) Finally, the global skyline list (i.e., the current query
answer) is formed by combining all remaining candidate and
global skylines together. Also, we reset all updated flags
to false to indicate that the current answer is up to date.
(Lines 16 to 17 in Algorithm 4). It is important to note
that throughout Algorithm 4, deleting a point from either the
candidate or the global lists indicates that the point is stored
in the shadow skyline list of its corresponding node.

VI. PROOF OF CORRECTNESS

This section proves the correctness of the ISkyline algorithm
by proving that: (1) All skyline points are reported from
the ISkyline algorithm, and (2) Any point returned from the
ISkyline algorithm is a skyline over all input data.

Algorithm 4 Phase III: Global Skyline Insertion
1: Procedure Update global Skyline()
2: for each pair of comparable points P ∈ Global Skyline

and Q ∈ Candidate Skyline do
3: if P dominates Q OR Q dominates P , then Mark the

dominated point
4: end for
5: Delete all marked points from Candidate Skyline and

Global Skyline lists
6: for each point P ∈ Global Skyline do
7: for each node N with comparable bitmap to P and a

true updated flag do
8: if any point in N shadow skyline list dominates P ,

then delete P from the Global Skyline list
9: end for

10: end for
11: for each point Q ∈ Candidate Skyline do
12: for each node N with comparable bitmap to Q do
13: if any point in N Shadow Skyline list dominates Q,

then delete Q from the Candidate Skyline list
14: end for
15: end for
16: Global Skyline ← Global Skyline ∪ Candidate Skyline
17: set all updated flags to false

Theorem 1: Any point P that is a skyline over all input
data items, will be reported by the ISkyline algorithm

Proof: Assume that there exist a point P that is a skyline
over all input data items, however, P is not reported by the
ISkyline algorithm. Throughout the ISkyline algorithm, a point
is discarded only if it is dominated by either a real or a virtual
point. Thus, we have two cases: (1) Case 1: P is dominated
by a real point. Since P is already a skyline among all data
points, then, by the definition of skyline, there cannot be any
real point that dominates P . So, this case cannot take place.
(2) Case 2: P is dominated by a virtual point. For a virtual
point Qv to dominate P , the original real point of Qv (i.e., Q)
should also dominate P . This comes from the definition of a
virtual point that the common dimensions between Qv and P
are the same as those between Q and P . As no real point Q
can dominate the skyline point P , then this case cannot take
place. From Cases 1 and 2, we conclude that the assumption
that P is not reported by the ISkyline algorithm is not possible.
Thus, ISkyline reports all existing skylines.

Theorem 2: Any point P returned from the ISkyline algo-
rithm is a skyline over all input data items.

Proof: Assume that there exists a point P that is reported
from the ISkyline algorithm, however, there exist another real
point Q in the input data set that dominates P , i.e., P is
not a true skyline. As point P is reported as a result, it is
stored in the global skyline list. On the other hand, point
Q may be in one of five cases: (1) Case 1: Q is stored
in candidate skyline. As depicted in Line 3 Algorithm 4, all
points in the candidate list are compared against all points
in the global list. Then, the dominated points will be deleted

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

C
om

pa
rs

io
n

(M
)

Size (K)

ISkyline
Bucket

(a) Synthetic

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
om

pa
rs

io
n

(K
)

Size (K)

ISkyline
Bucket

(b) MoviesLens

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16

C
om

pa
rs

io
n

(K
)

Size (K)

ISkyline
Bucket

(c) NBA

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

IS
ky

lin
e/

B
uc

ke
t

Size (K)

10% incomplete
50% incomplete
90% incomplete

(d) NBA (incomplete ratio)

Fig. 6. Scalability

from both lists. This means that if Q dominates P , then P will
be removed from the global skyline, and hence would not be
reported by the algorithm. So, this case cannot take place.
(2) Case 2: Q is stored in the global skyline. As depicted
by Line 16 Algorithm 4, to be stored in global skyline, Q
has to go through the candidate skyline first. This means that
it should have been compared against P as in Case 1. Since,
Case 1 cannot take place, then this case also cannot take place.
(3) Case 3: Q is stored in local skyline. By the definition of
local skyline, any real point that is stored in a local skyline
will be stored also in the candidate skyline list. This means
that Q is also in the candidate skyline list and hence compared
to P as in Case 1. Since, Case 1 cannot take place, then
this case also cannot take place. (4) Case 4: Q is stored
in shadow skyline. As depicted in Lines 7 to 8 Algorithm 4,
point P will be compared against all points in all comparable
recently changed shadow sklyines. If P was dominated by
any point, it will be removed from the global skyline list. For
comparable shadow skyline lists that are not recently updated,
P will be compared with them before being a global skyline
as in Lines 12 to 13 Algorithm 4. Since P is already reported,
then no point in a shadow skyline list has dominated it. So,
Case 4 cannot take place. (5) Case 5: Q is discarded. This
means that there exist a point R in either the local skyline or
shadow skyline lists of the node that corresponds to Q where
R dominates Q. So, this case boils down to either Case 3
or Case 4. Since both cases cannot take place, Case 5 also
cannot take place. From Cases 1 to 5, we conclude that the
assumption that there exists point Q that dominates P is not
possible. So, all points reported by the ISkyline algorithm are
skylines.

VII. EXPERIMENTAL RESULTS

This section experimentally evaluates the performance of
the proposed algorithms. As this is the first attempt for skyline
query processing in incomplete data, we could not compare
with any previous technique. Also, initial experiments show
that our proposed Replacement algorithm performs severely
worse than our proposed Bucket and ISkyline algorithms.
This is mainly due to the fact that the skyline set S−∞ in
the Replacement algorithm is of a very large size. So, in
this section, we focus only in the performance analysis and
comparison of both the Bucket and ISkyline algorithms. Our
test bed includes three data sets: (1) MovieLens [1]. This is
a real data set of 3900 points where each point is of 6000

dimensions that represent the user ratings (6000 users) of
3900 movies. There is only about 1 Million reviews, which
means that this data set is 95% incomplete, i.e., only 5% of
the ratings are available. (2) NBA [23]. This is a real data
set containing records for 16,000 NBA players where each
record has 17 dimensions representing various statistics about
basketball skills. The NBA data is rather complete, however,
we explicitly remove values in order to test the performance
of our algorithms. Removed values represent missing statistics
about the players for some years. Unless mentioned otherwise,
the default incomplete percentage for the NBA dataset is 20%.
(3) Synthetic. We generated a 20% incomplete synthetic data
set of 100,000 points, each with 100 dimensions.

Our first set of experiments (not shown for space limitation)
suggest to set parameter t in the ISkyline algorithm to be 20,
100, 200 for NBA. Synthetic, and MovieLens data, respec-
tively. Unless mentioned otherwise, our performance metric is
the number of comparisons for each algorithm.

A. Scalability

Figures 6a, 6b, and 6c give the scalability of ISkyline for
Synthetic, MovieLens, and NBA datasets, respectively. It is
clear that in all cases the ISkyline algorithm is superior to the
Bucket algorithm. In general, the difference in cost between
ISkyline and Bucket comes from the fact that ISkyline exploits
the virtual points and shadow skylines to minimize the number
of local skylines at each bucket. For Synthetic data (Figure 6a),
ISkyline performs only 10% of the comparisons needed by
Bucket. The main idea is that with only 20% incompleteness,
we end up having large numbers of comparable buckets as the
bitmap of each bucket is highly likely to have many 1’s. Thus,
ISkyline is able to find room in which the concepts of virtual
points and shadow skylines can be exploited. Notice that the
number of buckets, and hence, the number of local skylines
increases with the increase of data size. Thus, the performance
ratio of ISkyline over Bucket increases. For MovieLens data
(Figure 6b), although ISkyline steadily outperforms the Bucket
algorithm, however, the performance ratio is not as strong as
the case of Synthetic data. The main reason is that MovieLens
data has 6000 dimensions, which means that the 1 Million
entries have been distributed over large number of buckets
where each bucket has very few entries (e.g., a bucket would
have two entries only if two movies have been rated by the
exact set of reviewers). So, virtual points and shadow skyline
may not take place in all buckets. So, the difference in perfor-

 0

 10

 20

 30

 40

 50

 60

 10 100

C
om

pa
rs

io
n

(M
)

Dimensions

ISkyline
Bucket

(a) Synthetic dataset

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 40 160 640 2560

C
om

pa
rs

io
n

(K
)

Dimensions

ISkyline
Bucket

(b) Movies

Fig. 7. Data Dimensionality

mance between ISkyline and Bucket in MovieLens indicates
the number of buckets that get benefit from virtual points and
shadow skyline. For NBA data (Figure 6c), similar to other
data sets, ISkyline steadily outperforms Bucket. Notice that
in NBA data set, the number of comparable buckets would
be between the Synthetic and the MovieLens data. So, the
superiority of ISkyline over Bucket is more than the case of
MovieLens but less than the case of Synthetic.

B. Ratio of Completeness.

Figure 6d gives the effect of the ratio of incomplete entries
on the performance of ISkyline over Bucket. We plot the
number of comparisons incurred by ISkyline as a ratio from
that of Bucket. We also plot three entries of ISkyline with
incomplete ratios of 10%, 50%, and 90%. It is clear that with
the increase of the ratio of incomplete data, ISkyline would be a
better enhancement over bucket, i.e., the ratio of the number of
comparisons is decreased. The main reason for this is that with
more incomplete data, virtual points can reduce the number
of local skylines at each bucket and the overhead needed to
update the list of global skylines. Such role of virtual points
becomes more clear with the increase of the incompleteness
ratio. This experiment reflects the fact that ISkyline is designed
specifically with the incompleteness problem in mind while
Bucket uses an adaptation of existing skyline algorithms to
accommodate incomplete data. It is important to note that the
performance ratio between ISkyline and Bucket is stable with
the increase of data size.

C. Data Dimensionality

Figure 7 gives the effect of increasing the dimensionality
(represented by a log scale) on the performance of both
ISkyline and Bucket for Synthetic and MovieLens datasets.
As in previous experiments, ISkyline steadily outperforms
Bucket for up to 100 dimensions in the Synthetic data and
5000 dimensions in MovieLens data. In both data sets, the
number of required comparisons by ISkyline rises up for
medium dimensions (i.e., 100-500 dimensions) and then goes
down for higher dimensions. The main reason is that the
performance depends mainly on the comparability of data
items. If most data items are comparable with each other,
the performance will be worse. With few dimensions, high
ratio of the incomplete data will be removed from the input as
a data item may include only incomplete dimensions. Thus,

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 10 20 30 40 50 60 70 80 90

C
om

pa
rs

io
n

(K
)

Size(K)

ISkyline
Bucket

(a) Synthetic dataset

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 2 4 6 8 10 12 14

C
om

pa
rs

io
ns

 (
K

)

Size (K)

ISkyline
Bucket

(b) NBA

Fig. 8. Incremental behavior

the number of comparable of points would be less. With
the increase of dimensions, the comparability ratio increases
till we reach to a peak point. Then, with the increase of
dimensions, the number of possible buckets would increase,
and hence the data items would have different buckets with
different bitmaps, reducing the comparability ratio.

D. Incremental behavior

Figure 8 gives the incremental behavior of both ISkyline
and Bucket. We measure the number of comparisons needed
to “refresh” the query answer after adding 1,000 new data
items for both synthetic and NBA data. Due to its incremental
properties, managed by the updated flag, ISkyline clearly
outperforms Bucket in all cases. This indicates that ISkyline
smartly avoids reevaluation and redundant processing that are
done by Bucket to maintain the current answer of global
skylines up to date. It is important to note also that for large
data sizes, e.g., more than 50K in Figure 8a, adding 1K of
data by the ISkyline would have the same cost regardless of
the current data size, while in Bucket, the cost will be increased
linearly with the increase of data size. This is mainly due to
the fact that the metadata stored as virtual points, shadow
skylines, and updated flag aid ISkyline to focus only on the
new 1K additions of data rather than reconsidering all data as
in the case of Bucket.

VIII. CONCLUSION

This paper has addressed the problem of skyline queries
over incomplete data where multi-dimensional data items are
missing some values of their dimensions. We showed that with
incomplete data, the dominance relation among data points
may not be transitive, thus, almost all existing techniques
for skyline queries are not applicable. We have proposed two
new algorithms, namely, the Replacement and the Bucket algo-
rithms that utilize variations of traditional skyline algorithms to
accommodate incomplete data. Then, we proposed the ISkyline
algorithm that is designed specifically for incomplete data.
The ISKyline algorithm employs two optimization techniques,
namely virtual points and shadow skylines to exploit the
properties of incomplete. The correctness of the ISkyline is
proved in terms that produce only and all skyline points.
Experimental results based on real and synthetic data sets show
the efficiency and scalability of the ISkyline algorithm.

REFERENCES

[1] “http://movielens.umn.edu.”
[2] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,

“Finding k-Dominant Skylines in High Dimensional Space,” in Pro-
ceedings of the ACM International Conference on Management of Data,
SIGMOD, 2006.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with Presort-
ing,” in Proceedings of the International Conference on Data Engineer-
ing, ICDE, 2003.

[4] D. Kossmann, F. Ramsak, and S. Rost, “Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries,” in Proceedings of the
International Conference on Very Large Data Bases, VLDB, 2002.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline com-
putation in database systems,” ACM Transactions on Database Systems,
TODS, vol. 30, no. 1, pp. 41–82, 2005.

[6] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient Progressive Skyline
Computation,” in Proceedings of the International Conference on Very
Large Data Bases, VLDB, 2001.

[7] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang, “Efficient
Computation of the Skyline Cube,” in Proceedings of the International
Conference on Very Large Data Bases, VLDB, 2005.

[8] S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline Operator,”
in Proceedings of the International Conference on Data Engineering,
ICDE, 2001.

[9] H. T. Kung, F. Luccio, and F. P. Preparata, “On Finding the Maxima of
a Set of Vectors,” Journal of ACM, vol. 22, no. 4, pp. 469–476, 1975.

[10] J. Matousek, “Computing Dominances in En,” Information Processing
Letters, vol. 38, no. 5, pp. 277–278, 1991.

[11] P. Godfrey, R. Shipley, and J. Gryz, “Maximal Vector Computation in
Large Data Sets,” in Proceedings of the International Conference on
Very Large Data Bases, VLDB, 2005.

[12] C. Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified Computation of
Skylines with Partially-Ordered Domains,” in Proceedings of the ACM
International Conference on Management of Data, SIGMOD, 2005.

[13] J. Pei, W. Jin, M. Ester, and Y. Tao, “Catching the Best Views of Skyline:
A Semantic Approach Based on Decisive Subspaces,” in Proceedings of
the International Conference on Very Large Data Bases, VLDB, 2005.

[14] Y. Tao, X. Xiao, and J. Pei, “SUBSKY: Efficient Computation of
Skylines in Subspaces,” in Proceedings of the International Conference
on Data Engineering, ICDE, Atlanta, GA, Apr. 2006.

[15] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the Sky: Efficient
Skyline Computation over Sliding Windows,” in Proceedings of the
International Conference on Data Engineering, ICDE, 2005.

[16] Y. Tao and D. Papadias, “Maintaining Sliding Window Skylines on
Data Streams,” IEEE Transactions on Knowledge and Data Engineering,
TKDE, vol. 18, no. 2, pp. 377–391, 2006.

[17] Z. Huang, H. Lu, B. C. Ooi, and A. K. Tung, “Continuous Skyline
Queries for Moving Objects,” IEEE Transactions on Knowledge and
Data Engineering, TKDE, vol. 18, no. 12, pp. 1645–1658, 2006.

[18] M. D. Morse, J. M. Patel, and W. I. Grosky, “Efficient Continuous
Skyline Computation,” in Proceedings of the International Conference
on Data Engineering, ICDE, 2006.

[19] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi, “Skyline Queries
Against Mobile Lightweight Devices in MANETs,” in Proceedings of
the International Conference on Data Engineering, ICDE, 2006.

[20] M. Sharifzadeh and C. Shahabi, “The Spatial Skyline Queries,” in
Proceedings of the International Conference on Very Large Data Bases,
VLDB, 2006.

[21] W.-T. Balke, U. Güntzer, and J. X. Zheng, “Efficient Distributed Skylin-
ing for Web Information Systems,” in Proceedings of the International
Conference on Extending Database Technology, EDBT, 2004.

[22] W. Jin, J. Han, and M. Ester, “Mining Thick Skylines over Large
Databases,” in European Conference on Principles and Practice of
Knowledge Discovery in Databases, PKDD, 2004.

[23] “http://www.basketball-reference.com/.”

