
Scalable QoS-Aware Disk-Scheduling

Walid G. Aref
���

Khaled El-Bassyouni
�

Ibrahim Kamel
�

Mohamed F. Mokbel
���

�
Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398�

Panasonic Information and Networking Technologies Laboratory. Two Research Way Princeton, NJ 08540
�
aref,mokbel � @cs.purdue.edu, ibrahim@research.panasonic.com

Abstract

A new quality of service (QoS) aware disk scheduling al-
gorithm is presented. It is applicable in environments where
data requests arrive with different QoS requirements such
as real-time deadline, and user priority. Previous work on
disk scheduling has focused on optimizing the seek times
and/or meeting the real-time deadlines. A unified frame-
work for QoS disk scheduling is presented that scales with
the number of scheduling parameters. The general idea is
based on modeling the disk scheduler requests as points in
the multi-dimensional space, where each of the dimensions
represents one of the parameters (e.g., one dimension repre-
sents the request deadline, another represents the disk cylin-
der number, and a third dimension represents the priority of
the request, etc.). Then the disk scheduling problem reduces
to the problem of finding a linear order to traverse these
multi-dimensional points. Space-filling curves are adopted
to define a linear order for sorting and scheduling objects
that lie in the multi-dimensional space. This generalizes
the one-dimensional disk scheduling algorithms (e.g., EDF,
SATF, FIFO). Several techniques are presented to show how
a QoS-aware disk scheduler deals with the progressive ar-
rival of requests over time. Simulation experiments are pre-
sented to show a comparison of the alternative techniques
and to demonstrate the scalability of the proposed QoS-
aware disk scheduling algorithm over other traditional ap-
proaches.

1. Introduction

Building reliable and efficient disk schedulers has always
been a very challenging task. It has become even more so
with today’s complex systems and demanding applications.
As applications grow in complexity, more requirements are
imposed on disk schedulers, for example, the problem of

�
This reasearch is supported by the National Science Foundation NSF

under Grant No. IIS-0093116

disk scheduling in multimedia servers. In addition to max-
imizing the bandwidth of the disk, the disk scheduler has
to take into consideration the real-time deadline constraints
of the page requests, e.g., as in the case of video streaming.
If clients are prioritized based on quality of service guaran-
tees, then the disk scheduler might as well consider the pri-
ority of the requests in its disk queue. Writing a disk sched-
uler that handles real-time and quality of service constraints
in addition to maximizing the disk bandwidth is a challeng-
ing and a hard task [2]. Similar issues arise when designing
schedulers for multi-threaded CPUs, network-attached stor-
age devices (NASDs) [9, 16], etc.

In the attempt to satisfy these concurrent and conflicting
requirements, scheduler designers and algorithm developers
depend mainly on heuristics to code such schedulers. It is
not always clear that these schedulers are fair to all aspects
of the system, or controllable in a measurable way to favor
one aspect of the system over the other. The target of this
paper is to revolutionize the way disk schedulers are devel-
oped. The general idea is based on modeling the disk re-
quests as points in the multi-dimensional space where each
dimension represents one of the parameters (e.g., one di-
mension represents the request deadline, another represents
the disk cylinder number and the third dimension represents
the priority of the request, etc.). Then the scheduler prob-
lem reduces to finding a linear order to traverse these multi-
dimensional points.

The underlying theory is based on space-filling curves
(SFCs). A space-filling curve maps the multi-dimensional
space into the one-dimensional space. It acts like a thread
that passes through every cell element (or pixel) in the
multi-dimensional space so that every cell is visited ex-
actly once. Thus, space-filling curves are adopted to de-
fine a linear order for sorting and scheduling objects that lie
in the multi-dimensional space. For example, in a QoS-
aware disk scheduler, when a request arrives to the disk
queue, the request’s parameters (e.g., its disk cylinder num-
ber, its real-time deadline, etc.) are passed as arguments
to the space-filling curve function, which returns a one-
dimensional value that represents the location of the re-

(a) Sweep (b) C-Scan (c) Peano (d) Gray (e) Hilbert (f) Spiral (g) Diagonal

Figure 1. Two-dimensional Space-Filling Curves.

quest in the disk queue. As a result, the disk queue is al-
ways sorted in the specified space-filling curve order. Using
space-filling curves as the bases for multi-parameter disk
scheduling has numerous advantages, including scalability
(in terms of the number of scheduling parameters), ease of
code development, ease of code maintenance, the ability
to analyze the quality of the schedules generated, and the
ability to automate the scheduler development process in
a fashion similar to automatic generation of programming
language compilers.

The rest of this paper is organized as follows. Section 2
discusses the related work of disk scheduling and the use of
space-filling curves in different applications. In Section 3,
we develop new space-filling curve based disk scheduling
algorithms. Section 4 adopts the notion of irregularity as a
measure of the quality of the scheduled order provided by
a space-filling curve. Section 5 presents a comprehensive
study of the developed algorithms on different space-filling
curves. Finally, Section 6 concludes the paper.

2. Related Work

The problem of scheduling a set of tasks with time and
resource constraints is known to be NP-complete [19]. Sev-
eral heuristics have been developed to approximately op-
timize the scheduling problem. Traditional disk schedul-
ing algorithms [5, 8, 12, 28] are optimized for aggregate
throughput. These algorithms, including SCAN, LOOK, C-
SCAN, and SATF (Shortest Access Time First), aim to min-
imize seek time and/or rotational latency overheads. They
offer no QoS assurance other than perhaps absence of star-
vation. Deadline-based scheduling algorithms [1, 4, 15, 25]
have built on the basic earliest deadline first (EDF) sched-
ule of requests to ensure that deadlines are met. These algo-
rithms, including SCAN-EDF and feasible-deadline EDF,
perform restricted reorderings within the basic EDF sched-
ule to reduce disk head movements while preserving the
deadline constraints.

Like previous work on QoS-aware disk scheduling,
space-filling curves explicitly recognize the existence of
multiple and sometimes antagonistic service objectives in

the scheduling problem. Unlike previous work that focuses
on specific problem instances, we use a more general model
of mapping service requests in the multi-dimensional space
into a linear order that balances between the different di-
mensions. Disk schedulers based on space-filling curves
generalize traditional disk schedulers. For example, SATF
can be modeled by the Sweep SFC (Figure 1a) by assigning
the access time to the vertical dimension. Similarly, EDF is
modeled by the Sweep SFC by assigning the deadline to the
vertical dimension.

Space-Filling curves are first discovered by Peano [24]
where he introduced a mapping from the unit interval to the
unit square (Figure 1c). Hilbert [11] generalizes the idea for
a mapping of the whole space (Figure 1e). Following the
Peano and Hilbert curves, many space-filling curves have
been proposed, e.g., see [3, 6]. In this paper, we focus on the
space-filling curves shown in Figure 1, namely the Sweep,
C-Scan, Peano, Hilbert, Gray, Spiral, and Diagonal SFCs.
However, the developed theory and scheduling algorithms
apply to other space-filling curves. Space-filling curves are
used in many applications in computer science and engi-
neering fields, e.g., spatial join [22], range queries [13],
spatial access method [7], R-Tree [14], multi-dimensional
indexing [18], and image processing [29]. Up to the au-
thors’ knowledge using space-filling curves as a scheduling
tool is a novel application.

3. Disk-Scheduling Algorithms based on
Space-Filling Curves

In the QoS-aware disk scheduler, a disk request is mod-
eled by multiple parameters, (e.g., the disk cylinder, the
real-time deadline, the priority, etc.) and represented as a
point in the multi-dimensional space where each parameter
corresponds to one dimension. Using a space-filling curve,
the multi-dimensional disk request is converted to a one-
dimensional value. Then, disk requests are inserted into a
priority queue � according to their one-dimensional value
with a lower value indicating a higher priority. Figure 2
gives an illustration of an SFC-based disk scheduler. To
help in understanding the proposed algorithms, we present

P
1

P
2

P
D

P
1

P
D

P
2

, ,......,

with parametersD

Disk request

qSFC−Based priority queue

Disk Server

SFC

Scheduler

One−dimensional value

Figure 2. SFC-based Disk Scheduler

the notion of a full cycle in a space-filling curve.
Definition 3.1: A full cycle in a space-filling curve with N
priority levels in each dimension of a D-dimensional space
is a contiguous move from the first point, say point 0, to the
last point, say point ��� , passing through all the points in
the space exactly once.

A disk request � takes a position in the cycle accord-
ing to its space-filling curve value. Disk requests are stored
in the priority queue � according to their cycle position.
The disk server walks through a cycle by serving all disk
requests in � according to their cycle position. Figure 3
presents two straightforward approaches of using space-
filling curves in disk-scheduling.
The Non-Preemptive SFC Disk Scheduler: In this ap-
proach, once the disk server starts to walk through a full
cycle of a space-filling curve, the cycle is never preempted.
A newly arrived request �����	� is inserted in the disk queue

� if and only if it will not preempt the current cycle (Fig-
ure 3c). If �
���	� needs to preempt the cycle (i.e., ������� has
higher priority than ��
����), then it is inserted in a waiting
queue ��� (Figure 3b). The cycle is finished when the disk
request with the lowest priority in � is served, then, all re-
quests from ��� are moved to � and a new cycle is generated.
The Fully-Preemptive SFC Disk Scheduler: This is the
simplest approach. All requests are inserted into a single
disk queue � according to their space-filling curve priority.
This scheduler is fully-preemptive in the sense that any in-
coming request �
���	� with higher priority than ��
���� pre-
empts the current cycle and starts a new one (Figure 3a).
However, when � ����� has lower priority than �
���� , it is in-
serted in � without affecting the current cycle (Figure 3c).

The fully-preemptive SFC disk scheduler serves all disk
requests according to their priority. Low priority requests
may starve due to the continuous arrival of high priority re-
quests. On the other hand, the non-preemptive SFC disk
scheduler does not lead to starvation since it guarantees that
lower priority disk requests in a certain cycle will be served
before starting a new cycle. However, a priority inversion
takes place where higher priority disk requests may wait for
lower priority disk requests to be served. The drawbacks of
the two approaches raise the motivation for having a com-
bined disk scheduler that has the merits of both schedulers.
In the following section, we present a novel disk schedul-

T
cur

T >T
cur newnew

<

T
cur

T

T

T
cur

T
cur

T
newcur new

T
new

T
new

T
new

T
new

T

T

T
cur

has lower priority thanT
new

T
new T

new

new

Fully−Preemptive Non−PreemptiveNon−PreemptiveFully−Preemptive

q qq

q‘

q

(a) (b) (c)

preempts the
cannot preempt the

cycle . So, is inserted
cycle

qby inserting into . So, inserting into q does not affect the .q‘into the waiting queue . cycle

Figure 3. The Non-Preemptive and Fully-
Preemptive SFC disk schedulers.

ing algorithm that avoids the drawbacks of these algorithms,
i.e., respects the disk request priority and avoids starvation.

3.1. The Conditionally-Preemptive SFC Disk
Scheduler Algorithm

As a trade-off between the fully-preemptive and the non-
preemptive disk schedulers, in the conditionally-preemptive
disk scheduling algorithm, a newly arrived disk request
� ���	� preempts the process of walking through a full cy-
cle if and only if it has significantly higher priority than
the currently served disk request �
���� . To quantify the
meaning of significantly higher priority, we define a block-
ing window with size � (the rounded box with thick bor-
der in Figure 4) that slides with ��
���� in � . Then, �
���	�
is considered as a priority significantly higher than ��
����
if and only if �
���	������
�������� . The window size � is
a compromise between the fully-preemptive and the non-
preemptive disk schedulers. Setting � =0 corresponds to
the fully-preemptive disk scheduler, while setting � to a
very large value corresponds to the non-preemptive disk
scheduler. When �����	� arrives while the scheduler is going
to serve �
���� , then one of the following three cases takes
place:

1. ��
��������
���	� (Figure 4a). This means that �����	� has
lower priority than ��
���� . Hence, �
���	� is inserted into

� as inserting it into � will not preempt the cycle.

2. �
���� ��� �!� ����� �!�
���� (Figure 4b). This means
that � ���	� lies inside the blocking window � . Although
� ���	� has a priority higher than that of �
���� , but it is not
high enough to preempt the space-filling curve cycle.
So, � ���	� is inserted in the waiting queue ��� .

3. �
���	�"�#��
����$�%� (Figure 4c). This means that �����	�
has a priority that is significantly higher than that of

− w − w

new
T

cur

T
new

T
cur

T

q‘

new

w

q T
cur

T
new

T
new

T
cur

T

new

T

T

T
cur

T

T
cur

T
new

T
cur

cur

<

T

T
cur

T
new

T
new

T
new

T
cur

T
new

q

newnew
> <

has higher priority than

(a) (b) (c)

q

ww

<

has lower priority than

q does not

, but has significantly high priority

cyclew.r.t. . So, SFC is So, inserting into

cycleaffect the .

cyclenot high enough to preempt the .

q‘So, is inserted into . preempted to serve .

Figure 4. The Conditionally-Preemptive SFC
Disk Scheduler.

��
�� � . So, it is worth to preempt the space-filling curve
cycle by inserting �����	� in � .

There are two issues that need to be addressed; first, how
to deal with the occurrence of priority inversion that result
from disk requests that lie inside the blocking window �
(stored in ���) and have higher priority than some requests
in � . Second, with any value of � less than � � (the last
point in a cycle), there is still a chance of starvation, where a
continuous stream of very high priority requests may arrive.
The next two sections propose alternative approaches for
dealing with these two problems.

3.2. Minimizing Priority Inversion

The disk requests that lie in window � are stored in ��� .
This results in priority inversion as the blocked requests
have higher priority than ��
���� . In this section, we pro-
pose three alternatives to deal with this situation. Figure 5
gives an example that demonstrates the difference among
the three proposed scheduling policies. Assume that while
� � is being served, all the other disk requests ��� , ��� , ��� ,
��� , �	� , and �	
 have arrived. Notice that ��� , �	� , and ��� are
inserted in ��� since they lie inside the window � . � � and
�
 are inserted in � since they have lower priority than � � .
� � is inserted in � since it has a significantly higher priority
than � � .
Serve and Resume (SR): The space-filling curve cycle
is preempted only by inserting the newly arriving request
� ���	� of significant high priority into � . After preempting
the cycle and serving � ���	� , the process of serving the cycle
is resumed.

As in Figure 5, after serving � � , following the cycle order
would result in serving � � . However, the cycle is preempted
to serve � � (� � has a significantly higher priority than � �).
After serving � � , the cycle is resumed to serve the disk re-
quests in � (� � and �
). Finally, the next cycle (waiting)
queue ��� is considered and is served. Hence, the final order
is � � , �	� , ��� , �	
 , ��� , �	� , ��� .

Disk Server

‘q

T
3

T
4

T
1

T
6 72

T

T

T

T

T

T

T
5 2

5

T
1

T

1

3 47
T

Higher priority Lower priority

Blocking Window

6

Current position of

Current queue Next queue qCycleCycle

T

Figure 5. Example of Conditionally-
Preemptive SFC Disk Scheduler.

Serve, Resume and Promote (SRP): SRP acts exactly as
SR. In addition, before the disk starts to serve a request from

� , it checks ��� for any request that becomes with a signifi-
cantly higher priority. If such a request is found, SRP pro-
motes this request and inserts it in � . So, the space-filling
curve cycle can be preempted either by a newly arrived re-
quest or by an old request that eventually becomes of sig-
nificant higher priority.

In Figure 5, after serving � � , the cycle is preempted to
serve �	� . Then, before serving ��� , SRP detects that �	� now
lies outside the window of ��� . Hence, �	� is served before
�	� . Continuing in this way, the final order will be � � , �	� ,
�	� , �	� , ��� , �	
 , ��� .
Serve and Scan (SS): When the cycle is preempted due to
the arrival of a new disk request ������� , all the requests in ���
are scanned and served in their priority order.

In Figure 5, when the cycle is preempted to serve ��� , all
the disk requests inside the window (next cycle queue ���) are
served before returning to the current cycle queue. Hence,
the final order will be � � , � � , � � , � � , � � , � � , �
 .

3.3. Starvation Avoidance

If the window size � remains fixed, an adversary would
still select disk requests in a manner that results in a starva-
tion of other disk requests. To avoid starvation, we propose
to expand the window size � during the course of executing
the scheduling algorithm. As � increases, it eventually be-
comes large enough to prevent preemption and hence avoids
starvation. In this section, we propose two policies for ex-
panding the window size � .
Always Expand (AE): In AE, the window size � is in-
creased by a constant factor, expansion factor
 , with any
preemption of the space-filling curve cycle. Eventually, �
will be large enough to prevent any cycle preemption and
hence, the disk scheduler works as the non-preemptive disk
scheduling algorithm which avoids starvation.
Expand and Reset (ER): ER is the same as AE where we
increase the window size � by a constant factor
 . However,
when a disk request is served and another disk request from

� is dispatched, ER resets � to its original value. The ob-
jective is to achieve a balance between the non-preemptive
and the fully-preemptive schedulers. While in AE, once a
scheduler becomes a non-preemptive one (due to the in-
crease of �), it continues to work as the non-preemptive
scheduler, in ER, the scheduler moves back and forth be-
tween working as the non-preemptive scheduler and as the
conditionally-preemptive scheduler with different values of
� .

4. The Quality of Space-Filling Curves

An optimal space-filling curve is one that sorts points in
space in ascending order for all dimensions. In reality, when
a space-filling curve attempts to sort the points in ascending
order according to one dimension, it fails to do the same for
the other dimensions. A good space-filling curve for one
dimension is not necessarily good for the other dimensions.
In this section, we introduce the concept of irregularity as a
measure of goodness of space-filling curves [20]. Then, we
show how the irregularity can be used as an indicator for
the practical performance measures, e.g., disk utilization,
priority inversion, and deadline losses.

4.1. Irregularity in Space-Filling Curves

In order to measure the scheduling quality of a space-
filling curve, we introduce the concept of irregularity as a
measure of goodness for the scheduling order imposed by a
space-filling curve. Irregularity is measured for each dimen-
sion separately. It gives an indicator of how a space-filling
curve is far from the optimal. The lower the irregularity, the
better the space-filling curve is.
Definition 4.1: For any two points,

���
and���

, in the D-dimensional space with coordinates� ����� 	 ��
 ����� 	 �
 ���
�
 ����� 	 � �
 � ����� 	 ��
 ����� 	 �
 �
�
�
 ����� 	 � � ,
respectively, and for a given space-filling curve, if

� �
is visited before

� �
, we say that an irregularity occurs

between
� �

and
� �

in dimension � iff
� � � 	�� � � � � 	�� .

Figure 6 demonstrates all possible scenarios that can lead
to an irregularity in the two-dimensional space, where the
arrows in the curves indicate the order imposed by the un-
derlying space-filling curve, i.e., point

� �
is visited before

point
� �

. Formally, for a given space-filling curve in the�
-dimensional space with grid size � , the number of irreg-

ularities for any dimension � is:

� � �
 �
 � ����������� �
�! �� �"� ��# �$�
 # �$� ��%'& #�# ����� 	 �'(����� 	 �

An optimal schedule for any dimension � would have
no irregularity. In contrast, the worst-case schedule for any
dimension � is to sort all the requests in reverse order with
respect to � .

(a) No Irregularity in x, y (b) Irregularity in x only (c) Irregularity in y only (d) Irregularity in x, y

i j ii j j i

j

i

j

i

i

j
j

i

j

P .u

P .u

P .u P .u P .u P .u P .u P .u P .u P .u

P .u

P .uP .u

P .uP .u

P .u

x x x x x x x x

y

y

y

y
y

y
y

y

Figure 6. Irregularity in 2D space.

4.2. Irregularity as a Measure of Performance

In this section, we show that the irregularity can be used
as a practical measure of performance. Three experiments
have been conducted to show the effect of lower irregularity
on disk utilization, priority inversion, and deadline losses.
In the experiments, we assume eight priority levels with
one disk request for each level. This results in 8! possi-
ble different schedules. The optimal schedule would have
no irregularity while the worst-case schedule would have 28
irregularities [20].

4.2.1 Disk Utilization

In this section, we investigate the correlation between irreg-
ularity as a measure of goodness and disk utilization. We
conduct the following experiment. Assume that we have a
disk with eight consecutive disk cylinder zones, say) � to)+* . We map these consecutive cylinder zones to eight lev-
els of priority in the irregularity frame of work. Assume
that each cylinder zone contains one disk request. The ob-
jective is to serve all disk requests while minimizing seek
time overhead (i.e., increasing the disk utilization). The
disk head is initially located at the first cylinder) � . The
seek time between any two consecutive cylinders is ��, . Ir-
regularity is computed based on the shortest possible seek
time from the current location. For example, the best sched-
ule is) �) �) �) �) �) �)
) * which results in a seek time
of - ��, and has zero irregularity. The worst-case sched-
ule is)+*.) �)
.) �/) �/) �.) �/) � where each time the sched-
uler chooses the furthest cylinder to serve, this results in
28 irregularities and a seek time of 021 � , . Figure 7a gives
the relation between irregularity and disk utilization, where
for each possible number of irregularities

�
(varies from 0,

the optimal, to 28, the worst), we compute the average seek
time over all schedules that result in

�
irregularity. From

Figure 7a, we notice that the average seek time and the ir-
regularity in a sequence of disk request schedule are almost
linearly correlated, i.e., the lower the irregularity the bet-
ter the disk utilization is and vise versa. Therefore, we can
deduce that irregularity can be used as a measure of good-
ness for disk performance. The advantage of using irregu-
larity as a measure of goodness is that we can compute it
analytically, and hence be able to analytically quantize the

0 4 8 12 16 20 24 28
7

14

21

28

35

Irregularity

A
ve

ra
ge

 s
ee

k
tim

e

(a) Seek time

0 4 8 12 16 20 24 28
0

4

8

12

16

20

24

28

Irregularity

N
um

be
r

of
 P

rio
rit

y
In

ve
rs

io
ns

(b) Priority

0 4 8 12 16 20 24 28
0

1

2

3

4

5

Irregularity

A
ve

ra
ge

 D
ea

dl
in

e
Lo

ss

(c) Deadline

Figure 7. Irregularity as a practical measures.

scheduling quality for a given scheduling policy.

4.2.2 Priority Inversion

Priority inversion takes place when a higher priority disk
request is waiting for a lower priority disk request to be
served. In this experiment, we assume that all disk requests
lie in the same cylinder, so there is no seek time overhead.
There are eight levels of priorities

� � to
� * , and one disk

request per priority level. When a disk request with priority���
is served, we compute the priority inversion as the num-

ber of disk requests with priority
� � (� �

that are waiting
for

� �
to be served. Figure 7b gives the effect of irregularity

on priority inversion. As can be seen from the figure, ir-
regularity and priority inversion are linearly correlated. The
lower the irregularity, the lower the occurrence of priority
inversion is and vise versa. Hence, irregularity may be used
as a good performance measure that reflects the quality of
a schedule generated by a given scheduler w.r.t. priority in-
version.

4.2.3 Deadline Loss

In this experiment, we assume that we have eight priority
levels from

� � � %
to
� * � � , and there is one disk request

per priority level. Assume that each disk request needs con-
stant service time, say � msec. Assume further that higher
priority requests have more tight deadlines, so, the deadline
for each request is � � � where � (� . Notice that �����
means relaxed deadlines, and hence no deadline violation
would take place. We conduct this experiment in the fol-
lowing way: For each possible number of irregularities

�
(varies from 0, the optimal, to 28, the worst), we compute
the average deadline losses over all schedules that result in�

irregularity. Figure 7c gives the relationship between ir-
regularity and the number of deadline losses where we set
� =20 msec and � =25 msec. The same figure is obtained for
any values for �
 � where � (� . From the figure, notice that

the lower the irregularity, the lower the deadline losses, and
vise versa. Also, the figure demonstrates a linear correla-
tion between irregularity and the number of deadline losses.
Hence, irregularity can be used as a measure of goodness
for deadline loss performance as well. Therefore, lowering
the irregularity is favorable in the case of real time applica-
tions.

5. Performance Evaluation

The SFC-based disk scheduler has three major com-
ponents; the irregularity policy, the starvation policy, and
the underlying space-filling curve, and two parameters; the
window size � and the expansion factor
 . In this sec-
tion, we perform comprehensive experiments to construct
an SFC-based disk scheduler by appropriately choosing its
components and parameters. In Section 5.1, we perform
experiments to evaluate all the proposed policies for mini-
mizing irregularity and avoiding starvation In Section 5.2,
we study the effect of each space-filling curve on the sched-
uler In Section 5.3, we study the effect of the initial win-
dow size � For all experiments we set the expansion factor

 to be 5% of � . All experiments in this section are per-
formed with the disk simulation model developed at Dart-
mouth College [17]. It simulates the Hewlett Packard 97560
disk drive [23] that is described in detail in [27]. This disk
simulation model has been widely used in many projects,
e.g., in the SimOS project at Stanford University [10, 26]
and in the Galley project at Dartmouth College [21]. The
HP 97560 disk drive contains 1962 cylinder with 19 tracks
per cylinder. Each track contains 72 sectors with 512 bytes
each. The revolution speed is 4002 rpm and the disk has a
SCSI-II controller interface.

To reflect the irregularity of the SFC scheduler, we mea-
sure the mean irregularity over all the space dimensions.
The standard deviation of request waiting time is consid-
ered as a measure of starvation, the higher the standard de-
viation the higher the chance that starvation may occur. For

0 20 40 60 80 100
65

70

75

80

85

90

95

Window Size (Percent)

M
ea

n
Ir

re
gu

la
rit

y
(P

er
ce

nt
)

SR+ER
SRP+ER
SS+ER
SR+AE

(a) Sweep SFC

0 20 40 60 80 100
40

50

60

70

80

90

100

Window Size (Percent)

M
ea

n
Ir

re
gu

la
rit

y
(P

er
ce

nt
)

SR+ER
SRP+ER
SS+ER
SR+AE

(b) Diagonal SFC

0 20 40 60 80 100
85

90

95

100

105

110

115

Window Size (Percent)

M
ea

n
Ir

re
gu

la
rit

y
(P

er
ce

nt
)

SR+ER
SRP+ER
SS+ER
SR+AE

(c) Gray SFC

0 20 40 60 80 100
100

150

200

250

300

350

400

450

500

550

Window Size (Percent)

S
t.

D
ev

. o
f w

ai
tin

g
tim

e

SR+ER
SRP+ER
SS+ER
SR+AE

(d) Sweep SFC

Figure 8. Comparison among different policies.

comparison purposes, we use the FCFS scheduler as our
base point. The irregularity and the standard deviation of
the waiting time are presented as a ratio to the irregularity
and the standard deviation of the waiting time caused by
FCFS, respectively. Recall that traditional disk schedulers,
e.g., EDF and SATF can be modeled as special cases of an
SFC-based disk scheduler. Hence, we do not have to com-
pare with each one of them separately.

5.1. Selecting the Policy

In this section, we compare the proposed algorithms in
Sections 3.2 and 3.3. All experiments consider disk re-
quests with four QoS parameters that arrive exponentially
with mean interarrival time 25 msec. The initial window
size � is expressed as a percentage of the total points in
the space. The expansion factor
 is set to 5% of � . The
notation ”+” is used to indicate a combination of two disk
scheduling policies. For example SR+AE indicates that
the disk scheduler uses Policies SR (Serve and Resume)
to handle irregularity and AE (Always Expand) to handle
starvation. Figures 8a, 8b, and 8c give the mean irregular-
ity for the Sweep, Diagonal, and Gray SFCs, respectively
at different values for � . To simplify the graph, we only
plot SR+AE as a representative of disk schedulers that use
policy AE. Other disk schedulers that use the same policy
(AE) give the same performance as SR+AE. At � =0, all
the schedulers degenerate to the Fully-Preemptive SFC disk
scheduler. Similarly, at � =100, all the schedulers degener-
ate to the Non-Preemptive SFC disk scheduler. Except for
the case where � =0, the AE (Always Expand) Policy re-
sults in very high irregularity even with small window size.
The reason is that � is always increasing and eventually it
becomes large enough to block all incoming disk requests
as in the non-preemptive scheduler.

In Figures 8a and 8b, Policy SS gives the lowest irregu-
larity when � (�� 1�� . As � increases, more disk requests
are blocked and stored in the disk queue ��� . The blocked
disk requests are served according to their SFC order. Thus,

respecting the SFC-order lowers the irregularity. SR+ER
and SRP+ER give reasonable increase in irregularity as �
increases. The Spiral and Peano SFCs exhibit similar be-
havior as the Sweep and Diagonal SFCs. The Diagonal SFC
gives the lowest irregularity for any window size � . How-
ever, the choice of the appropriate space-filling curve does
not rely only on irregularity. Other aspects that control the
choice of a space-filling curve are investigated in the next
section. Figure 8c represents the performance of the Gray,
C-Scan, and Hilbert SFCs. Unlike the Sweep and Diagonal
SFCs, in SR+ER and SRP+ER policies, increasing � from
0 to 40 results in lowering the irregularity.

Figure 8d gives the standard deviation of the waiting
time for the Sweep SFC. All space-filling curves give the
same curve for waiting time. SS+ER gives very high stan-
dard deviation, which indicates a high possibility of starva-
tion. In Policy SS, disk requests that are blocked by win-
dow � are accumulated and stored in the queue ��� . So serv-
ing them in one scan may result in starving lower priority
requests. SR+AE works as the non-preemptive scheduler.
SRP+ER and SR+ER give lower starvation as � increases.

As can be seen from the experiments, SR+ER and
SRP+ER give the best scheduling performance where they
result in a moderate schedule that balances between irregu-
larity and starvation. However, Policy SR has a vital draw-
back, that it penalizes disk requests for their early arrival.
Assume that a disk request � arrives within window � , then
it is stored in ��� . The service of � is postponed till all disk
requests in � are served. If � was smart enough to delay
itself so that it arrives when the blocking window � slides
ahead so that � becomes outside � and stored in � , then it
will be eligible for being served immediately. This scenario
highlights the fact that � may be served better if it arrives
late. This problem is dealt with in Policy SRP, that after
serving each request, SRP checks the queue ��� for those re-
quests that become eligible to service and move (promote)
them to � . For the rest of experiments in the following sec-
tions, we use the Policies SRP+ER in the Conditionally-
Preemptive SFC disk scheduler.

2 3 4 5 6 7 8 9 10 11 12
20

25

30

35

40

45

50

Number of dimensions

M
ea

n
Ir

re
gu

la
rit

y

Sweep
CScan
Peano
Gray
Hilbert
Spiral
Diagonal

(a) Dimensions

4 8 16 32 64 128 256
28

30

32

34

36

38

40

42

44

Number of priority levels per dimension

M
ea

n
Ir

re
gu

la
rit

y

Sweep
CScan
Peano
Gray
Hilbert
Spiral
Diagonal

(b) Priority levels

Figure 9. Scalability of SFC Scheduler.

5.2. Selecting the Space-Filling Curve

In this section, we perform comprehensive comparison
between the seven space-filling curves in Figure 1. The ob-
jective is to determine which space-filling curve will best
fit in the SFC-based disk scheduler. All experiments in this
section are performed with SRP+ER policies.

5.2.1 Scalability of SFC-based Schedulers

In this section, we address the issue of scalability of SFC-
based schedulers, e.g., when the number of dimensions
(schedule parameters) increases or when the number of
priority levels per dimension increases. The experiments
in this section are performed with SRP+ER policies with
�

� 1�� � , and the mean interarrival time of disk requests
is 25 msec. In Figure 9a, we measure the irregularity of
the SFC-based disk scheduler using different space-filling
curve for up to 12 QoS parameters (scheduling dimensions)
where each dimension has 16 priority levels. The Diagonal
SFC gives the best performance especially with higher di-
mensions. The Sweep, Peano, and Spiral SFCs have almost
the same performance.

Figure 9b compares the space-filing curves in the four-
dimensional space, while the number of priority levels
varies from 4 to 256. After 16 priority levels, all space-
filling curves tend to exhibit constant behavior. The Diago-
nal SFC gives the best performance. The Hilbert and Gray
SFCs have the worst performance with respect to irregular-
ity. The Sweep, Peano, and Spiral SFCs have similar per-
formance that tends to be equal to the performance of the
C-Scan SFC in high priority levels. The C-Scan SFC has
constant performance regardless of the number of priority
levels.

From the experiments, it can be seen that the SFC-based
disk scheduler scales easily and without additional coding

difficulty to higher QoS parameters. Also when using the
appropriate SFC, the SFC-based scheduler can exhibit low
irregularity even at higher dimensions. The time complexity
for converting a point in the

�
-dimensional space into the

one-dimensional space is �
� � �

[20].

5.2.2 Fairness of SFC-based Schedulers

A very critical point for SFC-based disk schedulers is how
to assign the QoS disk request parameters (i.e., the dead-
line, priority, etc.) to the dimensions of the space-filling
curve. For example, the EDF disk scheduler can be mod-
eled by the Sweep SFC when assigning the vertical dimen-
sion (Figure 1a) to the deadline parameter. Also SATF can
be modeled using the Sweep or the C-Scan SFC by assign-
ing the vertical dimension to the access time. We say that
a space-filling curve is biased to dimension � if it results in
low irregularity in � relative to the other dimensions. Also,
we say that a space-filling curve is fair if it results in similar
irregularity for all dimensions. In this section, we use the
standard deviation of irregularity over all the dimensions as
a measure of the fairness of space-filling curves. The exper-
iment in this section is performed on four QoS parameters
using SRP+ER policies with �

� 1�� � , and the interarrival
time of disk requests is 25 msec. In Figure 10a, we measure
the standard deviation of irregularity over all dimensions.
A low standard deviation indicates more fairness. The Di-
agonal SFC is the most fair space-filling curve among the
space-filling curves we consider in this study (the standard
deviation is less than 10%). For a medium window size, the
Spiral SFC has a very low standard deviation. The C-Scan
and Sweep SFCs give the worst performance. This is be-
cause they have no irregularity in the last dimension while
having high irregularity in the other dimensions.

Some applications may have only one important dimen-
sion, while the other dimensions are not with the same sig-

0 20 40 60 80 100
0

20

40

60

80

100

120

140

Window Size (Percent)

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 Ir

re
gu

la
rit

y

Sweep
CScan
Peano
Gray
Hilbert
Spiral
Diagonal

(a) Standard Deviation

0 20 40 60 80 100
0

20

40

60

80

100

120

Window Size (Percent)

Ir
re

gu
la

rit
y

P
er

ce
nt

Sweep
CScan
Peano
Gray
Hilbert
Spiral
Diagonal

(b) Favored Dimension

Figure 10. Fairness of SFC Scheduler.

nificant importance. One example is optimizing the me-
chanical movements of the disk head over the cylinders.
Another example is the real time requests, where in some
applications the most important factor would be to meet
the request deadline, and then the other parameters can be
scheduled. EDF favors the deadline, while ignoring all
other dimensions. CSCAN favors the cylinder dimension.
SATF favors the access time dimension. For these applica-
tions, we develop the experiment given in Figure 10b. Al-
though, we run the experiment in a four-dimensional QoS
space, we plot only the most favored dimension for each
space-filling curve. Figure 10b shows that the C-Scan and
the Sweep SFCs are always the best for a small window
size. They have no irregularity in small window sizes. This
is also an interpretation of why they have very high standard
deviation (Figure 10a).

5.3. Selecting the Initial Window Size

In this set of experiments, we investigate how the value
of the window � can be determined. We develop a design
curve for each space-filling curve that demonstrates the ef-
fect of changing � on the irregularity and starvation in the
three-, four-, and five-dimensional spaces. We use the same
experiment as in Section 5.1 while varying the number of
dimensions from three to five. Figure 11 gives the design
curves for the Peano, Hilbert, and Diagonal SFCs, respec-
tively. The C-Scan and the Gray SFCs have similar shapes
as that of the Hilbert SFC. All other SFCs have similar de-
sign curves as that of the Peano and Diagonal SFCs with
different irregularity values.

Determining the value of the window size � depends on
the space-filling curve. For the Peano SFC, setting � =35%
results in the best trade-off between the irregularity and the
standard deviation of waiting time. For the Hilbert and Di-

agonal SFCs, setting � =35%, 40%, respectively would re-
sult in the best trade-off.

6. Conclusion

In this paper, we have proposed a new scalable disk
scheduling algorithm for serving requests that require QoS
parameters (i.e., deadline, priority, etc.). The idea is to
map the multiple QoS parameters into the one-dimensional
space. Then, we use the ordering imposed by space-filling
curves to serve the disk requests. We introduce the irreg-
ularity as a measure of quality of the space-filling curve
order. We show how irregularity is linearly correlated with
other measures of goodness for scheduler performance, e.g.,
disk utilization, deadline losses, and priority inversion. The
window size tuning parameter � is introduced to tune the
irregularity and starvation of an SFC-based disk scheduler.
Our comprehensive simulation experiments show that using
the disk-scheduling algorithm SRP+ER achieves the best
performance for any space-filling curve. From the set of the
discussed space-filling curves, we show the different prop-
erties that motivates the use of each space-filling curve.

References

[1] R. K. Abbot and H. Garcia-Molina. Scheduling i/o re-
quests with deadlines: A performance evaluation. In Proc. of
the IEEE Real-Time Systems Symp., RTSS, pages 113–125,
Florida, Dec. 1990.

[2] W. G. Aref, I. Kamel, and S. Ghandeharizadeh. Disk
scheduling in video editing systems. IEEE Trans. on Knowl-
edge and Data Engineering, TKDE, 13(6):933–950, 2001.

[3] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer.
Space-filling curves and their use in the design of geomet-
ric data structures. Theoretical Computer Science, TCS,
181(1):3–15, 1997.

(a) Peano (b) Hilbert (c) Diagonal

Figure 11. Design Curves.

[4] S. Chen, J. Stankovic, J. Krouse, and D. Towsley. Perfor-
mance evaluaion of two new disk scheduling algorithms for
real-time systems. Journal of Real-Time Systems, 3:307–
336, 1991.

[5] E. G. Coffman, L. Klimko, and B. Ryan. Analysis of scan-
ning policies for reducing seek times. SIAM Journal on
Computing, 1(3):269–279, Sept. 1972.

[6] C. Faloutsos. Multiattribute hashing using gray codes. In
Proc. of the Int. Conf. on Management of data, ACM SIG-
MOD, pages 227–238, Washington D.C., May 1986.

[7] C. Faloutsos and Y. Rong. Dot: A spatial access method us-
ing fractals. In Proc. of the Int. Conf. on Data Engineering,
ICDE, pages 152–159, Kobe, Japan, Apr. 1991.

[8] R. Geist and S. Daniel. A continuum of disk schedul-
ing algorithms. ACM Trans. of Computer Systems, TOCS,
5(1):77–92, Feb. 1987.

[9] G. Gibson, D. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. File server scaling with network-attached secure
disks. In In Proc. of the ACM Int. Conf. on Measurement
and Modeling of Computer Systems, SIGMETRICS, pages
272–284, Seatle, Washington, June 1997.

[10] S. A. Herrod. Using Complete Machine Simulation to Un-
derstand Computer System Behaviour. PhD thesis, Stanford
University, Feb. 1998.

[11] D. Hilbert. Ueber stetige abbildung einer linie auf ein
flashenstuck. Mathematishe Annalen, pages 459–460, 1891.

[12] M. Hofri. Disk scheduling: Fcfs vs sstf revisited. Commu-
nications of the ACM, CACM, 23(11):645–653, Nov. 1980.

[13] H. V. Jagadish. Linear clustering of objects with multi-
ple attributes. In Proc. of the Int. Conf. on Management
of data, ACM SIGMOD, pages 332–342, Atlantic City, NJ,
June 1990.

[14] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-
tree using fractals. In Proc. of the 20th Int. Conf. on Very
Large Data Bases, VLDB, pages 500–509, Santiago, Chile,
Sept. 1994.

[15] I. Kamel, T. Niranjan, and S. Ghandeharizedah. A novel
deadline driven disk scheduling algorithm for multi-priority
multimedia objects. In Int. Conf. on Data Engineering,
ICDE, pages 349–358, San Diego, CA, Mar. 2000.

[16] R. H. Katz. High performance network- and channel-
attached storage. Proceedings of IEEE, 80(8), Aug. 1992.

[17] D. Kotz, S. Toh, and S. Radhakrishnan. A detailed simu-
lation model of the hp97560 disk drive. Technical Report
PCS-TR94-220, Department of Computer Science, Dart-
mouth College, 1994.

[18] J. K. Lawder and P. J. H. King. Querying multi-dimensional
data indexed using the hilbert space filling curve. SIGMOD
Record, 30(1), Mar. 2001.

[19] J. K. Lenstra, A. R. Kan, and P.Brucker. Complexity of ma-
chine scheduling problems. Annals of Discrete Mathemat-
ics, 1:343–362, 1977.

[20] M. F. Mokbel and W. G. Aref. Irregularity in multi-
dimensional space-filling curves with applications in mul-
timedia databases. In Proc. of the Int. Conf. on Informa-
tion and knowledge Management, CIKM, Atlanta, GA, Nov.
2001.

[21] N. Nieuwejaar. Galley: A New Parallel File System for Sci-
entific Applications. PhD thesis, Computer Science Depart-
ment, Dartmouth College, 1996.

[22] J. A. Orenstein. Spatial query processing in an object-
oriented database system. In Proc. of the Int. Conf. on Man-
agement of data, ACM SIGMOD, pages 326–336, Washing-
ton D.C., May 1986.

[23] H. Packard”. HP97556/58/60 5.25 inch SCSI Disk Drive,
technical reference manual, 2nd edition edition, June 1991.

[24] G. Peano. Sur une courbe qui remplit toute une air plaine.
Mathematishe Annalen, 36:157–160, 1890.

[25] A. Reddy and J. C. Wyille. Disk scheduling in multimedia
i/o systems. In Proc. of the 1st ACM Multimedia, pages 225–
233, Anaheim, CA, Aug. 1993.

[26] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Com-
plete computer simulation: The simos approach. In Proc.
IEEE Parallel and Distributed Technology, 1995.

[27] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. In Proc. IEEE Computer, 27(3):17–28, Mar.
1994.

[28] A. Silberchatz and P. Galvin. Operating System Conceps.
Addison-Wesley, 5th edition, 1998.

[29] L. Velho and J. Gomes. Digital halftoning with space filling
curves. Computer Graphics, 25(4):81–90, July 1991.

