
Transaction Time Support Inside a Database Engine

David Lomet, Roger Barga
Microsoft Research

Redmond, WA
{lomet,barga}@microsoft.com

Mohamed F. Mokbel ∗

University of Minnesota
Minneapolis, MN

mokbel@cs.umn.edu

German Shegalov ∗

Max Planck Institute
Saarbrucken, Germany

shegalov@mpi-sb.mpg.de

Rui Wang ∗

Northeastern University
Boston, MA

bradrui@ccs.neu.edu

Yunyue Zhu ∗

New York University
New York, NY

yunyue@cs.nyu.edu

Abstract

Transaction time databases retain and provide access
to prior states of a database. An update “inserts” a new
record while preserving the old version. Immortal DB
builds transaction time database support into a database
engine, not in middleware. It supports as of queries re-
turning records current at the specified time. It also sup-
ports snapshot isolation concurrency control. Versions are
stamped with the “clock times” of their updating transac-
tions. The timestamp order agrees with transaction serial-
ization order. Lazy timestamping propagates timestamps
to transaction updates after commit. Versions are kept in
an integrated storage structure, with historical versions ini-
tially stored with current data. Time-splits of pages permit
large histories to be maintained, and enable time based in-
dexing, which is essential for high performance historical
queries. Experiments show that Immortal DB introduces
little overhead for accessing recent database states while
providing access to past states.

1 Introduction

Research in temporal databases has been pursued for al-
most twenty years (e.g., see [2, 9, 12, 14, 18, 20, 29, 31,
34]). However, the migration of this research into com-
mercial databases is limited. Historical data in commercial
databases is usually supported only for the very recent past,
providing what is called snapshot isolation [1, 3, 23]. With
snapshot isolation, reads are not blocked by concurrent up-
dates. A reader reads a recent version instead of waiting for
access to the current version. However, there are no com-

∗ Work done while on Microsoft internship.

mercial database systems that support temporal functional-
ity with historical versions organized for rapid retrieval, nor
with timestamping that is highly precise. Further, layering
temporal support on top of a database system is cumber-
some and typically is not practical [16, 35].

In this paper, we present Immortal DB, our research
prototype that provides transaction time database support
built into the SQL Server database engine, not layered on
top. With Immortal DB, regular insert/update/delete actions
never remove information from the database. Rather, these
actions add new data versions, thus maintaining such a com-
plete, query-able history of states of the database.

1.1 Temporal Databases

Two forms of temporal database functionality have been
identified:

Valid time is the real world time at which informa-
tion recorded in the database becomes true (or no longer
true) [10, 11]. For example, J. Smith might have started
work at X Corp. on May 1, 1994 and left it on Oct. 7, 2001.

Transaction time is the time at which information is
posted to the database [14, 15, 25]. In our example, J.
Smith’s original record might not have been posted until the
end of the quarter, e.g. June 30, 1994.

Often valid time and transaction time are very close, per-
haps identical. For example, the transaction time for an on-
line purchase of a book at Amazon is also the “valid time”
for the sale of the book. A database that supports both func-
tionalities is termed bi-temporal (e.g., see [5, 17]).

In the Immortal DB project, we focus on transaction-
time functionality. There are several scenarios in which
transaction-time support is particularly useful.

1

Snapshot isolation [3]. Snapshot isolation needs to access
recent data versions in a transaction consistent way.

Data auditing [6]. For auditing purposes, a bank finds it
useful to keep previous states of the database to check
that account balances are correct and to provide cus-
tomers with a detailed history of their account.

Data analysis [24]. A retailer keeps versions of the sales
transaction data to answer queries about changes in
inventory, and may want to mine that data for sales
trends.

Backup [22]. The data versions preserved in a transaction
time database can be used to provide backup for the
current database state. Such a backup is done incre-
mentally, is query-able, and can always be online.

Moving objects [7]. Keeping historical data supports trac-
ing the trajectory of moving objects in location-aware
service applications.

1.2 Immortal DB Project

An Immortal DB database maintains multiple versions of
data. When a transaction inserts/updates new data records
into the database, it stores with the new record version a
timestamp Ti that indicates the beginning of the lifetime
of the newly inserted/updated data. With a subsequent up-
date, a new version of the data is inserted into the database,
marked with its timestamp Tj (Tj > Ti), indicating its start
time. The prior Ti version of data is marked implicitly as
having an end time of Tj . A delete is treated as an update
that produces a special new version, called a “delete stub”,
that indicates when the record was deleted. Old versions of
records are immortal (i.e., are never updated in place). Each
new version of a record is linked to its immediate predeces-
sor version via a version chain.

The Immortal DB prototype, demo’d earlier [19], ex-
tends DBMS functionality without disturbing much of the
original SQL Server code. Changes include:

SQL DDL syntax. A table is defined as a transaction time
table via an “Immortal” attribute in the table create
statement.

Query syntax. A new transaction statement “AS OF”
clause specifies queries of historical data, including
both persistent versions and snapshot isolation ver-
sions.

Commit processing. Timestamping of versions af-
ter transaction commit guarantees each version a
timestamp that is consistent with serialization order.

Page manager. Record versions are chained together
within a page.

Recovery manager. New log operations are defined to en-
able recovery redo and undo the “versioned” updates
required for transaction time support.

Storage manager. New pages are acquired via time based
page splitting to permit the space for versions to grow
while facilitating high performance time based ac-
cesses.

Immortal DB is distinguished from conventional data-
base systems and from some prior transaction time research
systems in both its approaches to timestamping and to man-
aging versions.

1. A record version timestamp is chosen to agree
with transaction serialization order. A unique lazy
timestamping mechanism, which does not require
logging, propagates the timestamp to all updates of the
transaction.

2. Versions of a record are stored in an integrated stor-
age structure where historical versions initially share
the same disk page as the current record version and
are linked via a version chain. Pages of this structure
are split based on time to support arbitrary numbers of
historical versions.

Immortal DB is the first transaction time database im-
plementation that organizes versions for high performance
access. It provides precise time based query support via
high resolution clock-based timestamping. It demonstrates
that it is possible to provide this functionality without com-
promising performance for conventional database tables or
for conventional current state database functionality. It also
supports snapshot isolation with excellent performance, as
confirmed by our experimental study. Performance is our
rationale for building transaction time support into the data-
base engine. Layered approaches find high performance
difficult to provide.

1.3 Paper Overview

The rest of this paper is organized as follows: Manag-
ing timestamps (i.e., timestamp representation and assign-
ment) in our Immortal DB prototype is outlined in Section 2.
Section 3 outlines the version management (i.e., versioning
chain of both records and splitting pages) in the Immortal
DB prototype. The basic functionalities of Immortal DB are
discussed in Section 4. Experiments described in Section 5
investigate the overhead introduced to provide transaction-
time support. In Section 6, we discuss prior work in terms of
its timestamp and version management. Finally, Section 7
summarizes the paper and points out future research direc-
tions for the Immortal DB prototype.

2 Immortal DB Timestamping

Timestamp management needs to deal with two main is-
sues:

1. How is a transaction’s timestamp chosen? It must be
close to the clock time at which a transaction is execut-
ing and be consistent with the ordering of transactions.

2. How is this time propagated to the versions of records
updated by a transaction, which all need the same
timestamp?

2.1 Choosing a Transaction’s Time

What Time, When Chosen

SQL Server supports a number of isolation modes, includ-
ing serializable, via fine grained locking and ARIES style
recovery [26]. Recently, it has added support for snapshot
isolation which permits reads to proceed without locking
and hence without conflicts with on-going updates. The
timestamps of transactions must order the transactions cor-
rectly, including serialization ordering when that option is
chosen.

Choosing a timestamp at transaction start, and using the
start time as the transaction’s time makes the timestamp
available whenever a record is updated, and so it can be
posted to the record version during the update. Further,
timestamp order (TO) concurrency [4] correctly serializes
transactions using this time. Unfortunately, TO can result in
a large number of aborts as transactions that serialize in an
order different from their already chosen timestamps must
be aborted.

Instead of early choice, Immortal DB chooses a
timestamp as late as possible. In the absence of requests
for CURRENT TIME (a SQL feature in which a transac-
tion can request its time during transaction execution [14]),
this chooses the timestamp at transaction commit, a choice
also suggested by others [30, 32]. Late choice means that
the timestamp can be chosen when transaction serialization
order is known. Thus, in Immortal DB, we choose a transac-
tion’s timestamp to be its commit time, guaranteeing that it
is consistent with transaction serialization order. However,
late choice means records updated during the transaction
will need to be re-visited to timestamp them.

Representing and Storing Timestamps

It is useful for time used for timestamping record versions to
be represented in the same way as time in the database itself
or easily convertible to such a representation. This enables
us to treat our timestamp as a user visible attribute that can
be accessed in a WHERE clause. It also easily supports “as
of” queries using a user sensible time representation.

Version

8 bytes

Record data (n bytes)

(a) Record structure for versioning

2 bytes 4 bytes

(b) Structure of versioning information

Timestamp (Ttime)
Sequence

Number (SN)Pointer VP

(14 bytes)
Versioning data

Figure 1. Record structure in Immortal DB.

In SQL Server, the SQL date/time function returns an
eight byte time with a resolution of 20ms, which is not suffi-
cient precision to give each transaction a unique time. With-
out a unique time, it is impossible to identify every database
state among the versions stored in Immortal DB. Thus, we
extend this SQL value with an additional four byte sequence
number. This extension permits us to distinguish 2**32 dis-
tinct transactions within a 20 ms span, more than enough for
any conceivable transaction processing system.

SQL Server snapshot isolation versioning adds 14 bytes
to the tail of each record. To minimize our changes to SQL
Server, Immortal DB utilizes these same bytes for its ver-
sioning information. Figure 1a gives the record layout used
in SQL Server. Figure 1b gives the Immortal DB layout of
these 14 bytes, specified as follows:
Version pointer VP(2 bytes). VP contains a pointer to the
previous version of the record that existed prior to this up-
date. This intra-page pointer need not be larger than 2 bytes.
This is discussed more completely in Section 3.
Timestamp time Ttime (8 bytes). We initially store the
TID of the updating transaction in Ttime. After a transac-
tion commits, the TID is replaced with the time chosen for
the transaction.
Sequence number SN (4 bytes). We store the sequence
number used to extend the precision of our timestamp in
SN to provide every transaction with a unique and cor-
rectly ordered timestamp. SN is assigned when the record
is timestamped.

2.2 The Timestamping Process

Because it uses late timestamping, Immortal DB must
revisit updated records in order to timestamp them. Two re-
visiting strategies have been proposed, eager timestamping
and lazy timestamping. We discuss both below and explain
why we chose lazy timestamping.

Eager Timestamping

Eager timestamping adds the timestamp to updated record
versions before the updating transaction commits. To ac-
complish this, a list is maintained of the record versions

produced by this transaction. At transaction commit, we
know the transaction time, and we add timestamps to all
record versions on the list. Eager timestamping has two
main advantages: (i) The idea is intuitive and simple to im-
plement, involving treating timestamping as a normal up-
date. Hence it exploits existing mechanisms. These are
“in place” updates and do not themselves produce new ver-
sions. (ii) Once a transaction commits, all the records in-
serted/updated by this transaction are timestamped, simpli-
fying subsequent accesses.

However, eager timestamping has drawbacks: (i) When
we revisit records for timestamping, some of them may
not be in main memory. This can result in extra I/O’s.
(ii) Transaction commit is delayed until timestamping is
done, extending transaction duration, and reducing system
throughput because locks are held for a longer period. (iii)
Timestamping needs to be logged as well, because recovery
needs to redo the timestamping should the system crash.
Extra log operations reduce system throughput. The delay
of transaction commit and the extra logging are serious per-
formance liabilities that cause us to pursue the alternative
below.

Lazy Timestamping

With lazy timestamping, timestamping is done when
records are visited on their next normal access or when
the page is visited for some reason, such as during a page
split. We maintain a persistent timestamp table that con-
tains the mapping from transaction id to timestamp, as
was done in Postgres [32, 33]. While timestamp table up-
date serializes transactions, lock duration is very short as
transaction commit follows immediately. Hence, transac-
tions are shorter and concurrency and system throughput
are increased. Uniquely, Immortal DB garbage collects the
timestamp table incrementally, which we show below can
be done without logging the timestamping.

Data Structures:
We maintain two data structures to perform lazy timestamp-
ing:

Persistent timestamp table (PTT). PTT is a disk ta-
ble that has the format (TID, T time, SN), where TID is
the transaction identifier, T time is the commit (clock) time
of the transaction, and SN is the sequence number of the
transaction. (Recall that our timestamp is a concatenation
of T time and SN .) This table is a B-tree based table or-
dered by TID, which permits fast access based on TID
to find the related timestamp information. Since TIDs are
assigned in ascending order, this also means that all recent
table entries are at the tail of the table.

Volatile timestamp table (VTT). The VTT is
a main memory hash table that has the format
(TID, T time, SN, RefCount). We use RefCount

to count versions not yet timestamped. At com-
mit, RefCount is the number of records in-
serted/updated/deleted by this transaction, i.e. the
number of record versions that need timestamping. The
VTT caches the recent and hence likely to be used entries of
the PTT. It speeds the translation from TID to timestamp,
and counts the number of versions for each transaction that
remain to be timestamped. Note that the RefCount entry
is only kept in the VTT, and hence, maintaining it has a
very low cost.

The Timestamping Process:
The lazy timestamping process has four stages:
I: Transaction Begin. A VTT entry is created when a trans-
action starts. At that time, we assign the transaction a TID
and enter it into the T time field, initialize its RefCount
field to zero, and set its SN to “invalid”, meaning that the
transaction is currently active and does not yet have a trans-
action time.
II: Inserting/updating/deleting records. New versions are
initially marked with the TID of the updating transaction
in the 8-byte T time field at the tail of the record. A record
marked by a TID is called a non-timestamped record. We
also increment the RefCount field for the transaction in
the VTT.
III: Transaction commit. At transaction commit, we de-
termine a timestamp for the transaction, consisting of the
transaction commit time stored in T time in the volatile ta-
ble, and sequence number, stored in SN of the volatile ta-
ble. The RefCount in the VTT has already been set during
update actions. We do not revisit updated data records as in
eager timestamping. Rather lazy timestamping performs a
single update to the PTT that includes the TID, T time and
SN from the VTT. These entries will be used in Stage IV
to map from TID to timestamp.
IV: Accessing a non-timestamped record. When a non-
timestamped record is accessed after its transaction has
committed, we replace its TID with the transaction’s
timestamp. We consult the VTT for an entry with this TID
and we replace the TID with the VTT’s timestamp (T time
and SN). We decrement the VTT entry’s RefCount to
track the number of non-timestamped records of this trans-
action.

If we don’t find an entry for the TID in the VTT, we re-
trieve the corresponding entry from PTT, replace the TID
with the retrieved transaction timestamp, and cache this en-
try in the VTT. We set the RefCount for the entry to “un-
defined” so that we don’t garbage collect its PTT entry.

Activities that trigger lazy timestamping include:
• When we update a non-timestamped version of a

record with a later version, all existing versions must
be committed, and we timestamp them all.

• Just before a cached page is flushed to disk, we
check whether the page contains any non-timestamped

records from committed transactions. If so, we
timestamp them.

• If a transaction reads a non-timestamped version, we
timestamp it so that we can determine whether the ver-
sion is in the database state being queried. We use the
SN field in the VTT to indicate when the version is
part of an uncommitted transaction.

• When we time split a page of the current database to
provide room for additional versions, we timestamp
all versions from committed transactions. Only if we
know the timestamps for versions of records can we
determine whether they belong on the history page.
We describe this more completely below.

Lazy timestamping of non-timestamped data records re-
quires that an exclusive latch be obtained on the page to en-
able the change to be made. We mark such pages as “dirty”
so that they will be flushed to the disk appropriately. Once
a record is timestamped, a subsequent read of the record
will need only a read latch, and the “dirty” flag will not be
changed.

Garbage collection:
If we do not remove unneeded entries from it, the PTT
eventually becomes very large. Not only does this need-
lessly consume disk storage, but it can increase the cost for
a TID lookup to find its timestamp . To keep the PTT rela-
tively small and high performance, we garbage collect PTT
entries for which timestamping is completed. However, to
determine when timestamping is complete for a particular
transaction is subtle.

Immortal DB does volatile reference counting using
the RefCount field in the VTT, of the number of non-
timestamped records for each transaction. When the count
goes to zero AND all pages containing the now timestamped
records have been written to disk, we delete the entry for
the transaction from the PTT (and VTT). We can know
when the pages have been written to disk by tracking data-
base checkpoints. This is essential since we are not logging
timestamping and hence cannot redo it after a system crash.

Immortal DB records the LSN of the end of the log in the
VTT at the time that timestamping for a transaction is com-
plete (i.e. when its VTT RefCount goes to zero). When
the redo scan start point LSN becomes greater than its VTT
LSN, we know that all timestamping for the transaction is
stable on the disk. The redo scan start point moves as a re-
sult of checkpointing, which shortens the section of the log
that needs to be scanned during redo recovery [26].

Volatile reference counting avoids the extra logging and
disk write costs of stable reference counting. However,
there is a small risk of a system crash before all timestamp-
ing is done and timestamped records are on the disk.
Volatile reference counts would then be lost. This is not
a tragedy since crashes are rare. We simply end up with

certain PTT entries that cannot be deleted. However, once
timestamping is done for these entries, even though we
would not know this, these entries would no longer be ac-
cessed. So, at the cost of storing “in flight” transaction
timestamps persistently should the system crash (a modest
cost), we make reference counting very low in cost.

Because the PTT is organized as a B-tree ordered by
TID, its active part, consisting of entries for the most re-
cent transactions, is clustered at the tail of the table. So
access to the PTT remains fast, even though the PTT grows
whenever the system crashes. It is possible to delete the
otherwise ungarbage collectible entries by forcing all pages
to eventually time-split and become historical pages, as was
described in [22], which was similar to the “vacuuming”
process in Postgres [32].

Finally, Immortal DB also supports snapshot versions
(for snapshot isolation concurrency control). Snapshot ver-
sions do not need to persist across system crashes. Thus,
we do not store < TID, timestamp > entries for snapshot
transactions in the PTT. Entries are stored only in the VTT.
Further, we can drop the VTT entry for a snapshot transac-
tion immediately upon its reference count going to zero.

3 Immortal DB Versioning

We change the database storage engine to maintain
a record version for each transaction updating a record.
Changes are made in record structure, page structure, page
splitting, and indexing. The result is a single integrated data
access structure that houses all versions, current and histor-
ical. Versioning requirements differ for transaction time vs
snapshot isolation:
Snapshots: Only recent versions need to be maintained.
Immortal DB keeps track of the time of the oldest active
snapshot transaction O. Versions earlier than the version
seen by O are garbage collected. Because snapshot transac-
tions are aborted at a system crash, snapshot versions need
not persist across crashes.
Transaction Time: Versions persist for an extended time.
Because of the potential sizable number of historical pages,
it is desirable to index directly to the right page to avoid
the overhead of searching back along the version list. In
addition, versions need to persist across system crashes, and
so are not garbage collected.

3.1 Record Structure

Storing versioning and timestamping information re-
quires having additional bytes with each data record. Im-
mortal DB utilizes 14 bytes at the tail of the record struc-
ture currently used by SQL Server for snapshot isolation
versioning, but with a different format. Figure 1 gives the

(a) Transaction I: Insert A, Insert B

AB

A

A

BB

A

A

B

(c) Transaction III: Update A, Update B.

A

(b) Transaction II: Update A.

1

T0

T
0

2

T

T

1

T

0

2T

0

Page Header

Slot Array

Page Header

T0

1 0Slot Array

Page Header

Slot Array 01

0T

1T
0T

Figure 2. Page structure in Immortal DB.

structure of the extra bytes to store both timestamp and ver-
sion information. Timestamp information utilizes 12 bytes
and is described in Section 2.1. The remaining two bytes
are used to point to the previous version of the record.

Immortal DB initially stores older versions of a record
in the same page as the current record version. A 2-byte
pointer is sufficient to point to the previous version in the
same page. All versions are accessed through a versioning
chain that originates from the most recent record, until the
disk page is full. When the page becomes full, the older
version are moved to another page and the version pointer
(VP) field is used to store the slot number of the earlier ver-
sion in the “historical” page. We maintain a pointer in the
current page that references the historical page containing
these slots.

3.2 Page Structure

The page structure in conventional database systems in-
cludes a header at the start of the page and a slot array at
the end of the page. All records in the page are accessible
through a link from the slot array. The Immortal DB proto-
type has two main changes to this page structure:

Versioning chain. Historical versions for the current
records are accessed through the version chain and are only
indirectly accessible from the slot array. A current transac-
tion sees the same records via the slot array as it would with
the conventional page structure.

Page header. Two fields are added to the disk page header;
• history pointer. This points to the page that contains

versions for records that had once been in the current
page at an earlier time. These older versions can be
traced through different pages via a version chain of
pages.

• split time. This field contains the time used to time split
the page, i.e. the start time for versions in the page. By

examining this field during an “as of” query, we may
skip searching for records in this page.

History pointer and split time are assigned in the page time
split procedure (Section 3.3).

Figure 2 illustrates the layout of a page and describes
how it changes during three transactions. Transaction I
(Figure 2a) inserts two records A and B. This insertion
is done as in conventional databases where two entries in
the slot array are allocated to point to the newly inserted
records. Transaction II updates record A, allocating a new
version of A in the disk page. This version points to the old
version of A. The slot array entry now points to the new ver-
sion of A. Figure 2b gives the layout of the disk page after
executing transaction II. Transaction III (Figure 2c) updates
both records A and B. New versions are allocated for A and
B that point back to their previous versions. The slot array
entries now point to these latest versions of each record.

3.3 Page Time Split

Time splitting is a unique feature of Immortal DB and
greatly increases the efficiency of its queries. Historical
versions are initially stored in the current page. When the
current page is full, we either do a B-tree style key split
or a time split. A key split splits the records by key range
and distributes records over two pages, both holding cur-
rent data. A time split, which we do using the current time,
moves historical (non-current) record versions out of a cur-
rent page into a historical page separate from the current
data.

A time split is unlike a key split which partitions the
record versions of an existing page. For a page time split,
we distinguish four cases when assigning record versions
between current page and historical. These are illustrated in
Figure 3 and described below:

1. Record versions with end times before the split time
are moved to the historical page.

2. Record versions whose lifetimes span the split time are
copied to the historical page. Also, they (redundantly)
stay in the current page.

3. Record versions whose lifetimes start after the split
time remain in the current page.

4. Uncommitted records remain in the current page.

Some record versions are replicated to both pages. In
Figure 3, this is true for the only version of Record A, the
earlier version of record B, and the center version of record
C. The most recent version of B is only in the current page,
the earliest version of C is only in the history page, a delete
stub for C is only in the current page. Delete stubs earlier
than the split time are removed from the current page since
their purpose is to provide an end time for an immediately
prior version in the same page.

The essential point is that each page contains all the ver-
sions that are alive in the key and time region of the page.
With a time split, we assign a historical page the time range
that starts at the split (start) time for the current page be-
fore the time split (this becomes the historical page’s start
time), and ends at the new value for split time of the cur-
rent page after the time split. Records that cross the new
split time appear in both pages. Because historical versions
are read-only and never updated, no update difficulties are
introduced due to this redundancy.

We key split a page in addition to performing a time split
if storage utilization after a time split is above some thresh-
old T , say 70%. This ensures that, in the absence of deletes,
storage utilization for any time slice will, under usual as-
sumptions, be T ∗ ln(2). The impact of this choice un-
der varying assumptions is explored in [21]. Current time
range search performance is lower than in B-trees, where
T = 100% due to the reduced utilization of current records
per page.

When time splitting a current page, we include in it a
pointer to the newly created historical page. We include
with that pointer the split time we used to divide the ver-
sions between current and history pages. This chain of
pages, each with an associated earliest time enables faster
querying of versioned data.

3.4 Indexing Versions

When accessing recent versions for a snapshot isola-
tion transaction, the split time in the current page tells us
whether we will find the version of interest in the current
page or need to access an historical page. We expect to
usually find the desired recent version, even if it is not the
current version, in the current page. Occasionally, we will
need to access the first historical page, more rarely will we
need to traverse deeper into the page chain.

Thus, searching for recent versions requires a visit to the
current page. If not there, we search the time split chain of

RecA

RecB

RecC

time

Split time

History:

Current:

H & C:

Current
Page

History
Page

Delete Stub

Figure 3. Time Splits in Immortal DB.

pages back until we encountered a page containing versions
in the time range of interest. This behavior is more than
acceptable for snapshot isolation, but is unacceptable for
persistent versions, where the time split page chain can be
quite long.

The time-split B-tree (TSB-tree) [20, 21] was designed
for indexing historical versions. It indexes the collection of
time split and key split data pages that we have been de-
scribing. Once the TSB-tree is supported in Immortal DB,
we will directly access the data pages that are needed to sat-
isfy any historical query. This indexing is enabled by time
splitting, which ensures that all versions that lived in each
page’s time range will be stored there. Storing a version of
a record that lives across the time split boundary in both of
the pages resulting from the time split accomplishes this.

4 Immortal DB Functionality

In this section, we describe how a user, writing in the
SQL language and using our extensions, can specify the
temporal functionality supported by Immortal DB.

4.1 Defining an IMMORTAL table

We define an immortal property on database tables, i.e.,
we explicitly specify if a certain table is immortal. The key-
word Immortal is added to the Create Table state-
ment to indicate that the table should have persistent ver-
sions. Non-immortal tables, i.e., conventional tables, can
still make use of our prototype for supporting snapshot ver-
sions, i.e., recent versions used for concurrency control, by
enabling snapshot isolation using an Alter Table state-
ment.

The following example shows the creation of an im-
mortal table named MovingObjects. Figure 4 shows a
screen shot of our application using this table. This table is
used for our experiments in Section 5.

Create IMMORTAL Table MovingObjects
(Oid smallint PRIMARY KEY,
LocationX int,
LocationY int) ON [PRIMARY]

By recognizing the new keyword IMMORTAL, we set a
flag in the table catalog that indicates the immortal property
of that table. This flag is visible to the storage engine. The
“immortal” flag in the table catalog determines three things:

1. There is no garbage collection of historical versions in
an immortal table.

2. When an update transaction commits, we insert an en-
try for it into the PTT for lazy timestamping of its up-
dates.

3. Immortal tables enable “AS OF” historical queries of
versioned data.

The rest of Immortal DB functionality (e.g., volatile
timestamping, versioning chain, etc.) can also be exercised
via conventional tables enabled for snapshot isolation, since
this requires keeping track of recent versions with their
timestamps.

4.2 Querying in Immortal DB

Immortal DB can support many forms of temporal
applications (e.g., the list of applications mentioned in
Section 1). Some of these need new query process-
ing/optimization techniques. Our Immortal DB implemen-
tation focused on changes to the SQL Server storage engine.
However, as a proof of concept, it supports “as of” queries.
We did this by modifying the snapshot isolation capability
already present. We extended the SQL Server syntax for
the “Begin Transaction” statement by adding the keyword
clause AS OF. The query below asks for the first ten mov-
ing objects “as of” some earlier time.

Begin Tran AS OF "8/12/2004 14:15:20"
SELECT * FROM MovingObjects
WHERE Oid < 10
Commit Tran

To process this query, we traverse a B-tree index on a
primary key to find current records for the ten objects. Then
we traverse record version chains starting at these current
versions. We describe here only our impending optimized
page chain traversal. For this, we check the current page’s
split time. If “as of” time is later than split time, the version
we want is in the current page. Otherwise we follow the
page chain to the page holding versions for the requested

Figure 4. Moving objects in the Seattle Area.

time. When we replace the B-tree by a TSB-tree, we will
index directly to the appropriate page, avoiding the cost of
searching down the page time split chain.

We then follow the record versioning chains in the iden-
tified page to find the versions with the largest times ear-
lier than “as of” time. Thus we only follow record version
chains in the one page that must contain the version of in-
terest.

The layout and structure of both records and pages allow
for supporting several kinds of queries that exploit and/or
mine the history. In particular, our versioning is capable of
supporting “time travel” where we ask to see the history of
a particular object(s) over time. This functionality requires
changing the query processor, which is beyond the scope of
our project.

5 Experimental Results

We performed several experiments with Immortal DB to
evaluate its performance. The experiments focused on two
aspects:

• The overhead of regular transactions. As Immortal DB
provides new functionality, one expects to see addi-
tional overhead. However, our experiments show this
overhead is quite low.

• The performance of “AS OF” queries. Here one ex-
pects to encounter some overhead as we need to look
through the versions maintained to find the appropriate
version.

We used the Network-based Generator of Moving Ob-
jects [8] to generate a set of moving objects (e.g., vehicles,
trucks, cyclists, etc) on a road network. Figure 4 gives a
screen shot of the generator where objects (the circles) are
plotted on the road network of the Seattle area. Once an

object appears on the map, it sends an Insert transac-
tion to the Immortal DB server that includes the object ID
and location. Our Immortal DB server appends a timestamp
to the inserted record using the lazy timestamping method.
When an object moves, it sends an update transaction to
the Immortal DB server to update its location. Moving ob-
jects have variable speeds, i.e., they submit update trans-
actions at different rates. Also, a moving object has a pre-
determined source and destination. Once an object reaches
its destination, it stops sending update transactions to the
server. Thus, not all moving objects have the same number
of updates.

The experiments in this section were run on an Intel Pen-
tium IV 2.8GHz processor with 256MB of RAM, and run-
ning Windows XP. The base DBMS is SQL Server, and Im-
mortal DB is implemented using C++ extensions to SQL
Server. DB Page size is 8KB.

5.1 Transaction Overhead

We investigated the overhead of insert/update transac-
tions. Figure 5 compares the execution of up to 32,000
transactions for the Immortal DB and a traditional data-
base. Among the 32K transactions, only 500 are Insert
transactions, the rest are updates. The performance of
the Immortal DB is greatly affected by the number of in-
serted/updated records per transaction. Regardless of trans-
action size, each separate transaction requires an update to
the persistent timestamp table. The lowest overhead case
is when all the 32,000 records are inserted/updated within
only one transaction. In this case, Immortal DB updates
the timestamp table only once. The highest overhead case
is when each transaction updates or inserts only one single
record. In this case, we update the timestamp table 32K
times, which results in more I/O and CPU processing. We
do not show the lowest overhead case as it is indistinguish-
able from non-timestamped updates. The highest overhead
case with 32K transactions resulted in Immortal DB having
an 11% overhead over conventional tables.

As expected, Immortal DB has an overhead over the tra-
ditional database where it provides an additional function-
ality. The overhead results from two factors:

• With a transaction-time table, 32K transactions result
in 32K records being stored on the disk. In a traditional
database, only 500 records are stored on the disk.
Thus, Immortal DB needs to allocate and access more
disk storage when providing transaction time function-
ality.

• In every update transaction (we have 31,500 update
transactions), Immortal DB consults the timestamp ta-
ble to timestamp the previous record versions. We
don’t consult the timestamp table for inserts (500

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

No. of Transactions (K)

T
im

e
 (

s
e

c
)

Figure 5. Transaction overhead in Immortal DB.

transactions) where a newly inserted record is initial-
ized by the transaction ID as its temporary timestamp.
However, each update timestamps, not the newly in-
serted record version, but the prior version by replac-
ing its transaction ID with its assigned timestamp from
the timestamp table.

For the case of 32K transactions, transactions for a con-
ventional table average in 9.6 msec. To support a transac-
tion time table, we add an additional 1.1 msec to each trans-
action, or about 11%. This is really a worst case measure
as each transaction updates a single record. If we include
many updates within one transaction, we would have about
the same 1.1 msec overhead, but the overhead percentage
would be much lower. The reason for this small overhead
is that there is a large common part in the execution of both
transaction time (immortal) and conventional tables.

5.2 AS OF Queries

Next we investigated full table scan “AS OF” queries.
Figure 6 graphs the results of experiments with 36,000
transactions having different ratios between the number of
updates and the number of insertions. The experiment was
repeated four times with insertions of 500, 1000, 2000, and
4000. We restrict the number of transactions to be equal for
each experiment. Thus, for these experiments, each record
is updated 72 times for the 500 insert case, 36, 18, and 9
times for the others respectively. An “as of” query that asks
about the recent history will have better performance with
lower number of inserts, basically because the number of
retrieved records is smaller. However, as we go back in
history, the performance advantage reverses because those
records are updated more frequently. The more updates,

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 100
% of History

m
se

c 4K*9
2K*18
1K*36
0.5K*72

Figure 6. The effect of insertions/updates on
AS OF queries.

the lower the performance, because the version chains are
longer.

It is not surprising that a query over older data has a
much larger response time. We currently sequentially scan
the chain of pages starting at the current page, looking
for the page responsible for records with the “as of” time.
Then, within the required page, we search for the quali-
fied records. We expect that the performance of “as of”
queries, independent of the time requested, to equal current
time queries once we implement the TSB-tree to index the
versions.

6 Related Work

Here we describe how timestamp management and ver-
sion management, are performed in three database systems
that support versioning and historical queries of some form.
Not described are middleware systems supporting some fla-
vor of snapshot versioning, frequently used for higher avail-
ability via replication. They are rarely intended to provide
“as of” query capability to multiple versions. Transaction
time functionality is either not present, is greatly circum-
scribed or has limited performance.

6.1 Rdb

Oracle Rdb [13] supports snapshot isolation, and seri-
alizable transactions with fine grained locking. It requires
version ordering based on transaction serialization order,
which is determined at transaction end, a problem it shares
with Immortal DB. Because it only supports snapshots,
however, it can take a different approach, using commit-
lists [13, 27], a clever technique that avoids having to revisit
versions to do timestamping.

An update transaction stamps its versions with its TSN,
like Immortal DB. At the start of a snapshot read transaction
(Rdb only supports reads for snapshots), the transaction is
given the list of TSNs of committed transactions. When
accessing a record, the snapshot transaction searches back
in time from the current version for the first version whose
TSN appears on its commit list. Only transactions close in
time to the snapshot need to be explicitly on the list. The
others are either known (i) to be committed because they
have TSNs before a lower bound or (ii) to be uncommit-
ted because their TSNs are after the TSN of the snapshot
transaction. Unfortunately, the commit list approach does
not generalize to support queries that ask for results as of an
arbitrary past time. Only snapshot transactions are given a
commit list, and only for the time when they begin execut-
ing. Generating commit lists for earlier times is not possi-
ble.

Rdb stores historical versions in a separate storage area.
Both current and historical storage areas need to be accessed
for snapshot queries, unless the current version has a TSN
on the commit list. Versions do not survive a crash and are
not indexed by time.

6.2 Oracle and Oracle Flashback

Oracle supports snapshot isolation, but it’s support of se-
rializable transactions is only with coarse grained locking.
Most users do not use atomic (serializable) transactions.
The Oracle snapshot isolation technique reduces locking
conflicts but makes it very difficult to include high concur-
rency serializable transactions. Exactly how Oracle handles
timestamping of its versions is not easily accessible.

Oracle Flashback [28] supports persistent versioning in
which versions are re-created from retained undo informa-
tion. It searches for the right version in the undo informa-
tion consisting of prior versions of records. This capability
is described mostly as dealing with database corruption in-
troduced by erroneous transactions. It solves this problem
via “point in time” recovery back to a time prior to the exe-
cution of the erroneous transaction, without the need for in-
stalling a database backup and rolling forward using a redo
log. So Flashback is capable of shortening the outage pro-
duced by erroneous transactions, which is a real problem.

While Flashback supports flashback (“as of”) queries,
that does not seem to be its design center, nor does it ap-
pear to be tuned for that purpose. If a query uses clock time
for its “as of” time, the result is only approximate, since ver-
sions are identified by something analogous to a transaction
identifier, not a time. Search starts with the current state,
and scans back through the undo versions for the version
of interest. One would expect performance to degrade the
farther back in time one goes.

6.3 Postgres

Postgres [32] is closest to Immortal DB in functionality,
but uses different techniques both for timestamp manage-
ment and for version management.

Postgres stamps records with a “real” time that needs to
be consistent with transaction serialization order. For that
reason, Postgres, like Immortal DB, revisits records after
commit, either on next access, or via a background “vac-
uuming” demon. “Vacuuming” moves old versions to an
R-tree organized archival storage but also degrades current
database performance [33]. Postgres uses a form of persis-
tent timestamp table (PTT), but without garbage collection.
It relies on “vacuuming” to limit the growth of the PTT.

Because Postgres moves historical verisons to a separate
access structure, most “as of” queries need to access both
current and historical storage structures. Otherwise, it is
impossible, in general, to determine whether the query has
seen the record version with the largest timestamp less than
the “as of” time.

The R-tree limits Postgres in two ways. First, Postgres
cannot simply maintain all the versions, including the cur-
rent versions, in the R-tree because the R-tree cannot handle
records with unknown end times. Second, R-tree perfor-
mance on “as of” queries is problematic. Storage utilization
for some timeslices in an R-tree page can be very low. R-
trees do not have the kind of storage utilization characteris-
tics produced by our time-splitting process.

7 Discussion

7.1 Research Status

We have described our Immortal DB effort. Its main goal
is to provide transaction time support built into a commer-
cial database system, not layered on top. This functionality
also supports snapshot isolation concurrency control. Im-
mortal DB does not impose any storage overhead for record
structures when conventional tables are defined. Like snap-
shot isolation versioning, it uses extra bytes, indeed the
same bytes as in SQL Server, but in a different format.

Each database change inserts a new version for the
changed record in the database that points back to the
prior version of the same record. We dealt with two main
challenges: (1) Timestamping. Immortal DB does lazy
timestamping after commit. (2) Storing versions. Immor-
tal DB maintains all versions of records in a single unified
storage scheme. This avoids the large cost of separately ac-
cessing current and historical data.

We extended SQL syntax to support creating immortal
tables. We then implemented “AS OF” queries asking for
the state of the database “as of” some time in the past. Our

experiments show that the additional Immortal DB func-
tionality results in only modest additional overhead for cur-
rent time function.

7.2 Next Steps

There are a number of important features not yet in-
cluded in Immortal DB.

Temporal Indexing: It is essential that we provide effi-
cient access to historical versions of data. While our current
performance is quite good for accessing recent versions of
data, the longer a database is updated, the worse the per-
formance is for accessing the same version (i.e. the version
with the same “as of” time). This is not acceptable behav-
ior. Fortunately, we know how to do the time based indexing
[20] and providing it is next on our “to do” list.

CURRENT TIME: A SQL query can ask for CUR-
RENT TIME within a transaction. This request needs to
return a time consistent with the transaction’s timestamp.
This forces a transaction’s timestamp to be chosen earlier
than its commit time. Our main idea is to extend the con-
ventional lock manager to keep track of earlier conflicting
transactions and their timestamps. This improves on the
more limited functionality in [14].

Queryable Backup: Prior work [22] described how to
use a TSB-tree to implement a versioned database, where
the historical pages could be used as a backup of the cur-
rent database. Such a backup has three advantages. (i) It
is always installed and ready to be “rolled forward”, hence
saving restore time. (ii) It is done incrementally. (iii) It can
be queried. This increases the value of keeping the histori-
cal versions.

As temporal support is deployed in commercial data-
bases, it will trigger much wider use of this functionality.
And that will make it clear that we have barely started in
developing database technology for this important area.

References

[1] A. Adya, B. Liskov, and P. E. O’Neil. Generalized Isolation
Level Definitions. ICDE, 67–78, 2000.

[2] I. Ahn and R. T. Snodgrass. Performance Evaluation of a
Temporal Database Management System. SIGMOD, 96–
107, 1986.

[3] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil,
and P. E. O’Neil. A Critique of ANSI SQL Isolation Levels.
SIGMOD, 1–10, 1995.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[5] R. Bliujute, C. S. Jensen, S. Saltenis, and G. Slivinskas.
R-Tree Based Indexing of Now-Relative Bitemporal Data.
VLDB, 345–356, 1998.

[6] B. Bloor. Audit the Data - or Else. Un-audited
Data Access Puts Business at High Risk. (2004)
http://www.baroudi.com/pdfs/LumigentFinal.pdf.

[7] M. Breunig, C. Turker, M. H. Bohlen, S. Dieker, R. H. Gut-
ing, C. S. Jensen, L. Relly, P. Rigaux, H.-J. Schek, and
M. Scholl. Architectures and Implementations of Spatio-
temporal Database Management Systems. LNCS 2520, 263–
318. Springer, 2003.

[8] T. Brinkhoff. A Framework for Generating Network- Based
Moving Objects. GeoInformatica, 6(2), 2002.

[9] J. Clifford and A. Tuzhilin. Recent Advances in Temporal
Databases, International Workshop on Temporal Databases.
Springer, 1995.

[10] C. E. Dyreson and R. T. Snodgrass. Valid-time Indetermi-
nancy. ICDE, 335–343, 1993.

[11] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-Time
Indeterminacy. ACM TODS, 23(1):1–57, 1998.

[12] S. K. Gadia and C.-S. Yeung. A Generalized Model for a
Relational Temporal Database. SIGMOD, 251–259, 1988.

[13] L. Hobbs and K. England. Rdb: A Comprehensive Guide.
Digital Press, 1995

[14] C. S. Jensen and D. B. Lomet. Transaction Timestamping in
(Temporal) Databases. VLDB, 441–450, 2001.

[15] C. S. Jensen, L. Mark, and N. Roussopoulos. Incremental
Implementation Model for Relational Databases with Trans-
action Time. IEEE TKDE, 3(4):461–473, 1991.

[16] C. S. Jensen and R. T. Snodgrass. Temporal Data Manage-
ment. IEEE TKDE, 11(1):36–44, 1999.

[17] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing Access
Methods for Bitemporal Databases. IEEE TKDE, 10(1):1–
20, 1998.

[18] T. Y. C. Leung and R. R. Muntz. Query Processing for Tem-
poral Databases. ICDE, 200–208, 1990.

[19] D. B. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang,
and Y. Zhu. Immortal DB: Transaction Time Support for
SQL Server. SIGMOD, 939-941, 2005.

[20] D. B. Lomet and B. Salzberg. Access Methods for Multiver-
sion Data. SIGMOD, 315–324, 1989.

[21] D. B. Lomet and B. Salzberg. The Performance of a Multi-
version Access Method. SIGMOD, 353–363, 1990.

[22] D. B. Lomet and B. Salzberg. Exploiting A History Database
for Backup. VLDB, 380–390, 1993.

[23] S. Lu, A. J. Bernstein, and P. M. Lewis. Correct Execution
of Transactions at Different Isolation Levels. IEEE TKDE,
16(9):1070–1081, 2004.

[24] M. S. Mazer. Data Access Accountability - Who Did What
to Your Data When? A Lumigent Data Access
Accountability Series White Paper: (2004)
http://www.lumigent.com/files/Whitepaper DAA.pdf

[25] L. E. McKenzie and R. T. Snodgrass. Extending the Rela-
tional Algebra to Support Transaction Time. SIGMOD, 467–
478, 1987.

[26] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz. ARIES: A transaction recovery method support-
ing fine-granularity locking and partial rollbacks using write-
ahead logging. ACM TODS, 17,1 (Mar. 1992) 94-162.

[27] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and Flexible
Methods for Transient Versioning of Records to Avoid Lock-
ing by Read-Only Transactions. SIGMOD, 124–133, 1992.

[28] Oracle. Oracle Flashback Technology. (2005)
http://www.oracle.com/technology/deploy

/availability/htdocs/Flashback_Overview.htm

[29] G. Ozsoyoglu and R. T. Snodgrass. Temporal and Real-Time
Databases: A Survey. IEEE TKDE, 7(4):513–532, 1995.

[30] B. Salzberg. Timestamping After Commit. PDIS, 160–167,
1994.

[31] R. B. Stam and R. T. Snodgrass. A bibliography on temporal
databases. IEEE Data Engineering Bulletin, 11(4):53–61,
1988.

[32] M. Stonebraker. The Design of the POSTGRES Storage Sys-
tem. VLDB, 289–300, 1987.

[33] M. Stonebraker, L. A. Rowe, and M. Hirohama. The Im-
plementation of Postgres. IEEE TKDE 2(1):125–142, 1990.

[34] A. U. Tansel, J. Clifford, S. K. Gadia, A. Segev, and R. T.
Snodgrass. Temporal Databases: Theory, Design, and Im-
plementation. Benjamin/Cummings, 1993.

[35] K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum Ap-
proaches to Temporal DBMS Implementation. IDEAS, 4–13,
1998.

