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Abstract with large numbers of stream sources, there always exist a
large number of overlapped phenomena of different sizes
Spatio-temporal data streams that are generated from and shapes. Due to the highly dynamic nature of mobile
mobile stream sources (e.g., mobile sensors) experiencestream sources, phenomena continuously change their sizes
similar environmental conditions that result in distindtes and locations over time. Examples of detectable phenom-
nomena. Several research efforts are dedicated to detecena include pollution clouds in the air, oil spills at the ace
and track various phenomena inside a data stream man-surface, fire alarms in a building, water floods of a river,
agement system (DSMS). In this paper, we use the detectethigration of birds, and epidemic spread of diseases.
phenomena to reduce the demand on the DSMS resources. |n this paper, we introduce a nephenomenon-aware
The mainideais to let the query processor observe the inputstream query processor. The main idea is to make use
data streams at the phenomena level. Then, each incomingf the efficient techniques for phenomenon detection and
continuous query is directed only to those phenomena thattracking (e.qg., see [3, 11, 12, 17]) in optimizing subsedquen
participate in the query answer. Two levels of indexing are queries. Detected phenomena act as an indexing scheme
employed, a phenomenonindex and a query index. The phethat directs the execution of spatio-temporal queries tg on
nomenon index provides a fine resolution view of the input those stream sources that can contribute to the query answer
streams that participate in a particular phenomenon. The By looking at the existing phenomena within the stream
query index utilizes the phenomenon index to maintain asources, the query processor will have a fine resolution view
query deployment map in which each input stream is awareover all the streams. Based on this view, the query proces-
of the set of continuous queries that the stream contributessor decides which phenomena need to be investigated more
to their answers. Both indices are updated dynamically in closely to answer a specific query. Thlegenomenon-aware
response to the evolving nature of phenomena and to thequery processor achieves a trade-off between the number
mobility of the stream sources. Experimental results show of stream sources participating in the query execution and
the efficiency of this approach with respect to the accuracy the accuracy of that query. One main attractive feature of
of the query result and the resource utilization of the DSMS. the proposeghthenomenon-awamguery processor is that it
is inherently equipped with an outlier-detection mechamnis
that makes it sustainable to the noisy environment of stream
sources. Outlier or isolated stream sources that do not con-
tribute to any phenomenon do not appear in the finer resolu-

] - ) tion view. Thus, they do not contribute to the query answer.
Recent research in exploiting the spatio-temporal proper-

. . To efficiently realize thgghenomenon-awamguery pro-
ties of mobile stream sources conclude that stream sources . .

. . : : cessor, we employ two indexing schemes,ghenomenon
that are spatially co-located, at a certain period of tinxe, e

. L . . . .~ indexand thequery index The phenomenon indekeeps
perience similar environmental conditions and provide sim -
: . track of currently detected phenomena within the stream
ilar readings (e.g., see [1, 2, 3, 11, 12, 17]). Such behav- . ' : o .
o . sources. The main assumption behind this index is that the
ior is termed gphenomenonA phenomenois a group of

. S change in the overall phenomenon parameters (e.g., shape
close-by stream sources that persist to generate simiar be 9 b b (e.g P

. . : ; : : and location) is much less frequent than the change in the
havior over a period of time. Typically, in an environment . S 4 .
underlying stream sources. Thus, while it is almost infeasi
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stream sources. Thguery indexkeeps track of currently Query Deployment Map

registered queries in the system and indexes them by their |
regions of interesting phenomena (i.e., phenomena that sat ! [
isfy the query predicates). On top of both thieenomenon
indexand thequery indexaquery deployment maQDM)

is maintained. The QDM allows each stream sowde
subscribe only to a list of queries thatontributes to their
answer. The QDM is updated as stream sources join, leave,
or change their locations in the environment. In summary,
the contributions of this paper are as follows:

Query Dispatcher

Query

Query Plan Analyzer }

Query Plans [

1. We introduce the concept phenomenon-aware query ‘
processin@nd empower data stream management sys- [
tems with a phenomenon-aware optimizer. § y

2. We propose two levels of indices at the core of the e T
phenomenon-aware optimizer; ghenomenon index ~  SteamofPhenomenonbpages Stream of Location Updat
and aquery index ‘

3. Given the phenomenon and the query indices, we de-
velop an efficienquery deployment maghere each
query is deployed over a small subset of data streams.

. We provide an experimental evidence that
phenomenon-aware query processing increases the

output rate of continuous queries that are registered atipe necessary knowledge about phenomena in the space.
the system (e.g., by up &007%). A phenomenon updateiple has one of the two forms:

The rest of this paper is organized as follows. Section 2 (Phenomenon-id, Behavior-Update,®)(Phenomenon-id,
describes the system architecture. Sections 3 and 4 describRegion-Update, Rjo indicate a behavior or a region up-
the phenomenomnd thequeryindices, respectively. Sec- date, respectively. A phenomenon-behavior update implies
tion 5 provides an experimental study of the proposed in- & change in the readings of the phenomenon underlying
dices inside a prototype DSMS. An overview of the related streams, e.g., an increase in the temperature readings of a

work is given in Section 6. Section 7 concludes the paper. fire. A phenomenon-region update implies a displacement
of the stream sources contributing in the phenomenon, e.g.,

the movement of a fire in accordance to the wind direction.

The stream ofocation updateprovides the optimizer with

. . . the current locations of the stream sources and has the form
Figure 1 gives the_ (_’;\rchltecture of the proposed (StreamSource-id,x,y\wherex andy are the location coor-

phe_znomenon-aware optimizer. The phenomenon_—aware OPdinates. The set afuery planss processed by the optimizer

timizer has three components: fhleenomenon monitpthe based on the optimizer’s knowledge of existing phenomena.

query plan anglyzerand thequery dispatcher The phe— The phenomenon-aware optimizer outputqueery de-
nomenon m_onltotracks pheno_mena as they move in space ployment map The query deployment mais represented
and maintains @henomenon indexThe phenomenon in- as a sequence of commands of the fo@treamSource-

dex indexes phenomena by content (i.e., reading values)]-d SUBSCRIBES TO Query-id) to indicate that a stream
The query plan analyzetraverses the phenomenon index source is of interest to a particular query

for each query plan to decide which phenomenon regions

are likely to satisfy the query predicates. Then, guery .

indexis built to index queries spatially based on their re- 3 Phenomenon Indexing

gions of interest. Theuery dispatcheupdates the query

deployment map according to the locations of the mobile This section provides a basic and generic definition of a
stream sources. Then, tieery dispatcheexecutes each ~ phenomenon along with a description of the phenomenon
query only over stream sources that are in the query’s re-index and its manipulating algorithms.

gions of interest. L Definition 1 A phenomenorP; at time instantr is a binary tu-
Inputs to the phenomenon-aware query optimizer are ofp|e (R~,B.,), whereR, is the bounding region of phenomensp

N

Spatio—temporal Data Streams

Figure 1. The Architecture of a phenomenon-
aware stream query optimizer.

2 System Architecture

three types: a stream gfhenomenon updates stream
of location updates and aset of query plans The
stream ofophenomenon updatgsovides the optimizer with

at time instantr and B,, is the representative behavior of phe-
nomenonP;, over the most recent time window of sizeS.T.V
streamS; € R, Prob(|B.(Si) — Bu| > €) < o



Based on Definition 1, a phenomenon has to be asso- B(L3) B(25) - B(4n)
ciated with a time instant because a phenomenon may \
change its location®) over time. Also, the representative
behavior of a phenomenaB,, is captured over a window
of time (w) to ensure its persistency and to avoid the effect

[5(1) 3(3)] [ BQ) 5(5)] [8(4) B(n)]

of noise. A stream sourc§; that lies in the phenomenon (o) priaaf ehig3f pria) [ pidh [ P Lo
regionR, should report a behavioB,, (.S;)) that is similar LR%‘{S?Q% ﬁis?%ﬁis?j}?‘rﬁ ﬁfq?i i ﬂﬁi o
to the phenomenon representative behawgrwith high _

probability. B,, captures the intrinsic features of the under- ALV

lying phenomenon, e.g., values, frequencies, and trends of T ¢P‘:‘§j§{n“;°;nupdmes

P

only requirements tha®,, needs to satisfy are the following
two properties: (1) Fast online processing, where the phe-
nomenon behavior should be captured and updated quickly
to fit in the online data-streaming environment, (2) Adher- Figure 2. The phenomenon index.
ence to the postulates of a metric space, where the distance

among the behavior of different phenomena should be pos-

itive, symmetric, and should satisfy the triangular indgua

)
3

tuples contributing to the phenomenon. The exact choice ? ? /F
of B, is orthogonal to the phenomenon indexing. The / gp
P

ity. Assuming that the phenomenon behavioral properties P2P-disty (P1, Ps) — i hii _ hai )2 @
are upheld, we present the indexing algorithms in terms of s i thl} y NQ(h )

. . . . i electivt i
the following two phenomenon interface functions: Q2P-dist; (Q, P) = 7’*1N0_0f_5trea§§ @

1. P2P-Dist(Py,F2): A phenomenon-to-phenomenon  Having a function that measures the distance among phe-
distance function to compute the distance between thenomenon behaviors in a metric space enables the indexing
behaviors of two phenomena. TRZP-Distfunction  of phenomena by their behaviors. For example, we can
is used to maintain the phenomenon index upon inser-pyild the phenomenon index usiMdr-tree [6]. M-tree in-
tion and deletion of phenomena. dexes large data sets in a generic metric space.

2. Q2P-Dist@,P): A query-to-phenomenon distance
function to compute the distance between a given 3.1 The Phenomenon-Index Structure
query @ and the behavior of a phenomenén The
Q2P-Dist function is used by standing queries to  Figure 2 illustrates the phenomenon index. The phe-
search the index for interesting phenomena. nomenon index has two types of nodesifnodes andon-

There are several alternatives to represent a phenomenoleaf nodes. Onéeaf node is constructed per phenomenon
behavior in a metric space. As an example of such metricto store the following information: (1)Ph-id, the phe-
representations, we represent the phenomenon behavior bgomenon identifier, (2], the current phenomenon region,

a histogram of its underlying values. TR2P-distfunction and (3)LSQ, a list of satisfied queries, i.e., queries with

is the L, distance between the normalized histogram buck- predicates that are satisfied by values of the phenomenon.
ets. Equation 1 gives the distance between the equi-widthNon-leafnodes recursively group nodes with similar behav-
histograms of two phenomeng®; andP,. Each histogram  ior. Each non-leaf node maintains a list-athild-ptr, B>

containsn buckets of equal width. Phenomefa and P, pairs wherechild-ptris a pointer to the child whose behav-
contain a total ofV; and N, reading values coming from ior is B. As we go up the tree, the behavior figitlin the
their underlying streams over the most recent windgwe- non-leaf node is set to be a representative for the behavior

spectively. The number of values in each histogram bucketof all the phenomena in the child subtree. Heriten-leaf

(h1; andhy;) is normalized by the total number of values nodes direct the search operation to the leaf nodes.

(V7 and N2) because two phenomena may have similar be-

haviors but with a different number of underlying stream 3.2 Maintaining the Phenomenon Index
readings. Then, we measure the distance between corre-

sponding histogram buckets. TRR2P-distfunction (Equa- Figure 3 gives the algorithm for maintaining the phe-
tion 2) measures the selectivity of the query over the his- nomenon index when receiving a change in the phe-
togram buckets. Then, we divide the selectivity by the total nomenon behavior. The inputs to the algorithm are the phe-
number of streams in the phenomenon to assess the numberomenon identifierh-id) and the new behavioH,¢.,).

of expected output tuples relative to the query deploymentTo avoid updating the phenomenon index for marginal phe-
cost. nomena changes, we compare the input behavior to the base



PROCEDURHBJpdate-Phenomenon-BehaviofPh-id, B, ¢ w,)
1. CurrentBehvio(Ph-id)=B,, ¢
. if (P2P-Dis{CurrentBehavioBaseBehavig< BT P) exit
. BaseBehaviqPh-id)=B, ¢
. PropagateRh-id, B,,¢.,) update to upper levels of the index
. FOR ¢=1 TO sizeofPh-id.LSQ)

a b~ wN

if Q2P-Disi(Ph-id.LSQ[ilPh-id)> d
deletePh-id.LSQ[i)

6. Node-PtrLeafNodePh-id)

PROCEDURETuUne-d (d;nitiaill - - No-of-Queriely

1. FOR (=1 TO No-of-Querie}
(@) d[i]=dinitiat[i]
(b) dsafelil=dinitiar[i] x SafetyFactor
(c) Phenomenonindex.SearcfQ;,dsq fe [7])
(d) Dispatch(Q ,dli])

2. WHILE (TRUE)
(@) FOR ¢ = 1 TO No-of-Querie}

Q]\f'_ Output—tuples—per—second;
v No—of—Streams;

(b) AvgQM= =90

Do (c) FOR ¢ = 1 TO No-of-Querie}
(a) Node-Pt=ParentNodegNode-Pt) ) . . QM
(b) ChangedFALSE i dli] = dli] X Jogarr
(c) FOR EVERY leaf nodekN in Node-Ptrsubtree S.TLN is not visited ii. if d[i] > dsaygeli]
before A A. diay.li] = d[i]x SafetyFactor
FOR (=1 TOsizeofLN.LSQ) B. Phenomenonindex.SearcfQ;,dsq s [4])
if Q2P—D|st(LN—Ptr.LS_Q[l],Ph—ld)gd ) iii. Dispatch(Q;,d[i])
add LN-Ptr.LSQIi] TO LeafNode(Ph-id) (d) wait a number of seconds
ChangedTRUE;

WHILE (Changedl

Figure 4. Searching the phenomenon index.

Figure 3. Updating the phenomenon index.
3.3 Searching the Phenomenon Index

A query is executed over a phenomenon region if the
henomenon behavior is within distanédrom the query
based on th€2P-Distfunction). For each query, a range
selection (with the query in the center and with a radius

phenomena behavior, i.e., the one used in building the phe-
nomenon index. Then, we process the incoming phenomen
update only if it is more different than the base phenomenon

by thebehavior tolerance paramet¢BTF) (Steps 1 and 2 of d) is executed over the phenomenon index. With the

in Figure 3). Examples of marginal phenomena update thatincrease ind, the query is deployed over a larger number

we want to avoid processing include the temperature read—of phenomenon regions. Consequently, more output tuples

ings inside a fire region where temperature fluctuates up andare produced at the expense of consuming more system re-

dOW_” by small amounts. Updating the index with every be- Sources. On the other hand, decreasgingnserves the sys-
EaVIor up(:]ate may ove(rjlot?dt':he s%/s';]em-. Once th;;"StanC‘?em resources and produces less output tuples. Choosing
hetwetlant efcarrent an tbehas_e € aV|o_rsdgpes hﬂs the value ofd depends on two factors: (1) The availability
the valué o the c_:urr(_ant ehavior Is copied into the OaS€ 4t resources (that are assigned to queries based on their pri
behavior (Step 3 in Figure 3). Th_en, the bas_e behavior 'S_orities) and (2) The quality of the output. Varyimgboth
propagated up the phenomenon index causing updates i ver time and from query to query gives the flexibility to
tune every query based on the quality of its output.

the non-leaf index nodes (Step 4 in Figure 3). For all the
queries that were interested in the phenomer(y, we Figure 4 gives the algorithm that measures the quality
of a query output in terms of the average number of out-

check whether they are still interested in the new value of
the phenomena. This is performed by going through all the , s 4 je per second per stream compared to other queries.
queries inL5Q and computing the dlstar_me betweer_1 each This measure reflects the relative (i.e., relative to other
guery and the phenomenon new behavior. If the d'Stancequeries) output gain (i.e., output tuples per second) peer un
becomes greater thathe query is removed from tHeSQ cost. Here, a unit cost means deploying the query over one
stream. The input to the algorithm is an initialization wect

of this phenomenon region (Step 5 in Figure 3).

To discover the new queries that become interested in thefor the values off, one entry per query. Initially, the value of
phenomenon new behavior, we make use of the similarity d for each queng); is set to its corresponding initial value
in behavior among neighboring regions in the phenomenond; .+« [¢] (Step 1a in Figure 4). In addition, we initialize a
index (Step 6 in Figure 3). The main idea is to backtrack safety vectoto the corresponding;,i:io; multiplied by a
the path from the leaf node of the phenomenon index to thesafety factoStep 1b in Figure 4). Theafety vectois used
root node. At every non-leaf node on the path (pointed to to prefetcha larger number of regions than required when
by Node-Pt), we identify the queries that are in the subtree searching the phenomenon index, i.e., a superset of the re-
of Node-Ptrand arenotin the phenomenon query list (i.e., sult returned by vectaf (Step 1c and 1d in Figure 4). The
LSQ of Ph-id). These queries are candidates to be addedmain idea is to avoid searching the index multiple times if
to the LSQ of the phenomenoRh-idif they are within dis- the values in vectad increase over time.
tanced from the phenomenon new behavior. We go up the  For every query, we evaluate its quality measure (Step 2a
phenomenon index until we reach a level where no morein Figure 4). Then, we find the average value for the qual-
gueries are added to tHeSQ of Ph-id leaf node. ity measure over all queries (Step 2b in Figure 4). For each



query, the value off is tuned based on the relative perfor- that are associated with regions that overlap the stream’s |
mance of each quer% wherey is a weight factor  cation. TheQWSof streams; is obtained as follows:
between0 and1 that mdqlcates how fast we propagate up- QWS(s;) = |JLSQi such that s;.location € R; 3)

dates to the values af. If the new value ol exceeds the Equation 3 implies that each stream subscribes to all

fggczrgr?g:ﬁg::;em\ﬂﬁs"é gaﬁ“ﬁ‘; dvagﬁsl':?nl;ﬁd?:‘zd ‘32(: iSqueries that are interested in regions overlapping with the
di pt hed to th t of oh gain. Wy thh y Istream’s location. Queries that have no interest in these re

ISpatched o the new set of phenomenonregions andhe f”‘@ions are not executed on that stream. Therefore, no system
gorithm goes into a sleep period before it is executed again

. resources are wasted to process queries that are not likely
Er?ées?eze?) Igeljilg(l;arreedfa)l.l Zygreﬁﬁﬁgg‘; é?:rig:;!sength of to be satisfied by the stream readings. The query dispatcher

monitors changes in the streams’ locations to update their

QWSsdynamically. Imagine a sensor attached to a fire-

4 Query Indexing fighter moving inside a building on fire and experiencing

various types of phenomena, e.g., smoke, heat, and illumi-

This section describes building and maintaining the nation as he moves from one region to another. Figure 6

query index over the outcome of the phenomenon index.gives an example of such a mobile stream source over the

The query index indexes queries by their regions of inter- last five time instants. At timestamp— 4 the stream falls

est to generate efficient query dep|oyment mg(p@Ms)_ in regionsR3 and R4. The stream’QWSis the union

A QDM (as in Definition 2) maps and executes each query Of all queries that are interested in these two regions, i.e.

on a set of data streams. An effici€pDM deploys queries (@3, Q4,Q5,Q6) (N(Q3,Q5,Q6) = (Q3,Q4,Q5,Q6).

over regions that are likely to satisfy the query predicates At timestampr — 3, the stream is in regio4 only and

As an alternative t/QDM, we define the stream’s query @4 is no longer interested in the stream’s readings. As

working set QWS to capture the same information as the stream moves to regid#2 and k1, the QWSbecomes

QDM. A stream’sQWS(as in Definition 3) is the set of (Q2,Q5,Q7) and (Q1,Q2,Q5), respectively.

queries that are executed on that streamQBM can be The leaf nodes in the phenomenon index have the same
driven from the streams’ query working sets and vice versa.structure as the leaf nodes in the query index. Hence, the
ThereforeQDMsandQWSsare used interchangeably. leaf nodes are shared by the two indices as illustrated in

Figure 7. Upon receiving a phenomenon update, the up-
Definition 2 A query deployment map (QDM) gives for each gate js propagated up the phenomenon index to reflect the
queryQ a set of streams S.T.V s; € S, Q is executed o, phenomenon new behavior. Query plans search the phe-
nomenon index from the root downwards and update the
LSQfields of the leaf nodes accordingly. Upon updating the
leaf nodes, the query index is updated from the bottom up to
Figure 5 illustrates the query index. Leaf nodes store accommodate any changes in the region fields of leaf nodes.
the phenomenon identifiers, their regions R, and their cor- Finally, the query index is searched from the top down with
responding lists of satisfied queries LSQ, where one leafevery update in the network configuration to associate each
node corresponds to only one phenomenon. Non-leaf nodestream with a set of phenomenon regions.
are constructed to spatially index theunding boxes bbf To implement the query index, we need a spatial in-
phenomenon regions. The phenomenon index is a typicaldéx to maintain the bounding boxes of the queries’ in-
spatial index (e.g., an R-tree or one of its variants) for-phe teresting regions. The query index is required to accom-
nomenon regions. Updates to the index correspond to thenodate frequent updates in the indexed regions. We im-
movements of the phenomenon regions in space over time.plement the query index as d&tree with update memo
The query index is constructed by the query plan ana- (RUM [20]). RUM accommodates heavy updates by using
lyzer and is searched by the query dispatcher (Figure 1).an update-memo approach. This approach buffers updates
The query plan analyzer propagates all updates in the regiodn an update-memo structure and propagates these updates
and theLSQfields of the phenomenon-index leaf nodes to UpP the R-tree index from time to time.
the query-index leaf nodes. If a phenomenon region is up-
dated, this phenomenon region is deleted and is reinserted® EXxperiments
into the query index to adjust the indexs spatial properties
Updates to thd SQfields are localized to the leaf nodes The proposed phenomenon-aware optimizer and its asso-
and do not affect the non-leaf nodes. For every stream,ciated indices are implemented inside tiee DSMS [10].
the query dispatcher searches the query index to retrieve alln this section, we explore the performance of the proposed
phenomenon regions that overlap the stream’s location. Thephenomenon-aware optimizer experimentally. The experi-
stream’s query working seQWS is the union of allLSQs ments are based on a sensor data set that is extracted from

Definition 3 A query working set (QWS) gives for each stream
aset of querie S.T.V Q; € Q, Q; is executed on.
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Figure 8. The performance of the phenomenon-aware optimizer w.r.t. the output rate.

the Nile-PDT system [2]. The experimental setup Mile- 5.1 The Output Rate

PDT simulates a large-scale sensor network (up to 2000

sensors). Each sensor generates a stream of 10,000 tuples |n this section, we investigate the average output rate per
where the tuple values follow the Zipfian distribution. For query under three different implementations:

each stream, the Zipfian parameter is an integer value cho-

sen randomly betweeh and5. The interarrival time be- 1. Optimal query execution, where the query result is
tween two consecutive tuples coming from the same source ~ computed as if we have infinite resources. The stream
follows the exponential distribution with an average of one rates are slowed down such that no tuples are dropped

second. The phenomenonis detected as in Definition 1 with ~ out of the input buffers.
a andw set to5 and10 seconds, respectively. Unless men- 2. Naive query executionwhere all queries are executed

tioned otherwise, we deploy00 range queries over a set over all streams in the system.
of 1000 data streams randomly distributed in space. The 3. Opt|m|zed guery executionywhere a phenomenon_
average radius of the query rangd 8% of the space. aware optimizer is utilized.

Figure 8a illustrates the output rate per query of the

We conduct three sets of experiments. The first set of three implementations with respect to a variable number of
experiments measures the increase in the output rate irgueries. In the optimal implementation, each query gets
response to the proposed phenomenon-aware optimizationough resources to process all tuples, and therefore, the
(Section 5.1). The second set of experiments measure®utput rate is not affected by the number of queries. In
the reduction in the system’s resource consumption (Sec-the naive implementation, the system resources are divided
tion 5.2). The third set of experiments evaluates the bestamong all queries leading to a decrease in the output rate
values for the system’s tuning parameters (Section 5.3). Wewith the increase in the number of queries. In the opti-
measure the output rate and the system resources with remized solution, each stream subscribes only to a small sub-
spect to a variable number of queries and a variable numbesset of queries (the stream’s query working set) leading to a
of data streams. We also investigate the effect of varyiag th reduced processing load. Hence, the system resources are
radius of a range query on the system’s performance. All theutilized efficiently to increase the output rate of each guer
experiments in this section are based on a real implementa- Figure 8b illustrates the output rate per query with re-

tion of the proposed optimizer insidéile [10]. The Nile spect to a variable number of streams. The optimal output
engine executes on a machine with Intel Pentium IV, CPU rate increases linearly with the increase in the number of
2.4GHZ and 512MB RAM running Windows XP. streams because each additional stream contributes to the
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Figure 10. The effect of increasing the number of streamson the system resources.

query result. However, the output of the naive and opti-  Figure 10 measures the effect of increasing the number
mized versions saturates with the increase in the number ofof streams on the system resources. With the increase in
streams, yet, with different rates. The optimized solution the number of streams, the average number of streams sub-
triples (300%) the output rate of the naive implementation, scribed to a query increases in response to having more
and meanwhile, the optimized output rat8®% less than  streams satisfying the query predicates (Figure 10a). How-
the optimal output rate (4000 queries and 000 streams). ever, the average number of queries executed on a stream
remains fixed because each stream subscribes only to a sub-
set of interested queries (Figure 10b). Consequently, the
number of idle streams is not affected (Figure 10c). Notice
o that the increase in the radius of the range query increases
In the absence of a phenomenon-aware optimizer, everyine ytjlization of system resources quadratically.
query is deployed over every stream in the system. In this 1 4 antify the savings in system resources, consider the
section, we _evaluate the amount of savings in _sy;tem re-case ofl 00 queries (radiust0% of space) running oh000
sources achieved by a phenomenon-aware optimizer. Weg;.ooms We notice that each query is executedsodata
measure the average number of streams that subscribe to thg a4 ms out of the000 streams §.5% of the total number
same query and, alternatively, the number of queries tieatar streams). Also44% of the data streams are not fed to the

executed on the same stream. We also measure the percenty o nrocessor because they have no associated queries.
age of idle streams, i.e., streams that subscribe to noagueri

Idle streams can be sampled at a lower rate or can be turned .
off for some time. We repeat the experiment for the same 9-3 System’s Tuning Parameters
data set after we vary the average radius of the search range.

Figure 9 measures the effect of increasing the number In Section 3, we presented several tuning parameters for
of queries on the system resources. With the increase inthe phenomenon index, e.g., thehavior tolerance param-
the number of queries, the average number of streams subeter (BTP), the safetyfactoy 11, and the length of thsleep
scribed to the same query is not affected because each quergeriod Each parameter controls the propagation of updates
is executed only on streams of interest (Figure 9a). How- to the phenomenon index. The best values of these param-
ever, the average number of queries that are executed on theters are obtained experimentally by varying the value of
same stream increases to accommodate the added queri@me parameter while fixing the others. This tuning process
(Figure 9b). As we increase the number of queries, queriesis conduct repeatedly till we converge to the best values of
are spread over various locations of the space and decreasdke parameters. Also, the tuning process may be repeated
the number of idle streams (Figure 9c). upon changing the domain of underlying data streams.

5.2 The System Resources



As we increas8TP, the index is updated less frequently, their interesting phenomena in response to changes in the
the update overhead is reduced, and the output rate insreasenonitored environmental conditions.
till the optimal output rate is obtained &7T'P = 0.8. As
we keep increasing BTP, the index becomes too lazy t07 Conclusions
propagate updates in a timely fashion. Hence, the index
does not reflect the underlying phenomenon behavior lead- | this paper, we explored the impact of phenomenon
ing to a reduction in the output rate. Other tuning parame- detection techniques on query optimization inside DSMSs.
ters have the same effect on the index performance. Basegided by detected phenomena, we builgreenomenon
on the experiments, the typical valuesafetyfactoru, and  jndex to track phenomena as they roam the surrounding
thesleep periodare 1.6, 0.7, and 6 seconds, respectively.  space. By traversing the phenomenon index, we construct
aquery indexto index queries by the regions of their inter-
esting phenomena. By traversing the query index, a query
is added to a stream'’s query working set if the stream falls

The research focus of spatio-temporal data streams had Oné of the query’s interesting phenomenon regions. To
been directed to process continuous queries over datPlimize for system resources, we limit each stream to sub-
streams that are generated by mobile objects, e.g., [15, 16]5CTibe to a subset of queries (the stream’s query working
For example, [9] proposes a new join algorithm to track set). A stream’s query working set is updated dynamlcglly.
moving objects in a sensor field. To optimize for the track- &S Phénomenamove in the space or as the stream location is
ing process, [22] reconfigures a tree-like communication changed. Experimental studies show that we can achieve up
structure of a sensor network dynamically. A prediction- t© 70% of the optimal output rate while executing a query

6 Related Work

based strategy is proposed in [21] to reduce the power con-
sumption of the network by focusing on regions where mov-
ing objects are likely to appear.

Instead of tracking a single object, [2, 3] provide a frame-

work to track phenomena inside a DSMS. Phenomenon de- s

tection has been addressed in literature, yet, under differ [
ent terminologies, e.g., homogenous regions, isobars, net 3
work states, and moving clusters. Detection of boundaries |,
that separate homogeneous regions of sensors is investi-
gated in [17]. In [11], streams of sensor data that have Bl
approximately the same value are grouped into continuous [6
regions calledsobars The work in [8] identifies an aggre- (7]
gate picture of the sensor network conditions/states thate g
ables the online monitoring of evolving phenomena. Given

a database of object trajectories, [12] refers to a set of ob- [g]
jects that move close to each other as a moving cluster. [10]

In this paper, we index phenomena as they move in
space. We use one of the recent moving object index struc- [
tures, theR-tree with update menja0]. However, indexing (12]
moving objects has been extensively studied in literature, [13]
e.g., [18] indexes historical trajectories of moving olbgec

[14]
Other index structures, e.g., [5], keep track of the current
o X . . [15]
position of an object as it moves in the space. TRR*-
tree[19] predicts the future trajectories of moving objects. [16]

Mobility is an important issue in spatio-temporal data
streams. Objects as well as queries can be mobile. A large ;7
body of literature addresses the execution of mobile gaerie
over mobile objects, e.qg., [4, 7, 13, 14]. In this paper, an ob
ject generating a data stream is mobile. We have also mobile
phenomena that appear and move in the surrounding envi- [20]
ronment. Queries are stationary and are deployed over the
entire set of registered data streams in the system. However 22
we artificially move the execution of queries over regions of

(18]
(9]

on 5.5% of the total number of streams.
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