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Abstract

This paper introduces a framework for Phenomena De-
tection and Tracking (PDT, for short) in sensor network
databases. Examples of detectable phenomena include the
propagation over time of a pollution cloud or an oil spill re-
gion. We provide a crisp definition of a phenomenon that
takes into consideration both the strength and the time span
of the phenomenon. We focus on discrete phenomena where
sensor readings are drawn from a discrete set of values,
e.g., item numbers or pollutant IDs, and we point out how
our work can be extended to handle continuous phenomena.
The challenge for the proposed PDT framework is to detect
as much phenomena as possible, given the large number
of sensors, the overall high arrival rates of sensor data, and
the limited system resources. Our proposed PDT framework
uses continuous SQL queries to detect and track phenom-
ena. Execution of these continuous queries is performed
in three phases; the joining phase, the candidate selection
phase, and the grouping/output phase. The joining phase
employs an in-memory multi-way join algorithm that pro-
duces a set of sensor pairs with similar readings. The can-
didate selection phase filters the output of the joining phase
to select candidate join pairs, with enough strength and time
span, as specified by the phenomenon definition. The group-
ing/output phase constructs the overall phenomenon from
the candidate join pairs. We introduce two optimizations to
increase the likelihood of phenomena detection while us-
ing less system resources. Experimental studies illustrate
the performance gains of both the proposed PDT framework
and the proposed optimizations.

∗ This work was supported in part by the National Science Foundation
under Grants IIS-0093116, IIS-0209120, and 0010044-CCR.

1. Introduction

The wide spread of sensor network applications calls for
new online query processing techniques to deal with the
continuous arrival of sensor data. Examples of these appli-
cations include surveillance [25] and environmental moni-
toring [26]. Within a sensor network, each individual sen-
sor sends a stream of data to a sensor network database. Al-
though the individual readings of each sensor is useful by
itself, the overall processing of the data in the sensor net-
work database as one unit provides a global view of the un-
derlying environment.

Recent research literature focuses on leveraging database
and data stream management systems to handle the mas-
sive amount of received data from sensor networks, e.g.,
see [5, 8, 9, 10, 12, 17, 19, 30]. The main goal is to provide
efficient query processing techniques for sensor data. In this
paper, we focus on extending data stream management sys-
tems to support sensor network applications. In particular,
we focus onPhenomena DetectionandTracking, (PDT, for
short). We propose a framework that can be plugged into
any data stream management system to provide an online
and efficient phenomena detection and tracking.

As a first step towardsphenomena detection, we pro-
pose acrispdefinition of aphenomenon. Then, we simplify
the definition by considering the discrete case of the phe-
nomenon. The proposed definition relies on two main pa-
rameters;strength(α) andtime span(w). A phenomenon is
of strengthα and time spanw when it occursα times in the
lastw time units. The main idea of our proposedphenom-
ena detectionandtracking framework (PDT) is to join dif-
ferent readings from various sensors using amulti-wayjoin
algorithm for data streams. The output of the multi-way join
algorithm feeds aconnectivitygraph that takes into consid-
eration both thestrengthandtime spanof the required phe-
nomenon. Continuously maintaining theconnectivitygraph
tracks the sensor network phenomena. Moreover, we fur-
nish our proposedPDT framework with aphenomenon-



awareoptimizer where the execution of thePDTframework
is tuned based on the received feedback from the query re-
sult.

In general, the proposedphenomena detectionandtrack-
ing (PDT) framework has three phases; thejoining phase,
the candidate selectionphase, and thegrouping/output
phase. Thejoining phase takes the raw data from the sen-
sor network as its input and produces as output a set of
sensor reading pairs that have similar values. The out-
put of the joining phase is input to thecandidate selec-
tion phase. Thecandidate selectionphase strictly enforces
the phenomena definition by filtering the input to pro-
duce only sensor pairs with the specified strength (α) and
the time span (w). Finally, thegrouping/outputphase con-
structs the overall phenomenon from the candidate join
pairs produced by the candidate selection phase. More-
over, thecandidate selectionphase gives a feedback on the
query result to thejoining phase. Based on the query feed-
back, we introduce twophenomenon-awareoptimizations
that aim to tune the performance of thePDT frame-
work.

All the proposed ideas and algorithms in this paper are
implemented inside theNile data stream management sys-
tem [14].Nile is a research prototype that is currently be-
ing developed at Purdue University. In general, the contri-
butions of this paper can be summarized as follows:

1. We introduce acrisp definition of a phenomenon that
takes into consideration both the strength and the time
span of the phenomenon.

2. We propose an efficient technique forphenomena de-
tection and tracking (PDT). The proposed technique
adheres to the proposed phenomenon definition.

3. We propose two phenomenon-awareoptimiza-
tions where the query result, i.e., the detected phe-
nomenon tunes the execution of thePDT frame-
work.

4. We provide , based on a real implementation inside
a prototype data stream management system, an ex-
perimental evidence of the efficiency and performance
gains of thePDT framework.

The rest of the paper is organized as follows: Section 2
introduces thephenomenondefinition. The SQL queries
that initiate the processing of thePDT framework are pre-
sented in Section 3. Section 4 introduces our proposed
framework forphenomena detectionand tracking (PDT).
The phenomenon-awareoptimization techniques are pre-
sented in Section 5. Experimental results that are based on
a real implementation of the proposedPDT framework in-
side a data stream management system are presented in Sec-
tion 6. Section 7 highlights related work. Finally, Section8
concludes the paper.

2. Phenomena Definition and Applications

In this section, we introduce the definition of a phe-
nomenon along with some applications that can benefit
from our proposed definition.

Definition 1 In a sensor networkSN , a phenomenonP
takes place only when a set of sensorsS ⊂ SN report sim-
ilar reading values more thanα times within a time window
w.

Two parameters control thephenomenondefinition, the
strength(α) and thetime span(w). Thestrengthof a phe-
nomenon indicates that a certain phenomenon should occur
at leastα times to qualify as a phenomenon. (This mea-
sure is similar to the notion of support in mining associa-
tion rules, e.g., see [3].) Reading a value less thanα times
is considered noise, e.g., impurities that affect the sensor
readings. The time spanw limits how far a sensor can be
lagging in reporting a phenomenon.w can be viewed as a
time-tolerant parameter, given the common delays in a sen-
sor network. (This measure is similar to the notion of gaps
in mining generalized sequential patterns [24].)

In this paper, we focus on discrete phenomena that are
produced by sensors whose reading values are discrete. In
this case, the notion of similarity among sensor readings re-
duces to equality. Several applications benefit from the de-
tection of discrete phenomena. Examples of these applica-
tions include:

• Tracing pollutants in the environment, e.g., oil spills
in the ocean, or gas leakage out of a container. To be
considered a phenomenon, the sensor should report the
pollutant ID at leastα times perw time units.

• Reporting the excessive purchase of a certain item at
different branches of a retail store in the same day. The
purchase of an item is considered a phenomenon when
the number of purchases exceedsα times in the lastw
time units, e.g., in the last day.

• Detecting computer worms that strike various com-
puter sub-networks over a certain period of time. When
at leastα computers are infected within a certain time
windoww, a phenomenon is reported.

Our work can be extended to detect continuous phenomena
where sensors read values from a continuous range, e.g.,
temperature or density values, through a pre-processing
phase. The pre-processing phase quantizes the sensor read-
ings into a discrete set of value based on a user-defined func-
tion. Handling continuous phenomena is beyond the scope
of this paper.

In general, a phenomenon may move in space. For exam-
ple, an oil spill may surf the ocean according to the move-
ment of the wind. A phenomenon may appear, disappear,
move, expand, or shrink as time proceeds. In addition, a



SELECT SN1.VALUE, SN1.ID, SN2.ID
FROM SN SN1, SN SN2
WHERE SN1.VALUE=SN2.VALUE
AND SN1.ID <> SN2.ID
AND <other conditions>
GROUP BYSN1.V ALUE, SN1.ID, SN2.ID

HAVING COUNT (∗) >= α

WINDOW W

Figure 1. PDT SQL queries

phenomenon may have spatial properties. For example, an
oil spill is a contiguous portion of the ocean surface. In this
case, the spatial phenomenon is termed a”cloud” .

3. PDT SQL-Queries

To support sensor network operations, we extend
data stream management systems with an abstract data
type (ADT), called SensorNetwork-ADT. SensorNetwork-
ADT handles the extraction of sensor readings from
the sensor network. Sensor readings are of the form
(ID, value, loc, ts), whereID is the identifier of the sen-
sor that emitted the reading whilevalue and loc indicate
the reading value and the location of that sensor at times-
tampts, respectively.

Figure 1 gives the general form of SQL queries that con-
tinuously detect phenomena in a sensor network database.
Basically, the sensor networkSN is joined with itself. Any
sensorSi ∈ SN is eligible to join with any other sen-
sor Sj ∈ SN , (Si 6= Sj), based on an equality join of
SN.value. Based on the application semantics, thewhere
clause specifies other conditions, e.g., the spatial and/or
temporal clustering of the phenomenon. The phenomenon
strength(α) is checked by grouping the query result by
(SN1.V ALUE, SN1.ID, SN2.ID) and thecountis cal-
culated to report only sensors that join on the same value
more thanα times within windoww. The phenomenontime
span(w) is presented within thewindow clause.

Figure 2 gives an example of an SQL query that detects
and tracks pollutants in the ocean, e.g., oil spills.OC rep-
resents a set of sensors distributed in the ocean. The sensor
networkOC is joined with itself based on theliquid value
reported from each sensor. Only sensors that report aliquid
value other than”water” are considered in the join. To re-
flect thespatial clustering of the detected pollutants, each
sensor is restricted to join with other sensors that are at a
maximum distance of ten meters. Thestrength(α) andtime
span(w) of the detected phenomena are set to five and one
minute, respectively.

SELECT OC1.LIQUID, OC1.ID, OC2.ID
FROM OC OC1, OC OC2
WHERE OC1.LIQUID=OC2.LIQUID
AND OC1.ID <> OC2.ID
AND LIQUID <>“WATER”
AND DISTANCE(OC1.LOC,OC2.LOC)<= 10
GROUP BYOC1.LIQUID, OC1.ID, OC2.ID

HAVING COUNT (∗) >= 5

WINDOW 1 minute

Figure 2. An example SQL query for pollution
detection

4. PDT Query Processing

The process ofphenomena detectionandtracking(PDT)
is initiated by issuing the SQL-query given in Figure 1.PDT
query processing is divided into three phases as illustrated
in Figure 3. The first phase, thejoining phase, accepts the
input tuples streamed out of the sensors and applies an in-
memorymulti-way join over the entire sensor network to
detect sensors with the same value within a time frame of
lengthw from each other. The second phase, thecandidate
selectionphase, receives the joined sensor pairs and checks
the sensors that qualify to be phenomena candidate mem-
bers. Based on our definition of a phenomenon, thecandi-
date selectionphase checks the density of the phenomenon
based on the user-specified strength (α) and time span (w).
Sensors that join at leastα times over a time-windoww are
reported to thegrouping/output phase. The third phase,the
grouping/output phase, groups the pairs of phenomena can-
didate members and investigates the application semantics
to form and report the phenomena to the user.

Guided by the detected phenomena candidate members
in thecandidate selectionphase, the processing is tuned to
increase the likelihood of phenomena detection while using
less resources. A phenomenon-aware feedback is provided
to thejoining phaseto draw the attention to regions where
phenomena tend to be active. For example, the input buffers
that are associated with sensors contributing to phenomena
are given higher priorities than those that do not contribute
to any phenomena. Similarly, in thejoining phase, the join
probing sequence is tuned to favor the joins that affect the
appearance or the disappearance of a phenomenon. The rest
of this section is dedicated to the three phases of the pro-
posedPDT framework.phenomenon-awareoptimizations
are presented in Section 5.

4.1. Phase I: Joining

Two alternative approaches exist for implementing the
multi-way join operator forN streams: as a series of cas-
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Figure 3. PDT query processing phases

cadedN − 1 binary join operators where only two streams
are joined at a time, or as a single operator that takesN

streams as its input. The MJoin operator [28] employs the
second approach where it produces join results with a faster
rate than the tree of binary joins. Thus, MJoin [28] is more
suitable for data streaming applications. The main idea of
MJoin is to maintain a hash table for each stream, i.e., sen-
sor. Once a tuple arrives from one stream, it is inserted into
the stream’s corresponding hash table. Then, the incom-
ing tuple probes the hash tables of other streams. Since a
joined tuple is reported only if it appears inALL streams,
the MJoin algorithm stops probing hashing tables once the
probed value is missing in one of the streams. To avoid un-
necessary processing, the probing sequence is chosen based
on the join selectivity among the streams.

To supportphenomena detectionandtracking(PDT), we
employ three main modifications to the original MJoin al-
gorithm [28]. These modifications are summarized as fol-
lows:

1. The modified multi-way join algorithm does not stop
once the join value is missing in one of the streams.
Instead, it continues to examine the remaining streams
to produce partial results. Notice that a phenomenon
need not span all the sensors in the sensor network.

2. The notions of positive and negative tuples [13] are uti-
lized. A positive tuple is reported when a join occurs. A
negative tuple is reported when one of the previously-
reported join tuple components expires, i.e, becomes
old enough to get outside of the most recent time-
window w. The negative tuple is important to invali-
date the candidate members of a phenomenon, if the

sensors stop showing the same behavior over a time-
windoww.

3. The probe sequence and the stream sampling rate are
guided by the detected phenomena to favor the probe
sequence and the streams that participate in a phe-
nomenon. This phenomenon-aware optimizations are
discussed in detail in Section 5.

4.2. Phase II: Candidate Selection

The joining phase produces a tuple if the same read-
ing is observed by two streams within the specified time-
window. These two streams are considered phenomena can-
didate members if they persist to join with each otherα

times within the same time-window. Thecandidate selec-
tion phase employs aconnectivity graphthat is used to
record the number of joins between each pair of sensors.
Each sensorSi is represented by a node in theconnectiv-
ity graph. For any two sensorsSi andSj , (i 6= j), an edge
E(v, i, j) is added to the connectivity graph only ifSi and
Sj are joined together at least once in the lastw time units
over valuev. The weight of the EdgeEij is the number of
times thatSi andSj are joined together in the lastw time
units, i.e., the strength of the phenomenon.

Figure 4 gives the processing of input pairs re-
ceived from the joining phase. The input is ei-
ther a positive or a negative tuple with the format
±(SN1.V ALUE, SN1.ID, SN2.ID). The tuple repre-
sents the join value and two joining sensors. This tuple up-
dates the weights of the edges in the connectivity graph.
The weight of each edge is monitored. If the weight of
an edge increases to reachα (i.e., weight = α), a posi-
tive tuple is reported to denote the appearance of the candi-
date member(SN1.V ALUE, SN1.ID, SN2.ID). If the
weight of an edge drops belowα (i.e., weight = α − 1),
a negative tuple is reported to denote the disappear-
ance of that candidate member.

Figure 4.2 gives an example of the connectivity graph for
five sensors over a window of 5 time units. The connectivity
graph starts from scratch and records each join tuple by in-
creasing the weight of the edge between the two joining sen-
sors. Edges that exceedα, which is set to four, are marked as
bold lines to denote phenomenon candidate members. No-
tice that, as the window slides, the value10 from sensorS1,
that came att1, will expire, and consequently the edge be-
tweenS1 andS3 will drop belowα generating a negative
tuple to invalidate that candidate member.

4.3. Phase III: Grouping/Output

The grouping/outputphase receives phenomena candi-
date members on the form of a tuple that consists of the IDs
of the two joining sensors and the join value. Each tuple



INPUT: the join tuple (SN1.VALUE, SN1.ID, SN2.ID) OUT-
PUT: the phenomena candidate members

Upon receiving a positive tuple,

if CheckEdge(SN1.VALUE, SN1.ID, SN2.ID)
// if edge exists increase its weight
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight++
// check the appearance of a candidate
if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=α)

Output+(SN1.VALUE, SN1.ID, SN2.ID)
else

// create a new edge with weight=1
CreateEdge(SN1.VALUE, SN1.ID, SN2.ID)
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=1;

endif

Upon receiving a negative tuple,

// Decrease the weight of the edge by 1 and
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight−−
// check the disappearance of a candidate
if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=α − 1)

Output−(SN1.VALUE, SN1.ID, SN2.ID)
// remove the edge if its weight becomes zero
if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=0)

RemoveEdge(SN1.VALUE, SN1.ID, SN2.ID)
endif

Figure 4. Pseudo code of the candidate se-
lection phase

can be positive or negative to denote the appearance or dis-
appearance of a candidate member. A positive/negative tu-
ple indicates that the number of joins between the two sen-
sors over the lastw becomes above/belowα. Upon receiv-
ing a positive tuple, based on the application semantics, the
grouping/outputphase may start a new phenomenon, add
one sensor to an existing phenomenon, or merge two phe-
nomena together. Similarly, upon receiving a negative tu-
ple, thegrouping/outputphase may delete a phenomenon,
remove a sensor from an existing phenomenon, or split one
phenomenon into two separate phenomena.

In addition, thegrouping/outputphase has the flexibil-
ity to apply application-dependent semantics. For exam-
ple, forcing a minimum number of sensors to form a phe-
nomenon, determining the outer contour or the convex hull
of the phenomena . Also, the application may consider the
spatial clustering of sensors. The clustering or spread of
the phenomenon implies whether there is a single source
or multiple sources for the phenomenon. For example, mul-
tiple disconnected oil spills implies leakage out of more
than one container. Application-dependent semantics can
include the density of the phenomena as well. The density
is measured by the ratio of the number of sensors reading

t1 t2 t3 t4 t5

Sensor 1 10 7 10 5 5

Sensor 2 15 10 7 10 10

Sensor 3 19 7 3 10 10

Sensor 4 22 5 9 5 5

Sensor 5 18 5 5 4 23

(a) Sensors’ input over 5 time instants

S1

S2

S4

S3

S5

7(1)

5(4)

10(6)

10(6)
7(1)

5(6)

5(6)

10(4)

7(1)

(b) The connectivity graph

Figure 5. An example of the connectivity
graph

the same phenomenon to the number of sensors not read-
ing that phenomenon in a specified region. All these issues
are application-dependent and are addressed by thegroup-
ing/outputphase.

5. Phenomenon-Aware Query Optimization

This section proposes twophenomenon-awareoptimiza-
tions that aim to provide a scalable execution for the pro-
posedphenomena detectionandtracking(PDT) framework.
These optimizations tune the processing towards tuples that
contribute in producing the phenomena. The main idea is
to utilize the processing of thecandidate selectionphase to
provide feedback to thejoining phase. The feedback con-
tains information about the sensors that contribute to the
currently tracked phenomena. The two phenomenon-aware
optimizations are: (1) Controlling the sampling rate of each
sensor, and (2) Choosing the join probing sequence.

5.1. Controlling the Sampling Rate of Sen-
sors

The number of sensors in a sensor network can grow
large. These sensors may be generating stream data with



high rates. They may show a bursty behavior as well. As a
result of all of the above reasons, the query processing en-
gine faces periods of heavy load. In these periods, it will not
be possible to cope with every sensor reading. To overcome
this problem, a sampler for each sensor is employed to con-
trol the input rate of its generated stream. Instead of a ran-
dom sampler, aphenomenon-awaresampler is preferred to
favor sensors that contribute heavily to the phenomena. The
phenomenon-awaresampler gets feedback from thecandi-
date selectionphase about the phenomena that are currently
monitored.

Notice that if the weight of an edge between two sensors
is highly below or highly aboveα, it is less likely to pro-
vide new information. If it is highly belowα, it is less likely
to increase instantly toα and form a phenomenon candi-
date member. Similarly, if it is highly aboveα, it is less
likely to decrease instantly belowα and eliminate a can-
didate member. Sensors with edges that are close toα are
considered strong candidates to form or eliminate a phe-
nomenon. Hence, as given in Equation 1, theedge strength
(ES)between two sensorsi, j is inversely proportional to
the absolute difference between the edge weight andα

(|Edge(v, i, j).weight − α|), whereEdge(v, i, j).weight

is the weight of the edge between sensorsi and j based
on the valuev (or zero if no edges at all). However, there
may be more than one edge between the two sensors if they
join over multiple values. To be conservative, the edge gets
the maximum strength over all of these values and thesen-
sor strength (SS)is considered to be the maximum strength
over all of the edges connecting that sensor to its neighbors
(Equation 2). To favor sensors that are involved in phenom-
ena, thesampling factor (SFi) of each sensori is propor-
tional to its strength as given in Equation 3.

Let R∗ be the global desired sampling rate over all sen-
sors, and letRi be the sampling rate of each sensor.R∗

is formed by adding the sensor ratesRi after they are be-
ing adjusted bySFi (Equation 4). Equation 4 is rewritten
again in the form of a summation in Equation 5. In Equa-
tion 6, we substitute forSFj by Equation 3. From Equa-
tion 7, we can obtainSFi given the rate of each sensor, the
strength of each sensor and the desired rateR∗. These pa-
rameters are continuously updated as the streams are run-
ning. The stream rates (Ris) and the desired rate (R∗) are
updated periodically to avoid unnecessary fluctuations and
bursty behaviors of sensors. The sensor’s strength (SSi) is
updated with the arrival of each tuple to eagerly detect the
new phenomena.

ES(i, j) = MAXv{
1

1 + |Edge(v, i, j).weight− α|
}

(1)

SSi = MAXj(ES(i, j)) (2)

SFi

SFj

=
SSi

SSj

(3)

SF1 · R1 + SF2 · R2 + · · · + SFn · Rn = R∗ (4)

SFi · Ri +

n∑

j=1,j 6=i

SFj · Rj = R∗ (5)

SFi · Ri +

n∑

j=1,j 6=i

SFi · SSj

SSi

· Rj = R∗ (6)

SFi · (Ri +

∑n

j=1,j 6=i SSj · Rj

SSi

) = R∗ (7)

Reducing the stream sampling rate of a sensor may lead
to delaying the discovery or to entirely missing new phe-
nomena because they will take a longer time to increase the
edge weights between participating sensors till they reach
to the desiredα. A sensor needs to be persistent in pro-
ducing the phenomenon and to increase its strength gradu-
ally till the phenomenon is discovered. The difference be-
tween the time at which the phenomenon is formed and the
time at which it is reported is known as the response time.
We trade the response time of discovering new phenomena
for the sake of monitoring already existing phenomena ef-
ficiently. Otherwise, monitoring all sensors with the same
quality would degrade the whole system’s performance and
may result in losing phenomena.

5.2. Choosing the Join Probing Sequence

Once a tuple arrives from one sensor, it is used to probe
the hash tables of other sensors looking for matches. The
sequence in which the tuple probes other hash tables af-
fects the performance of the join operator. In the origi-
nal MJoin [28] algorithm, the selectivity factors among the
joins are taken into consideration. The least selective join
is evaluated first. Consequently, the number of partial out-
put tuples is reduced at early steps. In our context, choosing
the join order based on the selectivity is not of great bene-
fit where we are interested in partial results as well. More-
over, in large sensor networks, probing hundreds or thou-
sands of sensors may be prohibitive, specially when the sen-
sor joins with a very small subset of the sensors. Instead, we
choose a probing sequence in which probing is based on the
likelihood of producing a tuple that contributes to a phe-
nomenon.

If a tuple arrives at sensori, it probes the hash table of
sensorj with probabilityP , where

P =
1

1 + |Edge(v, i, j).weight− α|
(8)

Equation 8 adjusts the probing probability based on how
close the edge between sensorsi andj on valuev to α. The



INPUT: a tuple from sensorSi with valuev

OUTPUT: the join probing sequence

for j=1 to NoOfSensors
begin

P = min(BaseProb, 1
1+|Edge(v,i,j).weight−α|

)

Generate a random variableU between0, 1
if (U ≤ P )

ProbeSensor(j)
end

Figure 6. The join probing sequence

join probing sequence is evaluated as given in Figure 6. On
the arrival of a tuple with valuev from sensori, a complete
traversal over all sensors is performed. Because the probing
operation is costly, we decide to either probe or skip sensor
j based on the probabilityP . Notice thatP should not go
below a minimumBaseProb to avoid the zero join prob-
ability among sensors with no edges in between. This pol-
icy reduces the number of joins dramatically and focuses on
joins that contribute in phenomena. Eliminating the cost of
unnecessary joins allows our technique to be scalable with
respect to the number of sensors. Similar to the case of Sec-
tion 5.1, a delay may be observed in detecting new phe-
nomena. A sensor needs to strengthen the edge between it-
self and other sensors gradually to get a higher probability
in the join operation.

6. Experiments

In this section, we conduct an experimental study of
the proposedphenomena detectionandtracking PDTtech-
nique. Three sets of experiments are conducted. The first
set of experiments (Section 6.1) is concerned with the ef-
fect of thePDT parameters; the strengthα and the time
spanw on the number of detected phenomena. The sec-
ond (Section 6.2) and the third sets (Section 6.3) of experi-
ments study the performance of thePDToptimization tech-
niques with the change of the number of sensors and data
arrival rates, respectively. For the last two sets of experi-
ments, we compare the performance of the following four
versions of the proposedPDT framework:

1. Simple PDT, where processing is not guided by the de-
tected phenomena.

2. PDT+1, where the sensor’s sampling rate is controlled
based on the detected phenomena as discussed in Sec-
tion 5.1.

3. PDT+2, where the join probing sequence is controlled
based on the detected phenomena as discussed in Sec-
tion 5.2.

α w=5 w=10 w=15 w=20

3 1010 4350 7150 11150
4 121 498 815 1256
5 20 220 270 320
6 4 19 56 140
7 0 5 11 18
8 0 0 2 5

Table 1. The effect of application-dependent
parameters

4. PDT+1&2, where both of the optimizations in (2) and
(3) are applied together.

Various PDT techniques are compared with respect to
three performance measures: (1) Theinput drop ratewhere
some of the input sensor data tuples have to be dropped due
to the scarcity of system resources. (2) Theresponse time,
which is measured by the difference between the time in
which a phenomenon is reported by the system and the ac-
tual time in which it took place. (3) Theoutput loss rate
where some phenomena are lost as a result of losing some
of the input tuples. A smart technique tries to minimize all
these measures. rate.

All the experiments are triggered by the execution of
the continuous query given in Figure 2. A synthesized data
set is used to simulate the sensor network readings. Unless
mentioned otherwise, we maintain 1000 sensors uniformly
distributed over a 100× 100 meters rectangular space. Each
sensor generates a stream of 10,000 tuples where the tu-
ple values follow the zipfian distribution. The interarrival
time of sensor data follows an exponential distribution with
an average of one second. All the experiments in this sec-
tion are based on a real implementation of thePDT frame-
work inside theNile data stream management system [14].
The Nile engine executes on a machine with Intel Pentium
IV, CPU 2.4GHZ with 512MB RAM running Windows XP.

6.1. PDT parameters

Table 1 gives the number of detected phenomena for var-
ious values of the strength (α) and time span (w). As given
in the table,α andw have opposite effects. The increase in
α results in less detected phenomena as the condition for
detecting a phenomenon becomes more restrictive. On the
other side, the increase in the time spanw relaxes the con-
dition for the detected phenomena. Thus, more phenomena
can be detected. The largest number of detected phenom-
ena is obtained forw = 20 andα = 3. At this point,PDT
tracks up to 11,150 different phenomena over the lifetime
of the experiment.
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6.2. The effect of the number of sensors

Figure 7 studies the scalability of the four variations of
thePDT framework with respect to increasing the number
of sensors from 200 to 2000. ThePDT parametersα andw

are set to 5 and 10 seconds, respectively.PDT-1decreases
the input drop rate over thesimple PDTbecause it reduces
the sampling rate of sensors that do not contribute to any
phenomenon and, hence, keeps the input buffers less occu-
pied (Figure 7a). The response time of thePDT+1 is less
than that of thesimple PDTbecause the size of the hash

structures gets smaller after reducing the sampling rate of
irrelevant sensors (Figure 7b). As a result of controlling the
sampling rates, the output loss rate of thePDT+1 is re-
duced (Figure 7c). Notice that as the number of sensors in-
creases, more load is posed against the system and the dif-
ference in the output loss rate becomes significant (up to
25% for 2000 sensors).PDT+2 reduces the response time
(Figure 7b) because it favors the join over sensors that con-
tribute to phenomena and leaves other joins to be performed
with a lower probability. This behavior increases the pro-
cessing time availability and reduces the input drop rate
(Figure 7a). The controlled join probing sequence reduces
the output loss rate through the efficient management of the
time budget in useful joins (Figure 7c).PDT+1&2 com-
bines the features of both of thePDT+1 andPDT+2 tech-
niques.PDT+1&2 decreases the input drop rate (Figure 7a),
the response time (Figure 7b), and the output loss rate (Fig-
ure 7c). There is a reduction of up to 78% in the output loss
rate over thesimple PDTfor 2000 sensors.

6.3. The effect of the stream rates

Figure 8 compares the performance of the four varia-
tions of thePDT framework with respect to varying the sen-
sor data interarrival rates from 0.1 to 1.5 seconds. ThePDT
parametersα andw are set to 5 and 10 seconds, respec-
tively. Small interarrival times imply scarcity in resources.
Large interarrival times imply an increased availability of
resources, where all curves approach each other and the
drop rate approaches zero. For the same reasons, as dis-
cussed in Section 6.2, bothPDT+1 andPDT+2 decrease
the input drop rate over thesimple PDT(Figure 8a), the re-
sponse time (Figure 8b), and the output loss rate (Figure 8c).
ThePDT+1&2 combines the benefits of both optimizations
and reduces the output loss rate by up to 45% over thesim-
ple PDT(for a 0.1 second average interarrival time).

Notice that the response times of thesimple PDTand
PDT+1 are constant over time because the join probing se-
quence spans all of the 1000 sensors for all stream rates.
However, thePDT+2 andPDT+1&2 increase the length of
the probing sequence with the increase of the time availabil-
ity. The response time increases because the technique tra-
verses a larger probing sequence per tuple for the sake of
decreasing the output loss rate.

7. Related Work

A lot of research interest has been directed recently to
data stream processing. Data stream systems, e.g., Stan-
ford STREAM [22], AURORA [1], NiagaraCQ [7], Tele-
graph [6], are developed to cope with the new challenges
imposed by the nature of data streams [4]. The COUGAR
system [5, 30] introduces a new abstract data type for sen-
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sors to facilitate the extraction of data and to process queries
over sensor networks. The Borealis engine [2] proposes a
scalable QoS-based optimization model to operate across
sensor networks. The Fjords architecture [17] proposes an
infrastructure for query processing over sensor data.

The physical acquisition or sampling of sensor data is ex-
plored in [19, 11, 16, 23] to extract the sensor data with low
cost but still accurate methods. The work in [8, 18, 20] pro-
poses the aggregation of sensor data tuples before reaching
the data management system. Aggregates reduce the data
size and, consequently, consume less power in the transmis-
sion process.

Some prior work has been conducted to track moving ob-
jects in sensor networks [12]. Similar to our work, the join
operation is used to detect similar readings over the sensor
network. It proposes a new non-blocking multi-way join op-
erator over a sliding window, the W-join operator, to track
the readings of the same object-ID that appears in different
locations over the sensor network. Our work tracks mov-
ing phenomena, where each phenomenon is a group of sen-
sors producing the same value, rather than tracking individ-
ual moving point objects.

The join operation over data streams has been explored
in the literature. Symmetric Hash Join [29] is proposed to
take care of the infiniteness of the data source. XJoin [27]
provides disk management to store overflowing tuples on
disk for later processing. An asymmetric window join over
two data streams with different arrival rates is discussed
in [15]. The Hash-Merge Join (HMJ) [21] is a non-blocking
join algorithm that produces early join results. In our work,
a modified version of the M-Join [28] is used to detect
streams with similar behavior over a window of time.

8. Conclusions

In this paper, we proposed a framework forphenomena
detectionand tracking (PDT, for short) in sensor network
databases. To identify a phenomenon, we provided acrisp
definition for the phenomenon that takes into consideration
both the strength (α) and the time span (w). A phenomenon
of strength (α) and time spanw occurs at leastα times in
the lastw time units.

The proposedPDT framework has three phases: The
joining phase, thecandidate selectionphase, and thegroup-
ing/outputphase. Thejoining phase employs a multi-way
join algorithm that joins the raw data from the sensor net-
work and produces a set of sensor pairs with similar val-
ues. Thecandidate selectionphase takes the output of
the joining phase as input and applies a filter to enforce
the strength and time span of the phenomena. Finally, the
grouping/outputphase is application-specific where it en-
forces the application semantics. Furthermore, we provided
two phenomenon-awareoptimizations that aim to : (1) In-
crease the sampling rate of the sensors that are part of any
phenomenon, and (2) Choose the join order of the multi-
way join algorithm to increase the likelihood of detecting
the phenomena.

Experimental study based on a real implementation in-
side a research prototype for data stream management sys-
tems shows that the proposedPDT technique is scalable
in terms of the number of streams, the stream rates, and
the number of detected phenomena. Theoptimized PDTre-
duces the output loss rate over thesimple PDTby up to 78%
for a network of size 2000 sensors.
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