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Abstract 1. Introduction

The wide spread of sensor network applications calls for

This paper introduces a framework for Phenomena De- new online query processing techniques to deal with the
tection and Tracking (PDT, for short) in sensor network continuous arrival of sensor data. Examples of these appli-
databases. Examples of detectable phenomena include theations include surveillance [25] and environmental moni-
propagation over time of a pollution cloud or an oil spill re-  toring [26]. Within a sensor network, each individual sen-
gion. We provide a crisp definition of a phenomenon that sor sends a stream of data to a sensor network database. Al-
takes into consideration both the strength and the time spanthough the individual readings of each sensor is useful by
of the phenomenon. We focus on discrete phenomena whergself, the overall processing of the data in the sensor net-
sensor readings are drawn from a discrete set of values, york database as one unit provides a global view of the un-
e.g., item numbers or pollutant IDs, and we point out how derlying environment.
ourwork can be extended to handle continuous phenomena. - pecent research literature focuses on leveraging database
The challenge for the proposeq PDT framework is to detectand data stream management systems to handle the mas-
as much phenomena as possible, given the large nUMbeg; e amount of received data from sensor networks, e.g.,
of sensors, the overall high arrival rates of sensor datal an see [5,8, 9, 10, 12, 17, 19, 30]. The main goal is to provide

the limited system resources. Our proposed PDT frameworkeicjent query processing techniques for sensor dataign th

uses contmupus SQL querles.to detect and tr_ack phenom—paper, we focus on extending data stream management sys-
ena. Execution of these continuous queries is performed

i th h the ioini h h . lecti tems to support sensor network applications. In particular
in three phases; the joining phase, the candidate selection, e {5 orPhenomena DetectiandTracking (PDT, for

phase, and the grouping/output phase. The joining phaseshort)_ We propose a framework that can be plugged into
employs an in-memory multi-way join algorithm that pro- - 5 gata stream management system to provide an online
d_uces a set (_)f sensor pairs with similar readm_gg._The can- 44 efficient phenomena detection and tracking.
didate selection phase filters the output of the joining phas . .

As a first step towardphenomena detectipnve pro-

to select candidate join pairs, with enough strength anétim ose acrisp definition of achenomenarThen. we simplif
span, as specified by the phenomenon definition. The groupp P P ' Pty

ing/output phase constructs the overall phenomenon fromthe definition by considering .th.PT dlscrgte case of th? phe-
the candidate join pairs. We introduce two optimizations to nomenon. The proposed_ definition relies on two main pa-
increase the likelihood of phenomena detection while us- rametersstrength(a) andtime spar_(w). A phenome.non IS
ing less system resources. Experimental studies illiestrat of strengthn and time spam when it occurs: times in the

the performance gains of both the proposed PDT frameworklaStw t|me_un|ts. The main idea of our prqposgldgno_m-
and the proposed optimizations. ena detectiorandtracking framework PDT) is to join dif-

ferent readings from various sensors usinguti-wayjoin

algorithm for data streams. The output of the multi-way join

algorithm feeds @onnectivitygraph that takes into consid-

eration both thetrengthandtime sparof the required phe-

nomenon. Continuously maintaining thennectivitygraph

% This work was supported in part by the National Science Fatiod tracksthe sensor network phenomena. Moreover, we fur-
under Grants 11S-0093116, 11S-0209120, and 0010044-CCR. nish our proposed®DT framework with aphenomenon-




awareoptimizer where the execution of tDTframework 2. Phenomena Definition and Applications

is tuned based on the received feedback from the query re-

sult. In this section, we introduce the definition of a phe-
In general, the proposgahenomena detectiandtrack- nomenon along with some applications that can benefit

ing (PDT) framework has three phases; floining phase,  from our proposed definition.

the candidate selectiorphase, and th@rouping/output  pefinition 1 In a sensor networkN, a phenomenorP
phase. Thgoining phase takes the raw data from the sen- ;) oo place only when a set of sensérs SN report sim-

sor network as its input and produces as output a set ofja; reading values more than times within a time window
sensor reading pairs that have similar values. The out-

put of thejoining phase is input to theandidate selec-
tion phase. Theandidate selectiophase strictly enforces Two parameters control thghenomenoulefinition, the
the phenomena definition by filtering the input to pro- strength(a) and thetime span(w). Thestrengthof a phe-
duce only sensor pairs with the specified strengthand nomenon indicates that a certain phenomenon should occur
the time spant). Finally, thegrouping/outpuphase con-  at leasta times to qualify as a phenomenon. (This mea-
structs the overall phenomenon from the candidate joinsure is similar to the notion of support in mining associa-
pairs produced by the candidate selection phase. Moretion rules, e.g., see [3].) Reading a value less thadimes
over, thecandidate selectiophase gives a feedback on the is considered noise, e.g., impurities that affect the senso
query result to thgoining phase. Based on the query feed- readings. The time span limits how far a sensor can be
back, we introduce tw@henomenon-awareptimizations  lagging in reporting a phenomenan.can be viewed as a
that aim to tune the performance of tiRDT frame- time-tolerant parameter, given the common delays in a sen-
work. sor network. (This measure is similar to the notion of gaps
All the proposed ideas and algorithms in this paper are in mining generalized sequential patterns [24].)
implemented inside thBlile data stream management sys- I this paper, we focus on discrete phenomena that are
tem [14]. Nile is a research prototype that is currently be- produced by sensors whose reading values are discrete. In
ing developed at Purdue University. In general, the contri- this case, the notion of similarity among sensor readings re

butions of this paper can be summarized as follows: duces to equality. Several applications benefit from the de-
tection of discrete phenomena. Examples of these applica-
1. We introduce &risp definition of a phenomenon that tjons include:

takes into consideration both the strength and the time

span of the phenomenon. e Tracing pollutants in the environment, e.g., oil spills
in the ocean, or gas leakage out of a container. To be
2. We propose an efficient technique fitenomena de- considered a phenomenon, the sensor should report the
tection and tracking (PDT). The proposed technique pollutant ID at least times penw time units.

adheres to the proposed phenomenon definition. . . -
e Reporting the excessive purchase of a certain item at

3. We propose two phenomenon-awareoptimiza- different branches of a retail store in the same day. The
tions where the query result, i.e., the detected phe-  purchase of an item is considered a phenomenon when
nomenon tunes the execution of tiRDT frame- the number of purchases exceedsmes in the lastv
work. time units, e.g., in the last day.

4. We provide , based on a real implementation inside e Detecting computer worms that strike various com-
a prototype data stream management system, an ex-  puter sub-networks over a certain period of time. When
perimental evidence of the efficiency and performance at leasio computers are infected within a certain time
gains of thePDT framework. windoww, a phenomenon is reported.

The rest of the paper is organized as follows: Section 2 Our work can be extended to detect continuous phenomena
introduces thephenomenordefinition. The SQL queries where sensors read values from a continuous range, e.g.,
that initiate the processing of tHeDT framework are pre-  temperature or density values, through a pre-processing
sented in Section 3. Section 4 introduces our proposedphase. The pre-processing phase quantizes the sensor read-
framework forphenomena detectioand tracking (PDT). ings into a discrete set of value based on a user-defined func-
The phenomenon-awareptimization techniques are pre- tion. Handling continuous phenomena is beyond the scope
sented in Section 5. Experimental results that are based orof this paper.

a real implementation of the propose®T framework in- In general, a phenomenon may move in space. For exam-
side a data stream management system are presented in Segle, an oil spill may surf the ocean according to the move-

tion 6. Section 7 highlights related work. Finally, Sect®n  ment of the wind. A phenomenon may appear, disappear,
concludes the paper. move, expand, or shrink as time proceeds. In addition, a



SELECT SN1.VALUE, SN1.I1D, SN2.1D SELECT OCL1.LIQUID, OC1.I1D, OC2.ID

FROM SN SN1, SN SN2 FROM OC OC1, OC OC2
WHERE SN1.VALUE=SN2.VALUE WHERE OC1.LIQUID=0C2.LIQUID
AND SNL1.ID <> SN2.1D AND OCL1.ID <> OC2.ID
AND <other conditions> AND LIQUID <>"WATER”
GROUPBYSN1.VALUE,SN1.ID,SN2.ID AND DISTANCE(OC1.LOC,0C2.LOGx=10
HAVING COUNT (x) >= « GROUP BYOC1.LIQUID,0C1.ID,0C2.ID
WINDOW W HAVING COUNT (%) >=5
Figure 1. PDT SQL queries WINDOW 1 minute
Figure 2. An example SQL query for pollution
detection
phenomenon may have spatial properties. For example, an
oil spill is a contiguous portion of the ocean surface. I thi
case, the spatial phenomenon is termédeud” . 4. PDT Query Processing

The process gbhenomena detecti@ndtracking(PDT)
is initiated by issuing the SQL-query given in Figuré’DT
guery processing is divided into three phases as illustrate
in Figure 3. The first phase, theining phase, accepts the
To support sensor network operations, we extend input tuples streamed out of the sensors and applies an in-
data stream management systems with an abstract datenemorymulti-way join over the entire sensor network to
type (ADT), called SensorNetwork-ADTSensorNetwork-  detect sensors with the same value within a time frame of
ADT handles the extraction of sensor readings from lengthw from each other. The second phase,thadidate
the sensor network. Sensor readings are of the formselectiorphase, receives the joined sensor pairs and checks
(ID,value,loc,ts), whereI D is the identifier of the sen-  the sensors that qualify to be phenomena candidate mem-
sor that emitted the reading whiteilue andloc indicate bers. Based on our definition of a phenomenon ciduedi-
the reading value and the location of that sensor at times-date selectiophase checks the density of the phenomenon
tampts, respectively. based on the user-specified strengthgnd time spanu).

Figure 1 gives the general form of SQL queries that con- Sensors that join at leasttimes over a time-window are
tinuously detect phenomena in a sensor network database€Ported to thgrouping/output phaséhe third phasethe
Basically, the sensor netwoNis joined with itself. Any  grouping/output phasgroups the pairs of phenomena can-
sensorS; € SN is eligible to join with any other sen- didate members and investigates the application semantics
sorS; € SN, (S; # S;), based on an equality join of 0 form and report the phenomena to the user.

SN.value Based on the application semantics, Weer e Guided by the detected phenomena candidate members
clause specifies other conditions, e.g., the spatial and/oiin thecandidate selectiophase, the processing is tuned to
temporal clustering of the phenomenon. The phenomenonincrease the likelihood of phenomena detection while using
strength(a) is checked by grouping the query result by less resources. A phenomenon-aware feedback is provided
(SN1.VALUE,SN1.ID,SN2.ID) and thecountis cal- to thejoining phaseo draw the attention to regions where
culated to report only sensors that join on the same valuePhenomenatend to be active. For example, the input buffers
more tharu times within windoww. The phenomenadiime that are associated with sensors contributing to phenomena
span(w) is presented within thei ndow clause. are given higher priorities than those that do not contebut

to any phenomena. Similarly, in theining phasethe join
probing sequence is tuned to favor the joins that affect the
Sppearance or the disappearance of a phenomenon. The rest
of this section is dedicated to the three phases of the pro-
posedPDT framework.phenomenon-awareptimizations

are presented in Section 5.

3. PDT SQL-Queries

Figure 2 gives an example of an SQL query that detects
and tracks pollutants in the ocean, e.g., oil spill&. rep-

networkOC' is joined with itself based on theguid value
reported from each sensor. Only sensors that repartial
value other thariwater” are considered in the join. To re-
flect thespatial clustering of the detected pollutants, each
sensor is restricted to join with other sensors that are at a4.1. Phase I: Joining

maximum distance of ten meters. Téteength(«) andtime

span(w) of the detected phenomena are set to five and one Two alternative approaches exist for implementing the
minute, respectively. multi-way join operator forlV streams: as a series of cas-



sensors stop showing the same behavior over a time-

T Phenomena -
window w.

Grouping/Output .
rOUpF',T]%S(u Py 3. The probe sequence and the stream sampling rate are

guided by the detected phenomena to favor the probe

sequence and the streams that participate in a phe-

Candidate Selection nomenon. This phenomenon-aware optimizations are
Phase discussed in detail in Section 5.

Phenomena candidate members

Phenomena-aware

feedback Join tuples

4.2. Phase ll: Candidate Selection
Joining Phase

The joining phase produces a tuple if the same read-
ing is observed by two streams within the specified time-
window. These two streams are considered phenomena can-
didate members if they persist to join with each other
times within the same time-window. Theandidate selec-
tion phase employs &onnectivity graphthat is used to
record the number of joins between each pair of sensors.
Figure 3. PDT query processing phases Each sensof; is represented by a node in thennectiv-
ity graph For any two sensorS; andsS;, (i # j), an edge
E(v,i,7) is added to the connectivity graph onlySf and
cadedN — 1 binary join operators where only two streams S; are joined together at least once in the kadime units
are joined at a time, or as a single operator that takes over valuev. The weight of the Edgé’;; is the number of
streams as its input. The MJoin operator [28] employs the times thatS; and.S; are joined together in the last time
second approach where it produces join results with a fasteunits, i.e., the strength of the phenomenon.
rate than the tree of binary joins. Thus, MJoin [28] is more ~ Figure 4 gives the processing of input pairs re-
suitable for data streaming applications. The main idea ofceived from the joining phase The input is ei-
MJoin is to maintain a hash table for each stream, i.e., senther a positive or a negative tuple with the format
sor. Once a tuple arrives from one stream, it is inserted into£(SN1.VALUE, SN1.ID,SN2.1D). The tuple repre-
the stream’s corresponding hash table. Then, the incom-sents the join value and two joining sensors. This tuple up-
ing tuple probes the hash tables of other streams. Since #lates the weights of the edges in the connectivity graph.
joined tuple is reported only if it appears ALL streams,  The weight of each edge is monitored. If the weight of
the MJoin algorithm stops probing hashing tables once thean edge increases to reach(i.e., weight = «), a posi-
probed value is missing in one of the streams. To avoid un-tive tuple is reported to denote the appearance of the candi-
necessary processing, the probing sequence is chosen basdate membe(SN1.VALUE,SN1.I1D,SN2.1D). If the
on the join selectivity among the streams. weight of an edge drops below (i.e., weight = o — 1),

To supporphenomena detecti@ndtracking(PDT),we & hegative tuple is reported to denote the disappear-
employ three main modifications to the original MJoin al- ance of that candidate member.

gorithm [28]. These modifications are summarized as fol-  Figure 4.2 gives an example of the connectivity graph for
lows: five sensors over a window of 5 time units. The connectivity

graph starts from scratch and records each join tuple by in-
creasing the weight of the edge between the two joining sen-
sors. Edges that exceagwhich is set to four, are marked as
bold lines to denote phenomenon candidate members. No-
tice that, as the window slides, the valilefrom sensoiS1,
that came at1, will expire, and consequently the edge be-
tweenS1 and S3 will drop below« generating a negative
2. The notions of positive and negative tuples [13] are uti- tuple to invalidate that candidate member.
lized. A positive tuple is reported when a join occurs. A
negative tuple is reported when one of the previously- 4.3. Phase IlI: Grouping/Output
reported join tuple components expires, i.e, becomes
old enough to get outside of the most recent time-  The grouping/outputphase receives phenomena candi-
window w. The negative tuple is important to invali- date members on the form of a tuple that consists of the IDs
date the candidate members of a phenomenon, if theof the two joining sensors and the join value. Each tuple

Stream tuples

Sensor Network

1. The modified multi-way join algorithm does not stop
once the join value is missing in one of the streams.
Instead, it continues to examine the remaining streams
to produce partial results. Notice that a phenomenon
need not span all the sensors in the sensor network.



INPUT: the join tuple (SN1.VALUE, SN1.ID, SN2.ID) OUT- 1 2 © @ 6
PUT: the phenomena candidate members Sensorill 10 7 10 5§ 5

Sensor2|| 15 10 7 10 10

Sensor 3|| 19 7 3 10 10

Sensor4|| 22 5 9 5 5
5 4 23

Upon receiving a positive tuple,

if CheckEdge(SN1.VALUE, SN1.ID, SN2.1D)
/I if edge exists increase its weight
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight Sensor5| 18 5
/I check the appearance of a candidate
if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=

Output+(SN1.VALUE, SNL.ID, SN2.ID) (a) Sensors’ input over 5 time instants
else
/ create a new edge with weight=1
CreateEdge(SN1.VALUE, SN1.I1D, SN2.ID)
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=1;
endif

Upon receiving a negative tuple,

/I Decrease the weight of the edge by 1 and

Edge(SN1.VALUE, SN1.ID, SN2.1D).weight

/I check the disappearance of a candidate

if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=-1)
Output—(SN1.VALUE, SN1.ID, SN2.ID)

/I remove the edge if its weight becomes zero

if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=0)
RemoveEdge(SN1.VALUE, SN1.ID, SN2.ID)

(b) The connectivity graph

endif Figure 5. An example of the connectivity

graph
Figure 4. Pseudo code of the candidate se-
lection phase

the same phenomenon to the number of sensors not read-
ing that phenomenon in a specified region. All these issues
can be positive or negative to denote the appearance or dis'¢ application-dependent and are addressed byrtiep-
appearance of a candidate member. A positive/negative tuN9/outputohase.
ple indicates that the number of joins between the two sen-
sors over the last becomes above/below Upon receiv- 5. Phenomenon-Aware Query Optimization
ing a positive tuple, based on the application semanties, th
grouping/outpuiphase may start a new phenomenon, add  This section proposes tWihenomenon-awarptimiza-
one sensor to an existing phenomenon, or merge two pheIiOﬂS that aim to provide a scalable execution for the pro-
nomena together. Similarly, upon receiving a negative tu- Posedhenomena detecti@ndtracking(PDT) framework.
ple, thegrouping/outpuiphase may delete a phenomenon, These optimizations tune the processing towards tuplés tha
remove a sensor from an existing phenomenon, or split onecontribute in producing the phenomena. The main idea is
phenomenon into two separate phenomena. to utilize the processing of theandidate selectiophase to

In addition, thegrouping/outpuiphase has the flexibil-  Provide feedback to thpining phase. The feedback con-
ity to apply application-dependent semantics. For exam-tains information about the sensors that contribute to the
ple, forcing a minimum number of sensors to form a phe- currently tracked phenomena. The two phenomenon-aware
nomenon, determining the outer contour or the convex hull ©Ptimizations are: (1) Controlling the sampling rate ofteac
of the phenomena . Also, the application may consider the S€NSOr, and (2) Choosing the join probing sequence.
spatial clustering of sensors. The clustering or spread of
the phenomenon implies whether there is a single sourceb.1. Controlling the Sampling Rate of Sen-
or multiple sources for the phenomenon. For example, mul- sors
tiple disconnected oil spills implies leakage out of more
than one container. Application-dependent semantics can
include the density of the phenomena as well. The density The number of sensors in a sensor network can grow
is measured by the ratio of the number of sensors readingarge. These sensors may be generating stream data with




high rates. They may show a bursty behavior as well. As a SF; 55 3)

result of all of the above reasons, the query processing en- SF; S8

gine faces periods of heavy load. In these periods, it will no SFy R, +S8Fy-Ry+---+SFE,-R,=R* (4)
be possible to cope with every sensor reading. To overcome N

this problem, a sampler for each sensor is employed to con- SF;-R; + Z SF; - R; = R* (5)

trol the input rate of its generated stream. Instead of a ran-
dom sampler, @henomenon-awareampler is preferred to
favor sensors that contribute heavily to the phenomena. The ", SF;-SS;

j=1,j#i

phenomenon-awasampler gets feedback from thandi- SF - Bi+ _lz: 85, By =R ©)
date selectiophase about the phenomena that are currently J=LIA
monitored. Die1,j2: 95 B .
Notice that if the weight of an edge between two sensors S - (i + SS; =R 0
is highly below or highly above, it is less likely to pro- Reducing the stream sampling rate of a sensor may lead

vid_e new inf(_)rmation. Ifitis highly below, it is less likely _ to delaying the discovery or to entirely missing new phe-
to increase instantly to and form a phenomenon candi- - nomena because they will take a longer time to increase the
date member. Similarly, if it is highly above, it is less  ggge weights between participating sensors till they reach
likely to decrease instantly below and eliminate a can- g the desirech. A sensor needs to be persistent in pro-
didate member. Sensors with edges that are closea®  §ycing the phenomenon and to increase its strength gradu-
considered strong candidates to form or eliminate a phe-gjy tjll the phenomenon is discovered. The difference be-
nomenon. Hence, as given in Equation 1, éage strength  yeen the time at which the phenomenon is formed and the
(ES)between two sensors; is inversely proportional 10 time at which it is reported is known as the response time.
the absolute difference between the edge weight @and \ye trade the response time of discovering new phenomena
([Edge(v, i, j).weight — af), whereEdge(v, i, j).weight — for the sake of monitoring already existing phenomena ef-
is the weight of the edge between sensoendj based ficiently. Otherwise, monitoring all sensors with the same

on the valuev (or zero if no edges at all). However, there gy ajity would degrade the whole system’s performance and
may be more than one edge between the two sensors if theYnay result in losing phenomena.

join over multiple values. To be conservative, the edge gets
the maximum strength over all of these values andstre

sor strength (SS¥ considered to be the maximum strength
over all of the edges connecting that sensor to its neighbors
(Equation 2). To favor sensors that are involved in phenom-

ena, thesampling factor §£7) of each sensof is propor- o hash tables of other sensors looking for matches. The
tional to its strength as given in Equation 3. sequence in which the tuple probes other hash tables af-
Let R* be the global desired sampling rate over all sen- fects the performance of the join operator. In the origi-
sors, and let?; be the sampling rate of each sens&r. nal MJoin [28] algorithm, the selectivity factors among the
is formed by adding the sensor ratis after they are be-  joins are taken into consideration. The least selective joi
ing adjusted bySF; (Equation 4). Equation 4 is rewritten s evaluated first. Consequently, the number of partial out-
again in the form of a summation in Equation 5. In Equa- pyt tuples is reduced at early steps. In our context, chgosin
tion 6, we substitute fo5F; by Equation 3. From Equa-  the join order based on the selectivity is not of great bene-
tion 7, we can obtaity F; given the rate of each sensor, the it where we are interested in partial results as well. More-
strength of each sensor and the desired fiteThese pa-  over, in large sensor networks, probing hundreds or thou-
rameters are continuously updated as the streams are runsands of sensors may be prohibitive, specially when the sen-
ning. The stream ratedi(s) and the desired raté() are  sor joins with a very small subset of the sensors. Instead, we
updated periodically to avoid unnecessary fluctuations andchoose a probing sequence in which probing is based on the

5.2. Choosing the Join Probing Sequence

Once a tuple arrives from one sensor, it is used to probe

bursty behaviors of sensors. The sensor’s strengjth)(is likelihood of producing a tuple that contributes to a phe-
updated with the arrival of each tuple to eagerly detect the nomenon.
new phenomena. If a tuple arrives at sensay it probes the hash table of

sensorj with probability P, where
1 1
P= 8
1+ |Edge(v,i,j).weight — «| } 1+ |Edge(v,i,j).weight — «| ®)

@ Equation 8 adjusts the probing probability based on how
SS; = MAX;(ES(i,j)) (2) close the edge between sensoasnd; on valuev to a. The

ES(i,j) = MAX,{




INPUT: a tuple from senso$; with valuev

a || w=5 w=10 w=15 w=20
OUTPUT: the join probing sequence 311010 4350 7150 11150
4| 121 498 815 1256
for j=1 to NoOfSensors 5 20 220 270 320
begin , ) 6| 4 19 56 140
P = mm(BaseProb, 1+|Edge(v,i,5). weight—a| ) 7 0 5 11 18
Generate a random variablg betweero, 1 8 0 0 > 5
if (U < P)
end ProbeSensor() Table 1. The effect of application-dependent
parameters

Figure 6. The join probing sequence

4. PDT+1&2, where both of the optimizations in (2) and

join probing sequence is evaluated as given in Figure 6. On (3) are applied together.

the arrival of a tuple with value from sensot, a complete

traversal over all sensors is performed. Because the @obin  Various PDT techniques are compared with respect to
operation is costly, we decide to either probe or skip sensorthree performance measures: (1) Timgut drop ratewhere
Jj based on the probabiliti’. Notice thatP should not go  some of the input sensor data tuples have to be dropped due
below a minimumBase Prob to avoid the zero join prob- o the scarcity of system resources. (2) Tasponse time
ability among sensors with no edges in between. This pol-which is measured by the difference between the time in
icy reduces the number of joins dramatically and focuses onwhich a phenomenon is reported by the system and the ac-
joins that contribute in phenomena. Eliminating the cost of tyal time in which it took place. (3) Theutput loss rate
unnecessary joins allows our technique to be scalable withwhere some phenomena are lost as a result of losing some
respect to the number of sensors. Similar to the case of Secof the input tuples. A smart technique tries to minimize all
tion 5.1, a delay may be observed in detecting new phe-these measures. rate.
nomena. A sensor needs to strengthen the edge between it- aj| the experiments are triggered by the execution of
self and other sensors gradually to get a higher probability the continuous query given in Figure 2. A synthesized data
in the join operation. set is used to simulate the sensor network readings. Unless
mentioned otherwise, we maintain 1000 sensors uniformly
6. Experiments distributed over a 1068 100 meters rectangular space. Each
sensor generates a stream of 10,000 tuples where the tu-
In this section, we conduct an experimental study of ple values follow the zipfian distribution. The interartiva
the proposeghenomena detecticandtracking PDTtech- time of sensor data follows an exponential distributiorhwit
nique. Three sets of experiments are conducted. The firs@n average of one second. All the experiments in this sec-
set of experiments (Section 6.1) is concerned with the ef-tion are based on a real implementation of 2T frame-
fect of the PDT parameters; the strength and the time  work inside theNile data stream management system [14].
spanw on the number of detected phenomena. The sec-The Nile engine executes on a machine with Intel Pentium
ond (Section 6.2) and the third sets (Section 6.3) of experi-1V, CPU 2.4GHZ with 512MB RAM running Windows XP.
ments study the performance of tABT optimization tech-
nigues with the change of the number of sensors and dat
arrival rates, respectively. For the last two sets of experi
\r}"(laergitsr,évgf(;ﬁénggrsotshd%g_?_r:grr::vr;g?k?f the following four . Table 1 gives the number of det_ected phenomen_afor var-
ious values of the strengthy) and time spam(). As given
1. Simple PDTwhere processing is not guided by the de- in the table andw have opposite effects. The increase in
tected phenomena. « results in less detected phenomena as the condition for

. . detecting a phenomenon becomes more restrictive. On the
2. PDT+1, where the sensor’s sampling rate is controlled gap

based on the detected ph di dins other side, the increase in the time spanelaxes the con-
tigie5 1on € detected pnenomena as diSCUsSed N S€{iiiq 1 for the detected phenomena. Thus, more phenomena

can be detected. The largest number of detected phenom-
3. PDT+2, where the join probing sequence is controlled ena is obtained fow = 20 anda = 3. At this point,PDT
based on the detected phenomena as discussed in Setracks up to 11,150 different phenomena over the lifetime
tion 5.2. of the experiment.

%.1. PDT parameters
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Figure 7. The effect of the number of sensors

6.2. The

Figure 7 studies the scalability of the four variations of

effect of the number of sensors

structures gets smaller after reducing the sampling rate of
irrelevant sensors (Figure 7b). As a result of controllimg t
sampling rates, the output loss rate of BT+1 is re-
duced (Figure 7c¢). Notice that as the number of sensors in-
creases, more load is posed against the system and the dif-
ference in the output loss rate becomes significant (up to
25% for 2000 sensorsPDT+2 reduces the response time
(Figure 7b) because it favors the join over sensors that con-
tribute to phenomena and leaves other joins to be performed
with a lower probability. This behavior increases the pro-
cessing time availability and reduces the input drop rate
(Figure 7a). The controlled join probing sequence reduces
the output loss rate through the efficient management of the
time budget in useful joins (Figure 7dpDT+1&2 com-
bines the features of both of tlRDT+1 andPDT+2 tech-
niguesPDT+1&2 decreases the input drop rate (Figure 7a),
the response time (Figure 7b), and the output loss rate (Fig-
ure 7c¢). There is a reduction of up to 78% in the output loss
rate over thesimple PDTfor 2000 sensors.

6.3. The effect of the stream rates

Figure 8 compares the performance of the four varia-
tions of thePDT framework with respect to varying the sen-
sor data interarrival rates from 0.1 to 1.5 seconds. D&
parametersy andw are set to 5 and 10 seconds, respec-
tively. Small interarrival times imply scarcity in resoesc
Large interarrival times imply an increased availabilify o
resources, where all curves approach each other and the
drop rate approaches zero. For the same reasons, as dis-
cussed in Section 6.2, boPDT+1 and PDT+2 decrease
the input drop rate over tr@mple PDT(Figure 8a), the re-
sponse time (Figure 8b), and the output loss rate (Figure 8c)
ThePDT+1&2 combines the benefits of both optimizations
and reduces the output loss rate by up to 45% ovesithe
ple PDT(for a 0.1 second average interarrival time).

Notice that the response times of thienple PDTand
PDT+1 are constant over time because the join probing se-
guence spans all of the 1000 sensors for all stream rates.
However, thePDT+2 andPDT+1&2 increase the length of
the probing sequence with the increase of the time availabil
ity. The response time increases because the technique tra-
verses a larger probing sequence per tuple for the sake of
decreasing the output loss rate.

the PDT framework with respect to increasing the number 7. Related Work

of sensors from 200 to 2000. TIRDT parameters: andw
are set to 5 and 10 seconds, respectiMelyT-1 decreases
the input drop rate over tr@mple PDTbecause it reduces

A lot of research interest has been directed recently to
data stream processing. Data stream systems, e.g., Stan-

the sampling rate of sensors that do not contribute to anyford STREAM [22], AURORA [1], NiagaraCQ [7], Tele-
phenomenon and, hence, keeps the input buffers less occugraph [6], are developed to cope with the new challenges

pied (Figure 7a). The response time of PBT+1 is less

imposed by the nature of data streams [4]. The COUGAR

than that of thesimple PDTbecause the size of the hash system [5, 30] introduces a new abstract data type for sen-



Some prior work has been conducted to track moving ob-
100

, jects in sensor networks [12]. Similar to our work, the join
90 r simple PDT 1 . . . .
g0 | PDT+L x| operation is used to detect similar readings over the sensor
. T % PDT+1&2 o | network. It proposes a new non-blocking multi-way join op-
S erator over a sliding window, the W-join operator, to track
§ 50 1 e the readings of the same object-ID that appears in different
S a0} = ™ locations over the sensor network. Our work tracks mov-
= st e ing phenomena, where each phenomenon is a group of sen-
20 f sors producing the same value, rather than tracking individ
10 ¢ o M e | ual moving point objects.
0 0 200 400 600 800 1000 100 1400 1600 The join operation over data streams has been explored
Average interarrival time (msec) in the literature. Symmetric Hash Join [29] is proposed to
(a) The input drop rate take care of the infiniteness of the data source. XJoin [27]
2000 : : : : : : : provides disk management to store overflowing tuples on
1800 - : disk for later processing. An asymmetric window join over
= 1600 | two data streams with different arrival rates is discussed
g 1400 | , 1 in [15]. The Hash-Merge JoirHMJ) [21] is a non-blocking
2 1500t e | join algorithm that produces early join results. In our work
% 1000 | e | a modified version of the M-Join [28] is used to detect
?% 800 |- simple PDT | streams with similar behavior over a window of time.
& o0l POTS2
200 | < PDT+1&2 = |
v I A 8. Conclusions
] 200 400 600 800 1000 1200 1400 1600
Average interarrival time (msec) .
(b) The response time In thls paper, we proposed a frame_work forenomena
detectionandtracking (PDT, for shorj in sensor network
100 , databases. To identify a phenomenon, we providedsp
simple PDT .. . . .
60 L = PDT+ - | definition for the phenomenqnthat takes into consideration
. x e PDT+182 both the strengthx) and the time span«). A phenomenon
[ . of strength §) and time spanv occurs at least times in
i s kT the lastw time units.
§ a0 The proposedPDT framework has three phases: The
© joining phase, theandidate selectiophase, and thgroup-
20 ¢ N ing/outputphase. Thgoining phase employs a multi-way
L Trea e e N join algorithm that joins the raw data from the sensor net-
© 0 200 400 600 800 1000 1200 1400 1600 work and produces a set of sensor pairs with similar val-
Average interarrival time (msec) ues. Thecandidate selectiorphase takes the output of
(c) The output loss rate the joining phase as input and applies a filter to enforce

the strength and time span of the phenomena. Finally, the
grouping/outputphase is application-specific where it en-
forces the application semantics. Furthermore, we pralvide
sors to facilitate the extraction of data and to processigser two phenomenon-awarm@ptimizations that aim to : (1) In-
over sensor networks. The Borealis engine [2] proposes acrease the sampling rate of the sensors that are part of any
scalable QoS-based optimization model to operate acrosphenomenon, and (2) Choose the join order of the multi-
sensor networks. The Fjords architecture [17] proposes ariway join algorithm to increase the likelihood of detecting
infrastructure for query processing over sensor data. the phenomena.

The physical acquisition or sampling of sensor dataisex- Experimental study based on a real implementation in-
ploredin[19, 11, 16, 23] to extract the sensor data with low side a research prototype for data stream management sys-
cost but still accurate methods. The work in [8, 18, 20] pro- tems shows that the propos@DT technique is scalable
poses the aggregation of sensor data tuples before reaching terms of the number of streams, the stream rates, and
the data management system. Aggregates reduce the dathe number of detected phenomena. ©pémized PDTre-
size and, consequently, consume less power in the transmisduces the output loss rate over gimple PDTby up to 78%
sion process. for a network of size 2000 sensors.

Figure 8. The effect of the stream rates
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