Performance of Multi-Dimensional Space-filling Curves

Mohamed F. Mokbel® Walid G. Aref? Ibrahim Kamel?
!Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398
?Panasonic Information and Networking Technologies Laboratory. Two Research Way Princeton, NJ 08540

{mokbel,aref}@cs.purdue.edu, ibrahim@research.panasonic.com

Abstract

A space-filling curve is a way of mapping the multi-dimensional space into the one-dimensional space.
It acts like a thread that passes through every cell element (or pixel) in the D-dimensional space so
that every cell is visited exactly once. There are numerous kinds of space-filling curves. The difference
between such curves is in their way of mapping to the one-dimensional space. Selecting the appropriate
curve for any application requires knowledge of the mapping scheme provided by each space-filling
curve. A space-filling curve consists of a set of segments. Each segment connects two consecutive
multi-dimensional points. Five different types of segments are distinguished, namely, Jump, Contiguity,
Reverse, Forward, and Still. A description vector V = (J,C, R, F,S), where J, C, R, F, and S, are
the percentages of Jump, Contiguity, Reverse, Forward, and Still segments in the space-filling curve,
encapsulates all the properties of a space-filling curve. The knowledge of V facilitates the process of
selecting the appropriate space-filling curve for different applications. Closed formulas are developed to
compute the description vector V for any D-dimensional space and grid size N for different space-filling
curves. A comparative study of different space-filling curves with respect to the description vector is

conducted and results are presented and discussed.

1 Introduction

Mapping the multi-dimensional space into the one-dimensional domain plays an important role in ap-
plications that involve multi-dimensional data. Multimedia databases, Geographic Information Systems
(GIS), QoS routing and Image processing are examples of multi-dimensional applications. Modules that
are commonly used in multi-dimensional applications include searching, sorting, scheduling, spatial ac-
cess methods, indexing and clustering. Numerous research has been conducted for developing efficient
algorithms and data structures for these modules for one-dimensional data. In most cases, modifying the
existing one-dimensional algorithms and data structures to deal with multi-dimensional data results in
spaghetti-like programs to handle many special cases. The cost of maintaining and developing such code

degrades the system performance.

— 1 JANEERNENENA SRR RN AN sninaniREnElun

- —— : I | b e ey e 1 L
e i B ! \ | =] e
e T | NN LUy v ags ML

s R R ! 1 IR ENESEND| SEVIRR] ESER TR N B AR
sapae——— T) I Ee e Ly L
e B ' 1 | T SniRsniRand Rant
= | PREENTIN Y ISP ERSRARER SRS e

(a) Sweep (b) Scan (c) Peano (d) Gray (e) Hilbert

Figure 1: Two-dimensional Space-Filling Curves.

Mapping from the multi-dimensional space into the one-dimensional domain provides a pre-processing
step for multi-dimensional applications. The pre-processing step takes the multi-dimensional data as
input and outputs the same set of data represented in the one-dimensional domain. The idea is to keep
the existing algorithms and data structures independent of the dimensionality of data. The objective of
the mapping is to represent a point from the D-dimensional space by a single integer value that reflects
the various dimensions of the original space. Such a mapping is called a locality-preserving mapping in
the sense that, if two points are near to each other in the D-dimensional space, then they will be near to

each other in the one-dimensional space.

Space-filling Curves (SFCs) have been extensively used as a mapping scheme from the multi-dimensional
space into the one-dimensional space. A space-filling curve is a thread that goes through all the points
in the space while visiting each point only one time. Thus, a space-filling curve imposes a linear order of
points in the multi-dimensional space. Space-filling curves are discovered by Peano [36] where he introduces
a mapping from the unit interval to the unit square. Hilbert [20] generalizes the idea to a mapping of the
whole space. Following Peano and Hilbert curves, many space-filling curves are proposed, e.g., [6, 30, 39].
Figures 1 and 2 give examples of two- and three-dimensional space-filling curves with grid size (i.e., number
of points per dimension) eight and four, respectively. According to the classification in [6], space-filling
curves are classified into two categories: recursive space-filling curves (RSFC) and non-recursive space-
filling curves. An RSFC is an SFC that can be recursively divided into four square RSFCs of equal size.
Examples of RSFCs are the Peano SFC, (Figure 1c), the Gray SFC, (Figure 1d) and the Hilbert SFC,

(Figure le). For a historical survey and more types of space-filling curves, the reader is referred to [37].

With the variety of space-filling curves and the wide spread of multi-dimensional applications, the
selection of the appropriate space-filling curve for a certain application is not a trivial task. One way is
to perform many simulation experiments over different space-filling curves. However, this is not practical
in terms of execution time. Another way is to tailor a new space-filling curve for each application, e.g.,
as in [6, 7, 32]. However, with the increase of multi-dimensional applications, it becomes a hard task to

tailor a new space-filling curve for each application.

(d) Gray (e) Hilbert

Figure 2: Three-dimensional Space-Filling Curves.

The objective of this paper is to provide a systematic and a scalable framework for selecting the appro-
priate space-filling curve for any application. To achieve this objective, we divide any space-filling curve
into segments. Each segment connects two consecutive multi-dimensional points. Thus, a D-dimensional
space-filling curve with grid size N would have N-1 segments that connect N? points. We distinguish
among five different segment types Jump, Contiguity, Reverse, Forward, and Still. A space-filling curve
SFC is described by its description vector V = (J,C, R, F, S), where J,C, R, F', and S, are the percentages
of Jump, Contiguity, Reverse, Forward, and Still segments, respectively. Then, with only looking at the

description vector V', one can choose the right space-filling curve for a given application.

The rest of this paper is organized as follows. Section 2 surveys some of the related work on space-filling
curves. Different types of segments in space-filling curves are presented in Section 3. Section 4 analyzes
two non-recursive space-filling curves , the Sweep and Scan SFC, and three recursive space-filing curves,
the Peano, Gray and Hilbert SFC, and develops closed formulas to compute the description vector of each
space-filling curve. In Section 5, we conduct a comprehensive comparison among different space-filling

curves. Finally, Section 6 concludes the paper.

2 Related Work

Although space-filling curves were discovered in the last century [20, 30, 36], their use in computer science
applications is not discovered until recently. The use of space-filling curves is motivated by the emergence
of multi-dimensional applications. Space-filling curves are used by [33] for spatial join of multi-dimensional
data. Multi-dimensional data is transformed into the one-dimensional domain using the Z-order [34], which
is the same as the Peano SFC [36]. The transformed data is stored in a one-dimensional data structure,
the BT-Tree [11], and a spatial join algorithm is applied. The Gray [18] and Hilbert [20] SFCs are used for
answering range queries in [12, 21}, respectively. [14, 15] use space-filling curves as a spatial access method
where the multi-dimensional data is stored in one-dimensional media (disk) using the Hilbert SFC. This
achieves clustering and hence reduces the number of disk accesses and improves the response time. In [22],
the Hilbert SFC is used in packing the R-Tree [19], where a set of rectangles are sorted according to the
Hilbert order, and then are packed into the R-Tree nodes. Similar ideas for constructing R-trees using
space-filling curves are proposed in [23]. The Z-order [34] (Peano SFC [36]) is used in [9] as a spatial access
method to enhance the performance of spatial join. Spatial objects located in a disk are ordered according
to their Z-order value to minimize the number of times a given page is retrieved from the disk. Similar
use of space-filling curves is performed in [38] based on the Hilbert SFC. The Hilbert SFC is also used in

multi-dimensional indexing in [24, 25] and for answering nearest-neighbor queries in [26].

Other uses of space-filling curve include data-parallel applications [35], disk scheduling [4], memory
management [27, 40], and image processing [42, 44, 46]. Some applications need a tailored space-filling
curve. In [6], a new recursive space-filling curve is proposed that guarantees an upper bound of three
seek operations to any two-dimensional square query. In [32], an H-index ordering is proposed for mesh-
indexing. XZ-ordering is proposed by [7] to map objects with spatial extension. The XZ-order is an

extension of the Z-order by extending each region in Z-order by a factor of two in each dimension.

The properties of different space-filling curves is explored in [3, 5, 28, 29]. In [3], the notion of Hilbert
indexing is generalized to arbitrary dimensions. The Hilbert SFC is structurally analyzed, which helps
in understanding how the Hilbert SFC is built in the multi-dimensional space. [5] studies the properties
of several space filling curves in the two- and three-dimensional spaces, and introduces new measures
to describe the behavior of any space-filling curve. The notion of irregularity is presented in [28] as a
quantitative measure of how irregular a space-filling curve is. In [29], the clustering properties of the
Hilbert SFC is analyzed by deriving closed formulas for the number of clusters in a given query region.

Numerous algorithms are developed for efficiently generating different space-filling curves. Recursive
algorithms for generating the Hilbert SFC are proposed in [8, 10, 17, 45] and for the Peano SFC in [10, 45].
A table-driven algorithm for the Peano and Hilbert SFCs is proposed in [17]. An algorithm for computing
the order of any point in the Hilbert, Peano, and Gray SFCs is proposed in [15]. For a comparison of

F; The ith point in a space-filling curve
P;.up The kth dimension in the 4th point in a space-filling curve
Jump(k, N, D) The number of Jump segments in dimension k in a D-dimensional space with grid size N
Contiguity(k, N, D) | The number of Contiguity segments in dimension k in a D-dimensional space with grid size N
Reverse(k, N, D) The number of Reverse segments in dimension & in a D-dimensional space with grid size N
Forward(k, N, D) The number of Forward segments in dimension k in a D-dimensional space with grid size N
Still(k, N, D) The number of Still segments in dimension k in a D-dimensional space with grid size N
Jr(N, D) The total number of Jump segments in all dimensions in a D-dimensional space with grid size N
Cr(N, D) The total number of Contiguity segments in all dimensions in a D-dimensional space with grid size N
Rr(N, D) The total number of Reverse segments in all dimensions in a D-dimensional space with grid size N
Fr(N, D) The total number of Forward segments in all dimensions in a D-dimensional space with grid size N
St(N, D) The total number of Still segments in all dimensions in a D-dimensional space with grid size N
Vr The total description vector Vo = (Jp,Cr, Ry, Fr, St)

Table 1: Symbols used in the paper.
different space-filling curves, a reader is referred to [1, 5, 13, 37].

3 Segment Types in Space-filling Curves

A D-dimensional space-filling curve with grid size N has NP-1 segments that connect N? points. Each
segment is classified as one or more of five segment types: Jump, Contiguity, Reverse, Forward, and Still. In
this section, we give a precise definition of each segment type along with an iterative equation to compute
the number of segments from each type for each dimension in the multi-dimensional space. For the rest

of the paper, we use the notations and definitions given in Table 1.

3.1 Jump

Definition 1 A Jump in an SFC is said to happen when the distance, along any of the dimensions,

between two consecutive points in the SFC is greater than one.

Formally, for any two consecutive multi-dimensional points F; and Pj;; in an SFC, a Jump occurs
in dimension k iff abs(Pj.ux — Pjt1.ux) > 1. The total number of Jump segments in a dimension k
in a D-dimensional space with grid size N is: Jump(k,N,D) = Zf\g_l fi(i, k) where f;(i,k) = 1 iff
abs(P;.ux, — P;y1.ur) > 1 and 0 otherwise. The total number of Jump segments in an SFC is: Jp(N, D) =
Z,CD:_()l Jump(k, N, D).

A Jump in a space-filling curve reflects the locality of the consecutive points in the order implied by the
space-filling curve. For example, consider the Sweep SFC (Figure 1a). By the end of each horizontal sweep,
the Sweep SFC jumps back to the beginning of the horizontal axis. Thus, the last point in a horizontal
sweep and the first point in the next horizontal sweep will be neighbors in the one-dimensional domain
while they are not neighbors in the multi-dimensional space. In contrast, consider the C-Scan and Hilbert

SFCs, where they do not have any Jump segments. So, any two neighbors in the one-dimensional ordering

are guaranteed to be neighbors in the multi-dimensional space. Generally, the lack of Jump segments
indicates more ability for clustering. However, Jump may or may not be a favorable property based on
the application type. For example, in a disk-head scheduling [4], Jumps are considered bad, as they result
in a longer seek time without retrieving any data. On the other side, in multi-priority scheduling, Jumps

are considered good, as the ability of fast moving among different priority types is required.

3.2 Contiguity

Definition 2 A Contiguity in an SFC is said to happen when the distance, along any of the dimensions,

between two consecutive points in the SFC is equal to one.

Formally, for any two consecutive multi-dimensional points P; and P;; in an SFC, a Contiguity occurs
in dimension k iff abs(P;.ux — P;y1.ux) = 1. The total number of Contiguity segments in a dimension k
in a D-dimensional space with grid size N is: Contiguity(k,N,D) = ng)fl fc(i, k) where fo(i, k) =1
iff abs(P;.u — Piy1.ug) = 1 and 0 otherwise. The total number of Contiguity segments in an SFC is:
Cr(N, D) = Y P! Contiguity(k, N, D).

Contiguity reflects the ability of a space-filling curve to go continuously along any of the dimensions.
For example, consider the Scan SFC (Figure 1b) where it always go continuously in one of the dimensions.
It starts by seven continuous horizontal segments followed by one continuous segment vertically, then
another set of continuous horizontal segments. A high ratio of Contiguity indicates a lower ratio in Jump.

As in Jumps, Contiguity may or may not be favorable, depending on the underlying application.

3.3 Reverse

Definition 3 A segment in an SFC is termed a Reverse segment if the projection of its two consecutive

points, along any of the dimensions, results in scanning the dimension in decreasing order.

Formally, for any two consecutive multi-dimensional points P; and P;;1 in an SFC, a Reverse segment
occurs in dimension k iff Pjyi.ur < P;ug. The total number of Reverse segments in a dimension k in
a D-dimensional space with grid size N is: Reverse(k,N,D) = ZZILDO_I fr(i k) where fr(i,k) = 1 iff
Piiq.up, < Pjuy and 0 otherwise. The total number of Reverse segments in an SFC is: Rp(N,D) =
21?;01 Reverse(k, N, D).

A Reverse segment is also classified as either a Jump or a Contiguity one. For example, in the Sweep
SFC, moving from the first horizontal sweep to the second one is done by a reverse and jump segment. On
the other side, moving from the first horizontal sweep to the second one in the Scan SFC is done by seven
reverse and continuous segments. Whether reverse segments are favorable or not relates to the semantic of

the sorted parameter. For example, consider real-time applications. When applying a space-filling curve

to a deadline parameter, the sorting from the largest to the smallest, i.e., in reverse order, means that we
visit the points with larger deadline before the points with smaller deadline. In this case, reverse ordering
is considered unfavorable. As another example, consider the case of disk-head scheduling [4]. Based on
the disk-head movement, alternating between forward and reverse orderings is favorable. In summary, it
is important to point out and quantify whether or not a space-filling curve exhibits reverse ordering in its

dimensions.

3.4 Forward

Definition 4 A segment in an SFC is termed a Forward segment if the projection of its two consecutive

points, along any of the dimensions, results in scanning the dimension in increasing order.

Formally, for any two consecutive multi-dimensional points P; and P;y; in an SFC, a Forward segment
occurs in dimension k iff Pjiqi.ux > Pj;.ux. The total number of Forward segments in a dimension & in
a D-dimensional space with grid size N is: Forward(k,N,D) = S"N0~" fp(i, k) where fp(i, k) = 1 iff
Piiq.up, > Pj.ug and 0 otherwise. The total number of Forward segments in an SFC is: Fp(N,D) =
ZkD:_Ol Forward(k,N, D).

As in Reverse segment, a Forward segment is also classified as either a Jump or a Contiguity segment.
For example, the first horizontal sweep in the Sweep SFC have seven forward and continuous segments. On
the other side, in the Peano SFC (Figure 1c¢), the segment that connects the second and the third quadrants
is considered as a forward and jump segment in the horizontal dimension. However, it is considered as a
reverse and continuous segment in the vertical dimension. A higher ratio of Reverse segments indicates a

lower ratio of Forward segments.

3.5 Still

Definition 5 A segment in an SFC is termed a Still segment when the distance, along any of the dimen-

sions, between the segment’s two consecutive points in the SFC is equal to zero.

Formally, for any two consecutive multi-dimensional points P; and P;y; in an SFC, a Still segment
occurs in dimension k iff Pjyi.uy = Pj.ug. The total number of Still segments in a dimension k in a
D-dimensional space with grid size N is: Still(k, N,D) = Eﬁzfl fs(i, k) where fg(i,k) =1 iff Piyi.up =
P;.uj, and 0 otherwise. The total number of Still segments in an SFC is: Sp(N, D) = Z/?:_ol Still(k, N, D).

A segment is considered as a Still segment if it does not match any of the other types. Still segments is
the closure of other types. For example, a segment that is neither a Jump nor a Contiguity is considered as
a Still. Also, a segment that is neither a Reverse nor a Forward segment is considered as a Still segment.

In general, the number of Still segments in a dimension k indicates the percent that this dimension

Segment typesin the horizontal dimension Segment typesin the vertical dimension
B rPoint [Jump H Contiguity Reverse M Forward M Still

Figure 3: The relation between segment types.

is neglected to visit other dimensions. For example, consider the Sweep SFC, each horizontal sweep has
seven segments that are continuous and forward in the horizontal dimension. However, they are considered
as Still segments in the vertical dimension. This high ratio of S#ill segments in the vertical dimension in
indicates that the Sweep SFC neglects advancing in the vertical dimension in favor of advancing in the

horizontal dimension. Unlike other segment types, a Still segment cannot be classified as another segment

type.

3.6 Relation between segment types

The five segment types can be divided into two categories. The first category, termed the distance category,
is concerned with the segment length. This includes Jump, Contiguity, and Still segments where the
segment length in greater than, equal, or less than one, respectively. The second category, termed the
direction category is concerned with the direction of the segment. This includes Reverse, Forward, and
Still segments. Notice that the Still segments belong to the two categories where it serves as the closure of
each property. Figure 3 illustrates the difference between the distance category segments and the direction
category segments for both the horizontal and vertical dimensions in the two-dimensional space. The

relationships among the segment types are summarized in the following Lemma.

Lemma 1 For any dimension k in a D-dimensional space with grid size N, the following equalities always

hold.

Jump(k, N, D) + Contiguity(k, N, D) + Still(k, N,D) = NP — 1
Reverse(k, N, D) + Forward(k, N, D) + Still(k,N,D) = NP — 1
Jr+Cr+Sr=D(NP —1)
Rr+ Fr+ Sy = D(NP —1)

Proof: The proof is given in Appendix A.1. d

From Lemma 1, we deduce the following Corollary:

Corollary 1 To compute the description vector V, it is enough to compute only three segment types with

at least one from each category. The other two segment types can be computed from Lemma 1.

4 Case Studies

The time complexity for calculating the number of segments of any type in a D-dimensional space with
grid size N is O(NP). Consider the case of 20 dimensions with grid size 16, we need 162° operations to
compute the number of Jumps of a space-filling curve. To avoid this excessive operation, we derive closed
formulas that compute the number of segments of each type for any dimension k£ in a D-dimensional
space with grid size N. In this paper, we concentrate on two non-recursive space-filling curves: the Sweep
and Scan SFCs; and three recursive space-filling curves: the Peano, Gray, and Hilbert SFCs. For each
space-filling curve, we derive two formulas; the first formula gives the number of segment types in each
dimension k, and the second formula gives the total description vector V- that represents the total number
of each segment for all dimensions. Given that the total number of segments in the D-dimensional space
is D(NP — 1), therefore, the percentages of each segment type are computed in the description vector

V = Vy/D(NP —1).

4.1 Case Study I: The Sweep SFC

Figures 1la and 2a give the Sweep SFC in the two- and three-dimensional spaces with grid sizes eight and
four, respectively. The simplicity of the Sweep SFC is the main reason to its wide spread. Applications of
the Sweep SFC include storing multi-dimensional arrays in memory and disk scheduling. A D-dimensional
Sweep SFC with grid size N is represented by a D digits number in the base N system. The rightmost
digit represents the last dimension (k = D — 1), while the leftmost digit represents the first dimension
(k = 0). This means that in order to increase the value of dimension k from v to v + 1, the Sweep SFC
goes through all the points 0 to N-1 in dimension &k — 1. We call this event a Cycle of the Sweep SFC. For
example, in Figure 1a, in order to advance one value in the vertical dimension, the Sweep SFC should go
through a Cycle from 0 to 7 in the horizontal dimension. The first dimension in the Sweep SFC has NP1
cycles, each with N points. Generally, the kth dimension has NP~%~1 cycles, each with N**1 points.
Notice that the last dimension has only one cycle that includes all space points (N?). Table 2 gives an
example of computing the Sweep order for the two- and three-dimensional points with a grid size of eight

points in each dimension.

Lemma 2 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, Forward,

Point Octal Convertion | Sweep Point Octal Cpnversion Sweep
Number Process Order Number Process Order
2,1) (21)s Ix8+1 17 (0,1,3) | (013)s | 0x64+1x8 +3 11
(5,3) (53)s 5x8+43 17 (2,1,4) (214)s 2x644+1x8+44 140
(7,0) (70)s 7Tx8+0 56 (7,0,7) (707)8 TXx644+0x847 455

Table 2: An Example of two- and three-dimensional Sweep SFC with grid size 8 in each dimension.

and Still segments in any dimension k for the Sweep SFC is:

Jump(k, N, D) = Reverse(k,N,D) = ND-k-1_4
COntZgu’l;ty(k, N, _D) = FOT"UJG/]"d(k’ N’ D) — ND—k:—l(N _ 1)
Still(k,N,D) — ND _ yD—k

Proof: The proof is given in Appendix A.2. d

Lemma 3 The total description vector Vp for the D-dimensional Sweep SFC with grid size N is Vp =
(J7,Cr, Rr, Fr, St) where:

NP —1
Jr=Rr = -D
T T= N1
Cr=Fr=NP-1
N (NP —1)
St = DNP —
T N-1
The description vector V. = Vp/D(NP —1).
Proof: The proof is given in Appendix A.3. O

4.2 Case Study II: The Scan SFC

The Scan SFC (Figures 1b and 2b) is a slight modification of the original Sweep SFC. The main motivation
is to avoid the Jump segments in the Sweep SFC. Thus instead of having one Jump and Reverse segment
between each Sweep Cycle, the Scan SFC replaces this segment by a sequence of N — 1 Contiguity and
Reverse segments. The Scan SFC have the same concept of a Cycle as in the Sweep SFC. However,
the Scan SFC distinguishes between even-numbered and odd-numbered cycles. Notice that for the kth
dimension, the Scan SFC has NP~%-1 cycles. Even-numbered cycles are exactly the same as the Sweep
SFC. However, the odd-numbered Cycles in the case of the Scan SFC consists of N — 1 Contiguity and
Reverse segments rather than Contiguity and Forward segments as in the case of the Sweep SFC. Also, the

transition between each cycle is performed by a Still segment in the case of the Scan SFC rather than by

10

a Jump segment as in the case of the Sweep SFC. Many applications benefit from the no Jump property
of the Scan SFC.

Lemma 4 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, Forward,

and Still segments in any dimension k for the Scan SFC is:

Jump(k,N,D) =0
Contiguity(k,N,D) = NP*L(N — 1)
Stili(k, N, D) = ND—+=1 (Nk+1 N+ 1) 1

Reverse(D —1,N,D) =0

1
Reverse(k,N,D) = END_k_l(N -1), k<D-1
Forward(D —1,N,D)=N —1
1
Forward(k,N,D) = §ND*’H(N - 1), k<D-1
Proof: The proof is given in Appendix A.4. d

Lemma 5 The total description vector Vp for the D-dimensional Scan SFC with grid size N is Vp =

(Jr,Cr, Rr, Fr,St) where:

Jr =0
Cr=NP -1
Sr=(D-1)(N" 1)

Rp =" (NP7 1)
FT:E(ND_l—l)—FN—l

2

The description vector V.= Vp/D(NP —1).

Proof: The proof is given in Appendix A.5. O

4.3 Case Study III: The Peano SFC

The Peano SFC (Figures 1c and 2¢) is introduced by Peano [36] and is also called Morton encoding [31],
quad code [16], bit-interleaving [41], N-order [43], locational code [2], or Z-order [34]. The Peano SFC is
constructed recursively as in Figure 4. The basic step (Figure 4a) contains four points in the four quadrants

of the space. Each quadrant is represented by two binary digits. The most significant digit is represented

11

Point | Dimensions Bit Decimal Point Dimensions Bit Decimal
0 1 Interleaving Order 0 1 2 Interleaving Order
(2,1) 010 | 001 001001 9 (0,1,3) | 000 | 001 | 011 000001011 11
(5,3) 101 011 100111 39 (2,1,4) | 010 | 001 | 100 001100010 98
(7,0) 111 000 101010 42 (7,0,7) | 111 | 000 | 111 101101101 365

(a) (b) (c)

Figure 4: The Peano SFC.

by its x position and the least significant digit is represented by its y position. The Peano SFC orders
these points in ascending order (00, 01, 10, 11). Figure 4b contains four repeated blocks of Figure 4a at a
finer resolution and is visited in the same order as in Figure 4a. Similarly, Figure 4c contains four repeated

blocks of Figure 4b at a finer resolution.

To extend the Peano SFC to the multi-dimensional space, we present the idea of bit-interleaving in the
two-dimensional space as shown in Figure 5. Each point in the space is assigned a binary number that
results from interleaving bits of the two dimensions. The bits are interleaved according to an interleaving
vector T,=(0,1,0,1). This corresponds to taking the first and third bits from dimension 0 (z) and taking
the second and fourth bits from dimension 1 (y). For a D-dimensional space with four points in each
dimension, the interleaving vector is (0,1,2,...,D —1,0,1,2,...,D — 1). For a grid size of N points in
each dimension, the term 0,1,2,...,D — 1 is repeated LogN times. The points are visited in ascending
order according to their binary number representation. Table 3 gives an example of computing the Peano

order for two- and three-dimensional points with a grid size of eight points in each dimension.

Lemma 6 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, Forward,

12

1

10

01

0101

0100

0001

0111 1101 1111

1100 1110

0011 1001 1011

0010 1000 1010

00

10 11

Figure 5: Bit Interleaving in Peano SFC.

and Still segments in any dimension k for the Peano SFC is:

Jump(k,N,D) =

Contiguity(k,N,D) =

(NP —27) (27 —2)

Still(k,N,D) = NP (1 - 2’9*D+1)

Reverse(k,N,D) =

Forward(k,N,D) =

Proof: The proof is given in Appendix A.6.

2D (2D — 1)

2k (NP 20 —2)

2D —1

k_
22D—k(2D_1) +2 1
1 ND_22D
22kaND (2D+1_1)+22D7k 2D _ 1
2k (NP —2P) (2P -2
(NP -27) 2P -2) .

O

Lemma 7 The total description vector Vp for the D-dimensional Peano SFC with grid size N is Vp =

(JT, CTa RTa FT, ST) where:

Jr =

Cr =

(%)D (1-2""P)+1-D

Rr=NP(1-2""P)+1-D

Fr=NP -1

Sr=NP (2" P +D-2)

The description vector V. = Vy/D(NP —1).

Proof: The proof is given in Appendix A.7.

13

Point | Dimensions Bit Decimal Point Dimensions Bit Decimal
0 1 Interleaving Order 0 1 2 Interleaving Order
(2,1) 011 001 001011 13 (0,1,3) | 000 | 001 | 010 000001010 12
(5,3) 111 010 101110 52 (2,1,4) | 011 | 001 | 110 001101110 75
(7,0) 100 | 000 100000 63 (7,0,7) | 100 | 000 | 100 100000100 384

Table 4: An Example of two- and three-dimensional Gray orders with grid size 8 in each dimension.

7\
-
g

-

Shps
aike

L
Syps
I.T

#\ /.<
>/ \.<

S 1
>/ \.<

JRED O B GV B O |

— || [=

MR I8) T N A) B

o

(a) (b) (c)

Figure 6: The Gray SFC.

4.4 Case Study IV: The Gray SFC

The Gray SFC (Figures 1d and 2d) uses the Gray code representation [18] in contrast to the binary
code representation as in the Peano SFC. Figure 6 gives the recursive construction of the Gray SFC. The
basic step (Figure 6a) contains four points in the four quadrants of the space. As in the Peano SFC, each
quadrant is represented by two binary digits. The most significant digit is represented by its x position and
the least significant digit is represented by its y position. The Gray SFC orders these points in ascending
order according to the Gray code (00, 01, 11, 10). Figure 6b contains four repeated blocks of Figure 6a at

a finer resolution and is visited in Gray order.

Unlike the Peano SFC, the first and the fourth blocks have the same orientation as those of Figure 6a,
while the second and the third blocks are constructed by rotating the block of Figure 6a by 180°. Similarly,
Figure 6¢ is constructed from two blocks of Figure 6b at a finer resolution and two blocks of the rotation
of Figure 6b by 180°. For details about extending the Gray SFC to multi-dimensional space, the reader is
referred to [28].

To extend the Gray SFC to the multi-dimensional space, we use the same idea of bit interleaving as in
the Peano SFC. Figure 7 gives the bit interleaving in the two-dimensional space with four points in each
dimension. Table 4 gives an example of computing the Gray order for two- and three-dimensional points

with grid size eight (i.e., eight points) in each dimension.

Lemma 8 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, Forward,

14

and Still segments in any dimension k for the Gray SFC is:

Jump(h, N, D) = - = 27)
ump(k, N, D) = m
o NP
Contiguity(k, N, D) = oDk
, (NP —1) (2P —2F —1)
Still(k,N,D) = 9D 1
NP 2P
Re’UeT'SC(O, N, D) = m
2k-1 (NP —1)
Reverse(k,N,D) = DT k>0
ND 2P
Forward(0,N,D) = 2@P—1) +1
2k=1 (NP —1)
FOT’LUG/]"d(k,N,D) = T, k >0
Proof: The proof is given in Appendix A.8. g

Lemma 9 The total description vector Vi for the D-dimensional Gray SFC with grid size N is Vp =
(Jr,Cr, Rr, Fr,Sr) where:

N D
N D
CT = (5) (2D —]_)
NP —2
Ry = 5
ND
Fr=-5"

The description vector V = Vp/D(NP —1).

Proof: The proof is given in Appendix A.9. O

4.5 Case Study V: The Hilbert SFC

Figure 8 gives the recursive construction of the Hilbert SFC. The basic block of the Hilbert SFC (Figure 8a)
is the same as the basic block of the Gray SFC (Figure 6a). The basic block is repeated four times at a
finer resolution in the four quadrants, as given in Figure 8b. The quadrants are visited in their gray order.

The second and third blocks in Figure 8b have the same orientation as in Figure 8a. The first block is

15

10 0110 1110 1100

0100

110101 111 11 1101

01| oom 11 1011 1001

0000 0010 1010 1000
00 01 11 10

Figure 7: Bit Interleaving in Peano SFC.

: : snARsnERanEREn
T——T : 3 I 1
: . o RRED
| 3 it
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - [j —d
——o oo lrjl jl lf lfjl

(a) (b) (c)

Figure 8: The Hilbert SFC.

constructed from rotating the block of Figure 8a by 90°, while the fourth block is constructed by rotating

the block of Figure 8 by —90°. Figure 8c is constructed from Figure 8b in an analogous manner.

Lemma 10 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, For-

ward, and Still segments in any dimension k for the Hilbert SFC is:

Jump(k,N,D) =0
D—1

; N N
Contiguity(k,N,D) = Z 2'Contiguity((k +4) mod D, 5 D) + 2Contiguity(k, 5 D) +2F
i=1
Contiguity(k,1, D
Still(k,N,D) = NP — 1 — Contiguity(k, N, D)
Reverse(0

) =

) =

D) = (Contiguity(0,N,D) — N +1)/2
) = Contiguity(k,N,D)/2 k>0

) =

(O
Reverse(k,N, D
Forward(k,N,D) = NP — 1 — Reverse(k, N, D) — Still(k, N, D)

Proof: The proof is given in Appendix A.10. O

Lemma 11 The total description vector Vr for the D-dimensional Hilbert SFC with grid size N is Vp =

16

(Jr,Cr, Ry, Fr, St) where:

Jr =0
Cr=NP -1
Rng(ND_l—l)
FT:%(ND’l—Irl)—l

Sr=(D—1)(NP —1)
The description vector V.= Vy/D(NP —1).

Proof: The proof is given in Appendix A.11. d

5 Performance Evaluation

In this section, we perform comprehensive experiments to compare the Sweep, Scan, Peano, Gray, and
Hilbert SFCs with respect to the different segment types. The results in this section are computed using
the closed formulas developed in Section 4. Notice that it is timely infeasible to compute segment types

in high-dimensional spaces using the definition and iterative equations from Section 3.

5.1 Scalability of Space-filling Curves

In this section, we address the issue of scalability, i.e., when the number of dimensions and/or the number of
points per dimension increase. For the following experiments, we use Lemmas 3, 5, 7, 9, and 11 to compute
the description vector V. Figure 9 gives the results of setting the grid size N=16, while measuring different
segment types (Jump, Reverse, and Still) up to 12 dimensions. An interesting result appears in the Jump
segments (Figure 9a) where both the Peano and Gray SFCs have very low percentage (almost 0%) of Jumps
after six dimensions while the Hilbert and Scan SFCs have no Jumps for any dimensions. The fact that
the Hilbert SFC has no Jumps is well-known [15, 29], and it is the main criteria for why the Hilbert SFC
is chosen for many applications e.g., [3, 15, 23]. However, this experiment emphasizes that both the Peano
and Gray SFCs share the property of no Jumps with the Hilbert SFC for medium and high dimensionality.
For Contiguity, all space-filling curves almost have the same number of Contiguity segments, except the
Peano SFC, where it has higher Contiguity segments than the other space-filling curves. This affects the
number of Still segments, where the Peano SFC has the least number of Still segments. As it appears from
its definition, the Sweep SFC has very low Reverse segments, while the Peano SFC has the highest number
of Reverse segments. For the Forward segments, both the Sweep and Peano SFCs have the highest ratio.

17

€
. 10 Peano —+— 4 3 508 =
& Gay —X © o
o g Hilbert —©— | 40 °
& > &

5 30 -
g) =
5 2 -
- < 20 n

8

2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
No. of Dinensions No. of Dinensions

(a) Jump (b) Contiguity (c) Still

Reverse Percent

=
8

2 3 4 5 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
No. s No. of Dinensions

(d) Reverse (e) Forward

Figure 9: Scalability of space-filling curve w.r.t dimensionality.

The Gray and Hilbert SFCs have similar behavior for all segment types except for low-dimensionality
in the Jump and Contiguity segments. Notice that all segment types except Still are decreasing as the
number of dimensions increases. The reason for this comes from the Still segment definition. A Still
segment indicates that the value in one of its dimensions does not change. With a larger number of
dimensions, it is difficult to find a segment that connects two consecutive multi-dimensional points that

are different in all dimensions. Thus, almost each segment is counted as Still for one or more dimensions.

The second set of experiments (Figure 10) tests the four-dimensional space with grid size up to 256.
All space-filling curves except the Sweep SFC almost have constant percentage regardless of the grid size.
This can be noted from the description vector V, where getting the limy_, V gives a constant value that
does not depend on N. An interesting result is that the Scan and Hilbert SFCs have the same performance
for all segment types. The Gray SFC share the same performance with the Hilbert and Scan SFCs for
the Reverse, Forward, and Still segments. However, the Gray SFC has more Jumps and lower Contiguity
than the Hilbert SFC. The Peano SFC has the highest ratio, with a large margin, of both Contiguity and
Reverse segments. This is balanced by the very low ratio of Still segments in the Peano SFC. The Sweep
SFC is the only space-filling curve that is affected by the change of grid size. However, it tends to be
stable after grid size 64.

18

8L T 50 - -
7 Peano —+— 457 : .
Gay —X— -
6 Hilbert —G— - S
= Sweep —H— o €
&5 Scan —&— | > @
o a °
8 a > 3
Es) =
3 z &
2 £ 60 |
4 - - 3
17 15 55 |)))))
t t t t t
0 N 10 50
4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256
Gid Size Gid Size Gid Size
(a) Jump (b) Contiguity (c) Still
25 T T T T T 50 T
1 t t t t } 45 Peano —+— -
20 i Gay —xX—
40 Hi | bert —O&—
Sweep —H—
35 Scan —A—

30

258

=]
=]
=]
=]
25|
H

Reverse Percent
Forward Percent

20

Gid Size

(d) Reverse

(e) Forward

Figure 10: Scalability of space-filling curves w.r.t grid size.

5.2 Fairness of Space-filling Curves

In this section, we test the fairness! of space-filling curves. For each segment type T, we use the standard
deviation of the number of T segments over all dimensions as an indication for fairness. The lower the
standard deviation the more fair the space-filling curve is. For the experiments of this section, we use
Lemmas 2, 4, 6, 8, and 10 to compute the number of segments for each segment type over each individual

dimension rather than the total that is used in the description vector.

Figure 11 gives the standard deviation for all segment types for up to the 12-dimensional space with
grid size 16. It is clear that for all segment types, the Hilbert SFC is the most fair space-filling curve
with very low standard deviation. In general, recursive space-filling curves tend to be more fair than
non-recursive space-filling curves. This comes from the fact that the recursive space-filling curves divide
the space into equal fragments. Each fragment is dealt with in the same way. An exception is the Reverse
segments in the Sweep SFC, where it has very low standard deviation. This comes from the very low
number of Reverse segments in all dimensions of the Sweep SFC. Among the recursive space-filling curve,
the Peano SFC gives the worst performance. The interesting result is that both the Peano and Gray SFCs

tend to be more fair as the dimensionality increases while the Hilbert SFC behaves the opposite. This

'We say that a space-filling curve is fair if it has similar behavior towards all dimensions in the multi-dimensional space.

19

6 70 ——
Peano —+—
5 60Z Gay —X— 1
H H Hlbert —o— H
= 2 50 ep —— =
< 4 < ©
s % 40 H
& 51 & & &
o T 307 DR o
g, I RS 5
g 2 & 20 A . = d
@ @ @
1 10]
0 o o o o w8 & b o o—0—0—0—O—0— 5
3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
No. of Dinensions No. of Dinensions No. of Dinensions
(a) Jump (b) Contiguity (c) Still

Standard Devi ati on
Standard Devi ati on

SB\E’;@:@:@:%%:@:Q
.

2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
No. of Dinensions No. of Dinensions
(d) Reverse (e) Forward

Figure 11: Fairness of space-filling curves.

indicates that for very high dimensionality, the Hilbert SFC may not be the most fair space-filling curve.

5.3 Intentional Bias of Space-filling Curves

A very critical point for SFC-based applications is how to assign the different parameters to the space
dimensions. In this section, we explore the intentional bias? of each space-filling curve by plotting its
behavior for each dimension individually. Figures 12 and 13 give the intentional bias for distance (Jump,
Contiguity, Still) and direction segments (Reverse, Forward, Still), respectively. The experiment is per-
formed for the four-dimensional space with grid size 16. Each dimension is plotted individually as a stacked
bar that contains the percentage of distance or direction segments. The fifth column is the percentage of
the total number of segments over all dimensions from each type. Note that the height of each bar is 100
(refer to Lemma 1).

From Figure 12, the percentage of Jumps in the Peano, Gray, and Sweep SFCs is negligible. The
Hilbert SFC is not biased to any dimension. This agrees with the result in the previous section, where

the Hilbert SFC has a very low standard deviation. With respect to Contiguity, the Peano SFC is biased

2We say that an SFC is intentionally biased towards a certain dimension k with respect to segment type 7T if the SFC has
more T segments in dimension k£ with respect to all other dimensions

20

100% 1002 S 100 4 — — — s s
0% a0 4 a0 4
B0% B0 4 B 4
40% 403 1 403
20% 20% =
_ w12 2 B v 7
0% 03 4 0 T T T T 1
fst CInd 3d 4 Tofal st 2nd 3d #th Total st znd ad 4tk Total
B Jump Contiguity O still B Jump Contiguity o still B Jump Contiguity o <till
(a) Peano (b) Gray (c) Hilbert
100% 100%
20% 0%
BO% BO%
40% 0%
20% 7 20% 7
D% - L . = = A ; D% } L ;
1st 2ndd 3rd 4th Tatal 1t 2nd 3rd 4th Tatal
B Jump Contiguity O Still B Jump Contiguity 0O Still
(d) Sweep (e) Scan

Figure 12: Intentional bias of space-filling curves w.r.t distance segments.

towards the last dimension where almost all the segments are Contiguity segments with no Still segments.
With the increase of the dimension number k, the number of the Contiguity segments is increasing rapidly,
and the number of Still segments is decreasing. The Gray SFC has similar behavior as in the Peano SFC,
however, the increase/decrease in Contiguity/Still segments is slower. On the other hand, the Sweep and
Scan SFCs have very high Contiguity segments in the first dimension followed by a very low Contiguity

segments in the second dimension. There is almost no Contiguity in the other dimensions.

Figure 13 gives the results of the same experiment for direction segments. The same analysis is applied,
where the Hilbert SFC is extremely fair, while the Peano SFC is biased towards the last dimension. The
only difference here, is that the bias of the Peano and Gray SFCs is with respect to both the Reverse and
Forward segments instead of only the Jump segments in Figure 12. Note that in the three recursive SFCs,
the percentages of the Reverse and Forward segments are almost equal for all dimensions. On the other
hand, the non-recursive SFCs almost have only Still segments after the second dimension. This is the main
reason why non-recursive SFCs have very high standard deviation in Figure 11. The Sweep SFC has very
low number of Reverse segments in the first dimension. On the other hand, the number of Forward and

Reverse segments are equal in the Scan SFC.

21

1002+ 1002 4

a0 H a0
B0z o B0
403 - 403
2024 4 20
03 0
1t 2nd Ird 4th Total 1st 2nd 3rd 4th Total 1=t nd Ird 4th Total
B Reverse Farward o Sill B Reverse Forward O Still B Reverse Farward o Sill
(a) Peano (b) Gray (c) Hilbert
100% 100%
0% 0%
B0% E0%
40% 40%
20% ? 20%
0% — ol . : Z s 0%
15t 2nol rd dth Tital 1zt 2nd 3rd ath Total
W Reverse B Forward O Still B Reverse @ Forward OStll
(d) Sweep (e) Scan

Figure 13: Intentional bias of space-filling curves w.r.t direction segments.
6 Conclusions

Space-filling curves are used as a mapping scheme from the multi-dimensional space into the one-dimensional
space. The behavior of different space-filling curves in the D-dimensional space is analyzed. A description
vector V is proposed to give a brief description for each space-filling curve. Closed formulas that depend
on the space dimensionality and grid size are derived to compute V. The idea is to divide the space-filling
curve into a set of connected segments. Each segment connects two consecutive multi-dimensional points.
Five segment types are distinguished, namely, Jump, Contiguity, Reverse, Forward, and Still. The de-
scription vector V' contains the percentage of occurrence of each segment type. Several experiments are

conducted to show the scalability and fairness of space-filling curves with respect to segment types.

References

[1] David J. Abel and David M. Mark. A comparative analysis of some two-dimensional orderings. Intl.
Journal of Geographical Information Systems, 4(1):21-31, 1990.

[2] David J. Abel and J. Smith. A data structure and algorithm based on a linear key for a rectangle

22

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

retrieval problem. Computer Vision Graphics Image Processing, 24:1-13, 1983.

Jochen Alber and Rolf Niedermeier. On multi-dimensional hilbert indexing. In Proc. of the 4th Intl.
Computing and Combinatorics Conference, COCOON, pages 329-338, Taipei, Taiwan, August 1998.

Walid G. Aref, Khaled El-Bassyouni, Ibrahim Kamel, and Mohamed F. Mokbel. Scalable qos-aware
disk-scheduling. In International Database Engineering and Applications Symposium, IDEAS, Al-
berta, Canada, July 2002.

Walid G. Aref and ITbrahim Kamel. On multi-dimensional sorting orders. In Proc. of the 11th Intl.
Conf. on Database and Ezxpert Systems Applications, DEXA, pages 774-783, London, September 2000.

Tetsuo Asano, Desh Ranjan, Tomas Roos, Emo Welzl, and Peter Widmayer. Space-filling curves and
their use in the design of geometric data structures. Theoretical Computer Science, TCS, 181(1):3-15,
1997.

Christian Bohm, Gerald Klump, and Hans-Peter Kriegel. zz-ordering: A space-filling curve for objects
with spatial extensio. In Proc. of 6th Intl. Symp. on Large Spatial Databases, SSD, pages 75-90, Hong
Kong, July 1999.

Greg Breinholt and Christoph Schierz. Algorithm 781: Generating hilbert’s space-filling curve by
recursion. ACM Trans. on Mathematical Software, TOMS, 24(2):184-189, June 1998.

Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial joints
using r-trees. In Proc. of the intl. conf. on Management of data, SIGMOD, pages 237-246, Washington
D.C., May 1993.

A. J. Cole. A note on space filling curves. Software—Practice and Ezperience, SPE, 13(12):1181-1189,
1983.

Douglas Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(2):121-137, June 1979.

Christos Faloutsos. Gray codes for partial match and range queries. IEEE Trans. on Software
Engineering, TSE, 14(10):1381-1393, October 1988.

Christos Faloutsos. Analytical results on the quadtree decomposition of arbitrary rectangles. Pattern
Recognition Letters, 13(1):31-40, January 1992.

Christos Faloutsos and Yi Rong. Dot: A spatial access method using fractals. In Proc. of Intl. Conf.
on Data Engineering, ICDE, pages 152-159, Kobe, Japan, April 1991.

Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval. In Proc. of the 8th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, PODS, pages 247-252,
Philadelphia, March 1989.

Raphael A. Finkel and Jon L. Bentley. Quad trees: a data structure for retrieval on composite keys.
Acta Informatica, 4:1-9, 1974.

23

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Leslie M. Goldschlager. Short algorithms for space-filling curves. Software—Practice and Ezperience,
SPE, 11(1):99-100, 1981.

F. Gray. Pulse code communications. US Patent 2632058, 1953.

Antonin Guttman. R-trees: A dynamic index structure for spatial indexing. In Proc. of the intl. conf.
on Management of data, SIGMOD, pages 47-57, Boston, MA, June 1984.

D. Hilbert. Ueber stetige abbildung einer linie auf ein flashenstuck. Mathematishe Annalen, pages
459-460, 1891.

H. V. Jagadish. Linear clustering of objects with multiple attributes. In Proc. of the intl. conf. on
Management of data, SIGMOD, pages 332-342, Atlantic City, NJ, June 1990.

Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In Proc. of the 2nd Intl. Conf. on
Information and knowledge Management, CIKM, pages 490-499, Washington D. C., November 1993.

Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-tree using fractals. In Proc. of
the 20th Intl. Conf. on Very Large Data Bases, VLDB, pages 500-509, Santiago, Chile, September
1994.

Jonathan K. Lawder and Peter. J. H. King. Using space-filling curves for multi-dimensional indexing.
In Proc. of the 17th British National Conf. on Databases, BNCOD, pages 20-35, UK, July 2000.

Jonathan K. Lawder and Peter. J. H. King. Querying multi-dimensional data indexed using the
hilbert space filling curve. SIGMOD Record, 30(1), March 2001.

S. Liao, Mario A. Lopez, and Scott.T. Leutenegger. High dimensional similarity search with space-
filling curves. In Proc. of Intl. Conf. on Data Engineering, ICDE, pages 615-622, Heidelberg, Germany,
April 2001.

John M. Mellor-Crummey, David B. Whalley, and Ken Kennedy. Improving memory hierarchy perfor-
mance for irregular applications. In Proc. of the Intl. Conf. on Supercomputing, ICS, pages 425-433,
Rhodes, Greece, June 1999.

Mohamed F. Mokbel and Walid G. Aref. Irregularity in multi-dimensional space-filling curves with
applications in multimedia databases. In Proc. of the 2nd Intl. Conf. on Information and knowledge
Management, CIKM, pages 512-519, Atlanta, GA, November 2001.

B. Moon, H. V. Jagadish, Christos Faloutsos, and J. Salz. Analysis of the clustering properties of
hilbert space-filling curve. IEEE Trans. on Knowledge and Data Engineering, TKDE, 13(1):124-141,
2001.

E. H. Moore. On certain crinkly curves. Trans. Am. Math Soc., pages 72-90, 1900.

G. M. Morton. A computer oriented geodetic data base and a new technique in file sequences. IBM,
1966.

24

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Rolf Niedermeier, Klaus Reinhardt, and Peter Sanders. Towards optimal locality in mesh-indexing. In
Proc. of the 11th Intl. Symp. on Fundamentals of Computation Theory, FCT, pages 364-375, Krakow,
Poland, September 1997.

Jack A. Orenstein. Spatial query processing in an object-oriented database system. In Proc. of the
intl. conf. on Management of data, SIGMOD, pages 326—-336, Washington D.C., May 1986.

Jack A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In Proc. of
the 3rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, PODS, pages
181-190, Ontario, Canada, April 1984.

Chao-Wei Ou, Manoj Gunwani, and Sanjay Ranka. Architecture-independent locality-improving
transformations of computational graphs embedded in k-dimensions. In Proc. of the 9th ACM Inil.
Conf. on Supercomputing, I1CS, pages 289-298, Barcelona, Spain, July 1995.

G. Peano. Sur une courbe qui remplit toute une air plaine. Mathematishe Annalen, 36:157-160, 1890.
H. Sagan. Space Filling Curves. Springer, Berlin, 1994.

Kenneth C. Sevcik and Nick Koudas. Filter trees for managing spatial data over a range of size
granularities. In Proc. of the 22th Intl. Conf. on Very Large Data Bases, VLDB, pages 16-27, Bombay,
India, September 1996.

W. Sierpinski. Sur une nouvelle courbe qui remplit toute une aire plaine. Bull. Acad. Sci. Cracovie,
SerieA, pages 462-478, 1912.

M. Thottethodi, S. Chatterjee, and A.R. Lebeck. Tuning strassan matrix multiplication algorithm
for memory efficiency. In Proc. of SC98: High Performance Computing ad Networking, Orlando, FL,
November 1998.

H. Tropf and H. Herzog. Multidimensional range search in dynamically balanced trees. Angewandte
Informatik, pages 71-77, 1981.

Luiz Velho and Jonas Gomes. Digital halftoning with space filling curves. Computer Graphics,
25(4):81-90, July 1991.

M. White. N-trees: Large ordered indexes for multi-dimensional space. statistical research division.
US Bureau of the Census, 1980.

I. H. Witten and M. Neal. Using peano curves for bilevel display of continuous tone images. IEEFE
Computer Graphics and Applications, pages 47-52, 1982.

1. H. Witten and B. Wyvill. On the generation and use of space-filling curves. Software—Practice and
Ezxperience, 3:519-525, 1983.

Y. Zhang and R. E. Webber. Space diffusion: An improved parallel halftoning technique using space-
filling curves. In Computer Graphics Proc., pages 305-312, August 1993.

25

A Appendix

A.1 Proof of Lemma 1

Proof: A D-dimensional space-filling curve with grid size N has NP points connected by NP —1 segments.
According to the definition of segments in Section 3 and Figure 3, any segment has a distance and a
direction. Based on the distance, any segment is classified as either a Jump, Contiguity or Still segment.

Therefore,

Jump(k, N, D) + Contiguity(k, N, D) + Still(k, N,D) = NP — 1

Based on the direction, any segment is classified as either a Reverse, Forward or Still segment. There-

fore,

Reverse(k, N, D) + Forward(k, N, D) + Still(k,N,D) = NP —1

By summing over all dimensions,

D-1 D-1
Jump(k, N, D) + Contiguity(k, N, D) + Still(k, N,D) = (ND - 1),and
k=0 k=0
D-1 D-1
Reverse(k, N, D) + Forward(k, N, D) + Still(k, N, D) = (NP —1)
k=0 k=0
Therefore,

JT+CT+ST:D(ND—1)

Ry + Fp+ Sp = D(NP —1)

A.2 Proof of Lemma 2

Proof: We start by the first dimension:

Jump(0, N,D) = NP~1 —1
Contiguity(0, N,D) = NP~Y(N — 1)

From the definition of the Sweep SFC, we have the recurrence relations:

Jump(k,N,D) = Jump(k — 1, N,D — 1)
Contiguity(k, N, D) = Contiguity(k — 1, N,D — 1)

26

Solving these recurrence relations, therefore:

Jump(k,N,D) = NPk-1 _1
Contiguity(k, N, D) = NP~F"L(N — 1)

From Lemma 1, we have: Still(k,N,D) = NP — NP~k From the definition of the Sweep SFC, every
Jump segment is counted as a Reverse segment, and every Contiguity segment is counted as a Forward

segment. Therefore,

Reverse(k,N,D) = NP=F=1 _ 1, and
Forward(k,N,D) = NP=F=Y(N - 1).

A.3 Proof of Lemma 3

Proof: For any segment type X in Lemma 2, X7 is computed from the equation: Xy = ZkD:_OI X. 0

A.4 Proof of Lemma 4

Proof: The Scan SFC has no Jump segments in all its dimensions, i.e., Jump(k, N, D) = 0. The main
distinction between the Sweep and Scan SFCs is the direction of the odd-numbered Cycles. However,
the length of the segments inside each Cycle is the same. Thus, the number of Contiguity segments is
the same in both the Sweep and Scan SFCs. Therefore, Contiguity(k, N, D) = NP=k=1(N —1). From
Lemma 1, we have Still(k,N,D) = NP—+-1 (N’“"’1 - N+ 1) — 1. The Reverse segments in the Scan SFC
appears only in the odd-numbered Cycles. For all dimensions, the number of odd Cycles is the same
as the number of the even Cycles. Thus, the number of Reverse segments is the same as the number
of the Forward segments. Using Lemma 1, we have 2Reverse(k, N,D) = Contiguity(k, N, D). Thus,
Reverse(k, N, D) = Forward(k, N,D) = $NP=k=1(N —1). An exception is the last dimension k¥ = D — 1.
The last dimension has only one Cycle. Thus, there are no Reverse segments in the last dimension, i.e.,
Reverse(D — 1, N, D) = 0. This means that the number of Forward segments in the last dimension equals
the number of Contiguity segments. Therefore, Forward(D —1,N,D) = N — 1.

O

A.5 Proof of Lemma 5

Proof: For any segment type X in Lemma 4, X7 is computed from the equation: X7 = ZkD:_OI X. O

27

A.6 Proof of Lemma 6

Proof: We start by the following base equations:

Jump(0,4,D) =0
Contiguity(0,4, D) = 2P — 1
Reverse(0,4,D) = 2P —2

Then, we can construct the following recursive equations for the first dimension (k = 0):
Jump(0, N, D) = 2P Jumyp(0, g,D) +2P 2
Contiguity(0, N, D) = 2P Contiguity(0, g, D)+1
Reverse(0, N, D) = 2P Reverse(0, g, D) +2P -2

By solving these recurrence relations for the first dimension,

(NP —22D) (2P — 2)
22D (2D _ 1)

Jump(0,N, D) =

. . ND ND _ 22D
Contiguity(0, N,D) = 22D (2D+1 - 1) + m

(20 —2) (NV - 27)
2D (2D — 1)

Reverse(0,N,D) =
For the other dimensions, we have the following recurrence relations:

N
Jump(k,N,D) = 2Jump(k — 1, E’D) +1
N
Contiguity(k, N, D) = 2Contiguity(k — 1, 5 D)

N
Reverse(k, N, D) = 2Reverse(k — 1, 5 D)+1

By solving the recurrences,

(ND _ 22D) (2D _
92D—k (2D — 1)
1 ND _ 22D
Contiguity(k,N,D) = 22;% NP (2D+1 - 1) + 22D-k 9D _ 1
2k (NP —2P) (2P — 2)
20 (20 1)

2) +2F 1

Jump(k,N,D) =

Reverse(k,N,D) = +2F -1

28

Using Lemma 1, therefore,

Still(k,N,D) = NP (1 - 2’“*D+1)
2k (NP 420 —2)

Forward(k,N,D) = 5D 1

A.7 Proof of Lemma 7

Proof: For any segment type X in Lemma 6, X7 is computed from the equation: X7 = Z,CDZ_OI X.

A.8 Proof of Lemma 8

Proof: We start by the following base equations:

Jump(0,4,D) =1
Contiguity(0,4, D) = 2P

Then, we can construct the following recursive equations for the first dimension (k = 0):

N
Jump(0, N, D) = 2P Jumyp(0, 5 D)+1

N
Contiguity(0, N, D) = 2P Contiguity(0, 5 D)

By solving these recurrence relations for the first dimension,

ND _ 2D
2D (2D _ 1)

A\ P
Contiguity(0, N, D) = (5)

Jump(0,N,D) =

For the other dimensions, we have the following recurrence relations:

Jump(k,N,D) = 2Jump(k — 1, N, D)
Contiguity(k, N, D) = 2Contiguity(k — 1, N, D)

By solving the recurrences,

Jump(k. N, D) = & —27)
ump(k, N, D) = 2Dk (2D — 1)
ND
Contiguity(k, N, D) = 9Dk

29

O

Using Lemma 1, therefore
(NP —1) (2P —2F —1)

Still(k, N, D) = DT

One of the properties of the Gray SFC is that it has the same number of Reverse and Forward segments
for all dimensions, except for the first dimension, where the number of the Forward segments is larger by
1. Therefore,

Forward(0, N, D) = Reverse(0,N,D) + 1
Forward(k,N,D) = Reverse(k,N, D), k>0

From Lemma 1, we have:

N,D tiguity(0, N, D) — 1
Reverse(O,N,D) = J’Lme(O, ’) + Con 1gul y(Oa ’)

2
J k,N,D) + Contiguity(k, N, D
Reverse(k,N, D) = ump(k, N, D) + 20” iguity(k, N,)’ k>0
Solving these equations results in:
ND _ 2D
Reverse(0,N,D) = 2@
2/9—1 (ND _ 1)
Reverse(k,N,D) = —b 1 E>0
ND _9D
orward(0, N, D) 2@) +
2k=1 (NP —1)
Forward(k,N,D) = —p E>0

A.9 Proof of Lemma 9

Proof: For any segment type X in Lemma 8, X7 is computed from the equation: X7 = Zsz_Ol X. g

A.10 Proof of Lemma 10

Proof: As in the Scan SFC, there is no Jump segments in the Hilbert SFC, i.e., Jump(k, N, D) = 0.
The Hilbert SFC of grid size N consists of 2 blocks of the Hilbert SFC of grid size N/2 rotated along
the different dimensions. Only two of these blocks are not rotated. Generally, for any dimension (k +)
mod D, there are 2¢ blocks rotated along the ith dimension. The 2P segments that connect different blocks

contain 2% Contiguity segments. Therefore, we have the recurrence relation:

30

D-1
. N N
Contiguity(k, N, D) = Y 2'Contiguity((k +1i) mod D, ~+D) + 2Contiguity(k, =, D) + 2k

=1

Contiguity(k,1,D) =0

From Lemma 1, Still(k, N, D) = NP —1— Contiguity(k,N, D). As in the Scan SFC, the total number
of Reverse and Forward segments equals the number of Contiguity segments. For all dimensions k& > 0, the
number of Reverse segments equals the number of Forward segments. The reason is that half the rotations
of the basic figure of the Hilbert SFC are clockwise and the other half are anticlockwise. Thus, the ratio
of the Reverse and Forward segments is preserved. For example, in Figure 8a, the second dimension (the
vertical one) has one Reverse and one Forward segment. Figure 8b consists of four blocks of Figure 8a.
Two of these blocks (the two upper blocks) are not rotated, which results in two Forward and two Reverse
segments. The third block (the lower left block) is rotated clockwise, which results in one Forward segment.
The fourth (the lower right block) is rotated anticlockwise results in one Reverse segment. Thus, the ratio
of the Forward and Reverse segments is preserved with the increase of the grid size. An exception of this
is the first dimension & = 0, where the number of Forward segments is more than the number of Reverse

segments by N — 1. Therefore,

Reverse(0, N, D) = (Contiguity(0, N,D) — N +1)/2
Reverse(k, N, D) = Contiguity(k,N,D)/2 k>0
Forward(k,N,D) = NP — 1 — Reverse(k, N, D) — Still(k, N, D)

A.11 Proof of Lemma 11

Proof: For any segment type X in Lemma 10, X7 is computed from the equation: X7 = Zsz_ol X. O

31

