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ABSTRACT
The ubiquity of mobile devices with global positioning func-
tionality (e.g., GPS and AGPS) and Internet connectivity
(e.g., 3G andWi-Fi) has resulted in widespread development
of location-based services (LBS). Typical examples of LBS
include local business search, e-marketing, social network-
ing, and automotive traffic monitoring. Although LBS pro-
vide valuable services for mobile users, revealing their pri-
vate locations to potentially untrusted LBS service providers
pose privacy concerns. In general, there are two types of
LBS, namely, snapshot and continuous LBS. For snapshot
LBS, a mobile user only needs to report its current location
to a service provider once to get its desired information. On
the other hand, a mobile user has to report its location to
a service provider in a periodic or on-demand manner to
obtain its desired continuous LBS. Protecting user location
privacy for continuous LBS is more challenging than snap-
shot LBS because adversaries may use the spatial and tem-
poral correlations in the user’s location samples to infer the
user’s location information with higher certainty. Such user
location trajectories are also very important for many appli-
cations, e.g., business analysis, city planning, and intelligent
transportation. However, publishing such location trajecto-
ries to the public or a third party for data analysis could
pose serious privacy concerns. Privacy protection in contin-
uous LBS and trajectory data publication has increasingly
drawn attention from the research community and industry.
In this survey, we give an overview of the state-of-the-art
privacy-preserving techniques in these two problems.

1. INTRODUCTION
With the advanced location-detection technologies, e.g.,
global positioning system (GPS), cellular networks, Wi-Fi,
and radio frequency identification (RFID), location-based
services (LBS) have become ubiquitous [6; 30; 41]. Exam-
ples of LBS include local business search (e.g., searching
for restaurants within a user-specified range distance from a
user), e-marketing (e.g., sending e-coupons to nearby poten-
tial customers), social networking (e.g., a group of friends
sharing their geo-tagged messages), automotive traffic mon-
itoring (e.g., inferring traffic congestion from position and
speed information periodically reported from probe vehi-
cles), and route finder applications (e.g., finding a route with

the shortest driving time between two locations). There are
two types of LBS, namely, snapshot and continuous LBS.
For snapshot LBS, a mobile user only needs to report its
current location to a service provider once to get its desired
information. On the other hand, a mobile user has to report
its location to a service provider in a periodic or on-demand
manner to obtain its desired continuous LBS.
Although LBS provide many valuable and important ser-
vices for end users, revealing personal location data to po-
tentially untrustworthy service providers could pose privacy
concerns. Two surveys reported in July 2010 found that
more than half (55%) of LBS users show concern about their
loss of location privacy [54] and 50% of U.S. residents who
have a profile on a social networking site are concerned about
their privacy [39]. The results of these surveys confirm that
location privacy is one of the key obstacles for the success of
location-dependent services. In fact, there are many real-life
scenarios where perpetrators abuse location-detection tech-
nologies to gain access to private location information about
victims [14; 16; 51; 52].

Privacy in continuous LBS is more challenging than snap-
shot LBS because adversaries could use the spatial and tem-
poral correlations in the user’s location samples to infer the
user’s location information. Such user location trajectories
are also very important for many real-life applications, e.g.,
business analysis, city planning, and intelligent transporta-
tion. However, publishing such location trajectories to the
public or a third party for data analysis could pose serious
privacy concerns. Privacy protection in continuous LBS and
trajectory data publication has increasingly drawn attention
from the industry and academia. In this survey, we give an
overview of the existing techniques in these two problems.

The rest of this paper is organized as follows. Section 2
presents the derivation of location trajectory privacy. Sec-
tion 3 discusses the state-of-the-art privacy-preserving tech-
niques in continuous LBS. Section 4 gives existing privacy
protection techniques for user location trajectory publica-
tion. Finally, Section 5 concludes this survey with research
directions in privacy-preserving continuous LBS and trajec-
tory data publication.

2. THE DERIVATION OF LOCATION TRA-
JECTORY PRIVACY

This section gives the derivation of location trajectory pri-
vacy from data privacy and location privacy.



2.1 Data Privacy
Many agencies and other organizations often need to pub-
lish microdata, i.e., tables that contain unaggregated infor-
mation about individuals, (e.g., medical, voter registration,
census, and customer data) for many practical purposes such
as demographic and public health research. In general, mi-
crodata is stored in a table where each row corresponds
to one individual. In order to avoid the identification of
records in microdata, known identifiers (e.g., name and so-
cial security number) must be removed. However, joining
such “de-identified” microdata with other released micro-
data may still pose data privacy issues for individuals [48].
A study estimated that 87% of the population of the United
States can be uniquely identified using the collection of non-
identity attributes, i.e., gender, date of birth, and 5-digit
zip code [50]. In fact, those three attributes were used to
link Massachusetts, USA voter registration records including
name, gender, zip code and date of birth to “de-identified”
medical data from Group Insurance Company including gen-
der, zip code, date of birth and diagnosis to identify the med-
ical records of the governor of Massachusetts in the medical
data [50]. Terminologically, attributes whose values taken
together can potentially identify an individual record are
referred to as “quasi-identifiers” and a set of records that
have the same values for the quasi-identifiers in a released
microdata is defined as an “equivalence class”.
Data privacy-preserving techniques have been developed to
anonymize microdata. Several privacy-preserving properties
are proposed to limit disclosure of anonymized microdata.
For example, k-anonymity requires each record to be in-
distinguishable with at least other k−1 records with respect
to the quasi-identifier, i.e., each equivalence class contains
at least k records [35; 48; 50; 49]. However, a k-anonymized
equivalence class suffers from a homogeneity attack if all
records in the class have less than k values for the sensitive
attribute (e.g., disease and salary). To this end, l-diversity
property is proposed to ensure that an equivalence class
must have at least l values for the sensitive attribute [38; 55].
To further strengthen data privacy protection, t-closeness
principle is defined that an equivalence class is said to have
t-closeness if the distance between the distribution of a sen-
sitive attribute in this class and the distribution of the at-
tribute in the entire data set is no more than a threshold
parameter t [36]. For the details of these and other data
privacy principles for data publishing, we refer the reader to
the recent survey paper [19].

2.2 Location Privacy
In LBS, mobile users issue location-based queries to LBS
service providers to obtain information based on their phys-
ical locations. LBS pose new challenges to traditional data
privacy-preserving techniques due to two main reasons [40].
(1) These techniques preserve data privacy, but not the
location-based queries issued by mobile users. (2) They
ensure desired privacy guarantees for a snapshot of the
database. In LBS, queries and data are continuously up-
dated with high rates. Such highly dynamic behaviors need
continuous maintenance of anonymized user and object sets.

Privacy-preserving techniques for LBS can be classified into
three categories: (1) False locations [28; 33; 58]. The basic
idea is to send either one or more fake locations that are re-
lated to the user location. (2) Space transformation [21;
32]. The techniques in this category transform the location

information into another space where the spatial relation-
ships among queries and data are encoded. (3) Spatial
cloaking [2; 5; 7; 11; 12; 15; 20; 22; 23; 25; 31; 40; 60].
The main idea is to blur users’ locations into cloaked spatial
regions that are guaranteed to satisfy the k-anonymity [50]
(i.e., the cloaked spatial region contains at least k users)
and/or minimum region area privacy requirements [5; 15;
40] (i.e., the spatial region size is larger than a threshold).
Spatial cloaking techniques have been extended to support
road networks where a user’s location is cloaked into a set of
connected road segments so that the cloaked road segment
set satisfies the privacy requirements of k-anonymity and/or
minimum total road segment length [10; 34; 42; 53].

Research efforts have also dedicated to dealing with privacy-
preserving location-based queries, i.e., getting anonymous
services from LBS service providers (e.g., [5; 21; 29; 31; 32;
40; 58]). These query processing frameworks can be divided
into three main categories. (1) Location obstruction [58].
The basic idea is that a querying user first sends a query
along with a false location as an anchor to a database server.
The database server keeps sending the list of nearest objects
to the anchor to the user until the list of received objects sat-
isfies the user’s privacy and quality requirements. (2) Space
transformation [21; 32]. This approach converts the orig-
inal location of data and queries into another space through
a trusted third party. The space transformation maintains
the spatial relationship among the data and query, in or-
der to provide accurate query answers. (3) Cloaked query
area processing [5; 9; 13; 29; 31; 40]. In this framework, a
privacy-aware query processor is embedded in the database
server to deal with the cloaked spatial area received either
from a querying user [5; 29] or from a trusted third party [9;
31; 40]. For spatial cloaking in road networks, an efficient
and query-aware algorithm is proposed to process privacy-
aware location-based queries [3].

2.3 Trajectory Privacy
A location trajectory is a moving path or trace reported by
a moving object in the geographical space. A location tra-
jectory Tr is represented by a set of n time-ordered points,
Tr : p1 → p2 → . . . → pn, where each point pi consists
of a geospatial coordinate set (xi, yi) (which can be de-
termined by a GPS-like device) and a timestamp ti, i.e.,
pi = (xi, yi, ti), where 1 ≤ i ≤ n. Such spatial and tem-
poral attributes of a location trajectory can be considered
as powerful quasi-identifiers that can be linked to various
other kinds of physical data objects [19; 43]. For example,
a hospital releases a trajectory data set of its patients to a
third-party research institute for analysis, as shown in Ta-
ble 1. The released trajectory data set does not contain
any explicit identifiers, such as patient name, but it con-
tains a sensitive attribute (i.e., disease). Each record with
a unique random ID, RID, corresponds to an individual,
e.g., the record with RID = 1 means a patient visited loca-
tions (1, 5), (6, 7), (8, 10), and (11, 8) at timestamps 2, 4, 5,
and 8, respectively. Suppose that an adversary knows that
a patient of the hospital, Alice, visited locations (1, 5) and
(8, 10) at timestamps 2 and 8, respectively. Since only the
trajectory record with RID = 1 satisfies such spatial and
temporal attributes, the adversary can infer that Alice has
HIV with 100% confidence. This example shows that pub-
lishing “de-identified” trajectory data can still cause serious
privacy threats.



Table 1: Patient trajectory data.
RID Trajectory Disease . . .

1 (1, 5, 2) → (6, 7, 4) → (8, 10, 5) → (11, 8, 8) HIV . . .
2 (5, 6, 1) → (3, 7, 2) → (1, 5, 6) → (7, 8, 7) → (1, 11, 8) → (6, 5, 10) Flu . . .
3 (4, 7, 2) → (4, 6, 3) → (5, 1, 6) → (11, 8, 8) → (5, 8, 9) Flu . . .
4 (10, 3, 5) → (7, 3, 7) → (4, 6, 10) HIV . . .
5 (7, 6, 3) → (6, 7, 4) → (6, 10, 6) → (4, 6, 9) Fever . . .

In LBS, when a mobile user issues a continuous location-
based query to a database server (e.g., “continuously send
me the traffic condition within 1 mile from my vehicle”),
the user has to report his/her new location to the database
server in a periodic or on-demand manner. Similarly, in-
telligent transportation systems require their users (e.g.,
probe vehicles) to periodically report their location and
speed information to the system for analysis. Although such
location-based queries and reports can be made anonymous
by replacing the identifiers of users with random identifiers,
in order to achieve pseudonymity [46], the users may still
suffer from privacy threats. This is because movements of
whereabouts of users in public spaces can be openly observed
by others through chance or engineered meetings [37]. In the
worst case, if the starting location point of a trajectory is
home, an adversary uses reverse geocoding1 [24] to translate
a location point into a home address, and then uses a people-
search-by-address engine (e.g., http://www.intelius.com

and http://www.peoplefinders.com) to find the residents
of the home address. Even though users generate a ran-
dom identity for each of their location samples, multi-target
tracking techniques (e.g., the multiple hypothesis tracking
algorithm [47]) can be used to link anonymous location sam-
ples to construct target trajectories [26]. To this end, new
techniques are developed to protect user location trajectory.

The key difference between continuous LBS and trajectory
data publication with respect to challenges in privacy pro-
tection is twofold: (1) The scalability requirement of the
privacy-preserving techniques for continuous LBS is much
more important than that for trajectory data publication.
This is because continuous LBS require the anonymization
module to deal with a large number of real-time location up-
dates at high rates while the anonymization process for tra-
jectory data publication can be performed offline. (2) Global
optimization can be applied to trajectory data publication
because the anonymization process is able to analyze the
entire (static) trajectory data to optimize its privacy pro-
tection or usability. However, global optimization is very
difficult for continuous LBS, due to highly dynamic, uncer-
tain user movements. Sections 3 and 4 present the state-
of-the-art privacy-preserving techniques for continuous LBS
and trajectory publication, respectively.

3. PROTECTING TRAJECTORY PRIVACY
IN LOCATION-BASED SERVICES

In general, there are two categories of LBS based on whether
they need consistent user identities. A consistent user iden-
tity is not necessarily a user’s actual identity or name
because it can be an internal pseudonym. Category-I

1Reverse geocoding is the process of translating a human-
readable address, such as a street address, from geographic
coordinates.

LBS: Some LBS require consistent user identities. For ex-
ample, “Q1: let me find out where my friends are if they are
within 2km from my location”, “Q2: recommend 10 nearby
restaurants to me based on my profile”, and “Q3: continu-
ously tell me the nearest shopping mall to my location”. Q1
and Q2 require consistent user identities to let applications
to find out their friends and profiles. Although Q3 does not
need any consistent user identity, the query with its parame-
ters can be considered as a virtual user identity that remains
active until the query expires. Category-II LBS: Other
LBS do not require consistent user identities, or even any
user identities, such as “Q4: send e-coupons to users within
1km from my coffee shop”. In this section, we discuss five
privacy-preserving techniques for continuous LBS, namely,
spatial cloaking, mix-zones, vehicular mix-zones, path con-
fusion and dummies, and indicate whether each of them sup-
ports Category-I and/or II LBS from Sections 3.1 to 3.5, as
summarized in Table 2.

Table 2: Privacy-preserving techniques for continuous LBS.
Techniques Category-I LBS Category-II LBS

Spatial cloaking X X

Mix-zones × X

Vehicular mix-zones × X

Path confusion × X

Dummies X X

3.1 Spatial Cloaking
Mobile users have to reveal their locations to database
servers in a periodic or on-demand manner to obtain con-
tinuous LBS. Simply applying a snapshot spatial cloaking
technique (e.g., [2; 5; 15; 20; 22; 23; 25; 31; 40; 60]) to each
user location independently cannot ensure k-anonymity for
a user location trajectory. Thus, new spatial cloaking tech-
niques based on either real-time or historical user trajecto-
ries are designed to protect user location trajectories. Sim-
ilar to snapshot spatial cloaking techniques, a fully-trusted
third party, usually termed location anonymizer, is placed
between mobile users and database servers. The location
anonymizer is responsible for collecting users’ locations and
blurring their locations into cloaked spatial regions that sat-
isfy the user-specified k-anonymity level and/or minimum
spatial region area. Since spatial cloaking techniques do not
change user identities, they can support both Category I
and II LBS. In the following sections, we will discuss three
main kinds of spatial cloaking techniques over user trajecto-
ries, namely, group-based, distortion-based, and prediction-
based approaches, from Sections 3.1.1to 3.1.3. The first
two approaches are designed for real-time user trajectories,
while the last one is for historical trajectory data.
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Figure 1: Group-based spatial cloaking over real-time location trajectory data.

3.1.1 Group-based Approach for Real-time Trajec-
tory Data

The group-based algorithm is proposed to use real-time lo-
cation trajectory data to protect trajectory privacy for con-
tinuous location-based queries [8]. The basic idea is that
a querying user u forms a group with other k − 1 nearby
peers. Before the algorithm issues u’s location-based query
or reports u’s location to the database server, it blurs u’s
location into a spatial area that contains all the group mem-
bers as a cloaked spatial area. Figure 1 depicts an example
of continuous spatial cloaking over real-time user location
trajectories. In this example, user A that issues a contin-
uous location-based query at time ti requires its location
to be k-anonymized, where k = 3. At time t1, a location
anonymizer forms a group of users A, C, and G, so that
A’s cloaked spatial region contains all these group mem-
bers, as represented by a rectangle in Figure 1a. The lo-
cation anonymizer sends A’s query with its cloaked spatial
region to a database server. At later times t2 and t3, when
A reports its new location to the location anonymizer, a new
cloaked spatial region that contains the group members is
formed, as shown in Figures 1b and 1c. The drawbacks of
this approach are that users not issuing any query have to
report their locations to the location anonymizer and the
cloaked spatial area would become very large after a long
time period. Such a large cloaked spatial area may incur
high computational overhead at the database server and re-
sults in many candidate answer objects returned from the
database server to the location anonymizer.

In theory, let Ri be the cloaked spatial region for a querying
user u at time ti and S(Ri) be a set of users located in Ri.
Suppose u’s query is first successfully cloaked at time t1, it
expires at time tn, u ∈ S(R1) and |S(R1)| ≥ k. Without any
additional information, the value of R1’s entropy, H(R1),
is at least log2 |S(R1)| which means that every user in R1

has an equal chance of 1/|S(R1)| to be u [56], i.e., R1 is a
k-anonymous region for u. For u’s cloaked spatial regions
Ri−1 and Ri generated at two consecutive times ti−1 and ti
(1 < i ≤ n), respectively, if Ri−1 is a k-anonymous region
and S(Ri−1) ⊆ S(Ri), Ri is also a k-anonymous region [56].
Thus, the group-based approach can ensure k-anonymity for
the entire life span of a continuous location-based query.

3.1.2 Distortion-based Approach for Real-time Tra-
jectory Data

The distortion-based approach aims to overcome the draw-
backs of the group-based approach. It not only requires
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Figure 2: Query distortion for continuous spatial cloaking.

querying users to report their locations to the location
anonymizer, but it also considers their movement directions
and velocities to minimize cloaked spatial regions [45]. A
distortion function is defined to measure the temporal query
distortion of a cluster of continuous queries. Figure 2 gives
an example of how to determine query distortion. In this
example, three users A, B and C that issue their continu-
ous location-based queries at time t1 constitute a cloaking
set and their queries expire at time tn. Their cloaked spatial
region R1 at time t1 is a minimum bounding rectangle of the
cloaking set, as represented by a rectangle (Figure 2a). Let
(x−

i , y
−
i ) and (x+

i , y
+
i ) be the left-bottom and right-top ver-

tices of a cloaked spatial region Ri at time ti, respectively.
The distortion for their queries with a cloaked spatial region
Ri at time ti is defined as:
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∆(Ri) =
(x+

i − x−
i ) + (y+

i − y−
i )

Aheight + Awidth

, (1)

where Aheight and Awidth are the height and width of the
minimum bounding rectangle of the entire system space, re-
spectively. Based on their movement directions and veloci-
ties (represented by arrows in Figure 2b), their subsequent
cloaked spatial regions R2, R3, . . . , Rn at times t2, t3, . . . , tn
can be predicted, respectively. The distortion for their
queries with respect to the time period from t1 to tn is de-
fined as:

∫ tn

t1

∆(Ri) =
1

P

{
∫ t2

t1

∆(R1)dt+

∫ t3

t2

∆(R2)dt+ . . .

+

∫ tn

tn−1

∆(Rn)dt

}

, (2)

where P = Aheight + Awidth. Given a new query Q, greedy
cloaking and bottom-up cloaking algorithms are designed to
cluster Q with other k− 1 outstanding queries into a group
such that the group satisfies k-anonymity and their query
distortion is minimized.

3.1.3 Predication-based Approach for Historical Tra-
jectory Data

Another way to ensure k-anonymity is to use individuals’
historical footprints, instead of their real-time locations [57].
A footprint is defined as a user’s location collected at some
point of time. Similar to the previous two approaches, a
fully-trusted location anonymizer is placed between users
and LBS service providers to collect users’ footprints. Given
a user’s predicted trajectory (i.e., a sequence of expected
footprints), the location anonymizer cloaks it with k−1 his-
torical trajectories collected from other users. Figure 3 gives
an example for continuous spatial cloaking over historical
trajectories, where a user u1 wants to subscribe continuous
LBS from a service provider. u1’s predicted time-ordered
footprints are represented by black circles. If u’s desired
anonymity level is k = 3, the location anonymizer finds his-
torical trajectories from two users, u2 and u3. Then, each
u’s expected footprint pi (1 ≤ i ≤ 5) is cloaked with at
least one unique footprint of each of u2’s and u3’s trajec-
tories to form a cloaked spatial region Ci. The sequence
of such cloaked spatial regions constitute the k-anonymized
trajectory for u1.
Given a k-anonymized trajectory T = {C1, C2, . . . , Cn}, its
resolution is defined as:

Mix-Zone

a

b

c

x

y

z

Figure 4: A mix-zone with three users.

|T | =

∑n

i=1 Area(Ci)

n
, (3)

where Area(Ci) is the area of cloaked spatial region Ci. For
quality of services, |T | should be minimized. Since the com-
putation of an optimal T would be expensive, heuristic ap-
proaches are designed to find T . Although using historical
trajectory data gives better resolutions for k-anonymized
trajectories, it would suffer from an observation attack. This
is because an attacker may only see a querying user or less
than k users located in a cloaked spatial region at its asso-
ciated timestamp.

3.2 Mix-Zones
The concept of “mix” has been applied to anonymous com-
munication in a network. A mix-network consists of nor-
mal message routers and mix-routers. The basic idea is
that a mix-router collects k equal-length packets as input
and reorders them randomly before forwarding them, thus
ensuring unlinkability between incoming and outgoing mes-
sages. This concept has been extended to LBS, namely,
mix-zones [4]. When users enter a mix-zone, they change to
a new, unused pseudonym. In addition, they do not send
their location information to any location-based application
when they are in the mix-zone. When an adversary that sees
a user u exits from the mix-zone cannot distinguish u from
any other user who was in the mix-zone with u at the same
time. The adversary is also unable to link people entering
the mix-zone with those coming out of it. A set of users S
is said to be k-anonymized in a mix-zone Z if all following
conditions are met [44]:

1. The user set S contains at least k users, i.e., |S| ≥ k.

2. All users in S are in Z at a point in time, i.e., all users
in S must enter Z before any user in S exits.

3. Each user in S spends a completely random duration
of time inside Z.

4. The probability of every user in S entering through an
entry point is equally likely to exit in any of the exit
points.

Table 3 gives an example of 3-anonymity for the mix-zone
depicted in Figure 4, where three users with real identities,



Table 3: An example of 3-anonymized mix-zone.
User ID Pold Pnew tsenter tsexit tinside

α a y 2 9 7
β c x 5 8 3
γ b z 1 11 10

α, β, and γ enter the mix-zone with old pseudonyms (Pold)
a, c, and b at timestamps (tsenter) 2, 5, and 1, respectively.
Users α, β, and γ exit the mix-zone with new pseudonyms
(Pnew) y, x, and z at timestamps (tsexit) 9, 8, and 11, re-
spectively. Thus, they all are in the mix-zone during the
time period from 5 to 8. Since they stay inside the mix-zone
with random time periods (i.e., tinside), there is a strong
unlinkability between their entry order (γ → α → β) and
exit order (β → α → γ).

We can see that mix-zones require pseudonym change to
protect user location privacy, so this technique can only sup-
port Category-II LBS. Mix-zones also impose limits on the
services available to mobile users inside a mix-zone because
they cannot update their locations until exiting the mix-
zone. To minimize disruptions caused to users, the place-
ment of mix-zones in the system should be optimized to limit
the total number of mix-zones required to achieve a certain
degree of anonymity [18].

3.3 Vehicular Mix-Zones
In a road network, vehicle movements are constrained by
many spatial and temporal factors, such as physical roads,
directions, speed limits, traffic conditions, and road con-
ditions. Mix-zones designed for the Euclidean space are
not secure enough to protect trajectory privacy in road
networks [17; 44]. This is because an adversary can gain
more background information from physical road constraints
and delay characteristics to link entering events and exiting
events of a mix-zone with high certainty. For example, a
mix-zone (represented by a shaded area) is placed on an in-
tersection of three road segments Seg1, Seg2, and Seg3, as
depicted in Figure 5. If u-turn is not allowed in the inter-
section, an adversary knows that a vehicle with pseudonym
c enters the mix-zone from either Seg1in or Seg2in. Since
a vehicle turning from Seg1in to Seg3out normally takes a
longer time than turning from Seg2in to Seg3out, the ad-
versary would use this delay characteristic to link an exiting
event at Seg3out to an entering event at Seg1in or Seg2in. In
addition, every vehicle may spend almost the same time dur-
ing a short time period for a specific direction, e.g., u-turn,
left, straight, or right. This temporal characteristic may vi-
olate the third necessary condition for mix-zones listed in
Section 3.2.

An effective solution for vehicular mix-zones is to construct
non-rectangular, adaptive mix-zones that start from the cen-
ter of an road segment intersection on its outgoing road seg-
ments [44], as depicted in Figure 6. The length of each mix-
zone on an outgoing segment is determined based on the
average speed of the road segment, the time window, and
the minimum pairwise entropy threshold. The dark shaded
area should also be included in the mix-zone to ensure that
an adversary cannot infer the vehicle movement direction
(e.g., turn left or go straight in this example). The pair-
wise entropy is computed for every pair of users a and b in
an anonymity set S by considering a and b to be the only
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Figure 5: A vehicular mix-zone.
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Figure 6: Non-rectangular, adaptive vehicular mix-zones.

members in S and determining the linkability between their
old and new pseudonyms. Similar to mix-zones, vehicular
mix-zones require a pseudonym change, so they can only
support Category-II LBS.

3.4 Path Confusion
Since consecutive location samples from a vehicle are tem-
porally and spatially correlated, trajectories of individual
vehicles can be constructed from a set of location samples
with anonymized pseudonyms reported from several vehicles
through target tracking algorithms [26]. The general idea of
these algorithms is to predict the position of a target vehi-
cle based on the last known speed and direction information
and then decide which next location sample (or the one with
the highest probability if there are multiple candidate loca-
tion samples) to link to the same vehicle through Maximum
Likelihood Detection [26].
The main goal of the path confusion technique is to avoid
linking consecutive location samples to individual vehicles
through target tracking algorithms with high certainty [27].
The degree of privacy of the path confusion technique is
defined as the “time-to-confusion”, i.e., the tracking time
between two location samples where an adversary could not
determine the next sample with sufficient tracking certainty.
Tracking uncertainty is computed by H = −

∑

pi log pi,
where pi is the probability that location sample i belongs
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Table 4: Privacy measures of the example in Figure 7.

Time (i) 1 2 3 4 5

Real trajectory (Tr) (1,2) (2,3) (3,3) (4,3) (5,3)

Dummy (Td1) (1,4) (2,3) (2,2) (2,1) (3,1)

Dummy (Td2) (4,4) (3,4) (3,3) (3,2) (4,2)

|Si| 3 2 2 3 3
1
n

∑n

j=1 dist(T
i
r , T

i
dj
) 2.80 0.71 0.71 2.12 2.12

to a target vehicle. Smaller values of H means higher cer-
tainty or lower privacy. Given a maximum allowable time
to confusion, ConfusionTime, and an associated uncertainty
threshold, ConfusionLevel, a vehicle’s location sample can
be safely revealed if the time between the current time t and
the last point of its confusion is less than ConfusionTime and
tracking uncertainty of its sample with all location samples
revealed at time t is higher than ConfusionLevel. To reduce
computational overhead, the computation of tracking uncer-
tainty can only consider the k-nearest location samples to
a predicted location point (calculated by the target track-
ing algorithm), rather than all location samples reported at
time t.

3.5 Dummy Trajectories
Without relying on a trusted third party to perform
anonymization, a mobile user can generate fake location tra-
jectories, called dummies, to protect trajectory privacy [33;
59]. Given a real user location trajectory Tr and a set of
user-generated dummies Td, the degree of privacy protec-
tion for the real trajectory is measured by the following
metrics [59]:

1. Snapshot disclosure (SD). Let m be the number of
location samples in Tr, Si be the set of location sam-
ples in Tr and any Td at time ti, and |Si| be the size
of Si. SD is defined as the average probability of suc-
cessfully inferring each true location sample in Tr, i.e.,
SD = 1

m

∑m

i=1
1

|Si|
. Figure 7 gives a running example

x

time

y

d

Trajectory
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Figure 8: The trajectory uncertainty model.

of n = 3 trajectories and m = 5 where Tr is from lo-
cation s1 to location d1 (i.e., s1 → d1), Td1 is s2 → d2,
and Td2 is s3 → d3. There are two intersections I1
and I2. At time i = 1, since there are three different
locations, i.e., (1, 2), (1, 4) and (4, 4), |S1| = 3. Thus,
SD = 1

5
( 1
3
+ 1

2
+ 1

2
+ 1

3
+ 1

3
) = 2

5
.

2. Trajectory disclosure (TD). Given n trajectories,
where k trajectories have intersection with at least one
other trajectory and n−k trajectories do not intersect
any other trajectory, let Nk be the number of possible
trajectories among the k trajectories. TD is defined
as the probability of successfully identifying the true
trajectory among all possible trajectories is 1

Nk+(n−k)
.

In the running example, Nk = 3 and there are eight
possible trajectories, i.e., s1 → I1 → d2, s1 → I1 →
I2 → d1, s1 → I1 → I2 → d3, s2 → I1 → d2, s2 →
I1 → I2 → d1, s2 → I1 → I2 → d3, s3 → I2 → d1, and
s3 → I2 → d3. Hence, TD = 1

8+(3−3)
= 1

8
.

3. Distance deviation (DD). DD is defined as
the average distance between the i-th location
samples of Tr and each Tdj , i.e., DD =
1
m

∑m

i=1(
1
n

∑n

j=1 dist(T
i
r , T

i
dj
)), where dist(p, q) de-

notes the Euclidean distance between two point lo-
cations p and q. In the running example, DD =
1
5
× (2.80 + 0.71 + 0.71 + 2.12 + 2.12) = 1.69.

Given a real trajectory Tr and the three user-specified pa-
rameters SD, TD, and DD in a privacy profile, the dummy-
based anonymization algorithm incrementally uses DD to
find a set of candidate dummies and selects one with the
best matching to SD and TD until it finds a set of tra-
jectories (including Tr and selected dummies) that satisfies
all the parameters [59]. Since a user can use an consistent
identity for its actual trajectory and other dummies, the
dummy-based approach can support both Category I and II
LBS, as depicted in Table 2.

4. PROTECTING PRIVACY IN TRAJEC-
TORY PUBLICATION

In this section, we discuss anonymization techniques for tra-
jectory data publication. The anonymized trajectory data
can be released to the public or third parties for answering
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spatio-temporal range queries [1; 43] and data mining [43].
In the following sections, we present two well-studied tra-
jectory anonymization techniques, namely, clustering-based
approach [1] (Section 4.1) and generalization-based ap-
proach [43] (Section 4.2).

4.1 Clustering-based Approach
The clustering-based approach [1] utilizes the uncertainty of
trajectory data to group k co-localized trajectories within
the same time period to form a k-anonymized aggregate tra-
jectory. Given a trajectory Tr between times t1 and tn, i.e.,
[t1, tn], and an uncertainty threshold d, each location sam-
ple in Tr, pi = (xi, yi, ti), is modeled by a horizontal disk
with radius d centered at (xi, yi). The union of all such
disks constitute the trajectory volume of Tr, as shown in
Figure 8. Two trajectories Trp and Trq defined in [t1, tn]
are said to be co-localized with respect to d, if the Euclidean
distance between each pair of points in Trp and Trq at time
t ∈ [t1, tn] is less than or equal to d. An anonymity set of k
trajectories is defined as a set of at least k co-localized tra-
jectories. The cluster of k co-localized trajectories is then
transformed into an aggregate trajectory where each of its
location points is computed by the arithmetic mean of the
location samples at the same time. Figure 9 gives the tra-
jectory volumes of Trp and Trq that are represented by grey
and dotted lines, respectively. The trajectory volume with
black lines is a bounding trajectory volume for Trp and Trq.
The bounding trajectory volume is then transformed into an
aggregate trajectory which is represented by a sequence of
square markers.

The clustering-based anonymization algorithm consists of
three main phases [1]:

1. Pre-processing phase. The main task of this phase
is to group all trajectories that have the same starting
and ending times, i.e., they are in the same equiva-
lence class with respect to time span. To increase the
number of trajectories in an equivalence class, given
an integer parameter π, all trajectories are trimmed if
necessary such that only one timestamp every π can
be the starting or ending point of a trajectory.

2. Clustering phase. This phase clusters trajectories
based on a greedy clustering scheme. For each equiv-
alence class, a set of appropriate pivot trajectories are

selected as cluster centers. For each cluster center, its
nearest k − 1 trajectories are assigned to the cluster,
such that the radius of the bounding trajectory volume
of the cluster is not larger than a certain threshold
(e.g., d/2).

3. Space transformation phase. Each cluster is trans-
formed into a k-anonymized aggregate trajectory by
moving its every location sample horizontally to the
center of its bonding trajectory volume.

4.2 Generalization-based Approach
Since most data mining and statistical applications work on
atomic trajectories, they are needed to be modified to work
on aggregate trajectories generated by an anonymization al-
gorithm (e.g., the clustering approach). To address this lim-
itation, the generalization-based algorithm first generalizes
a trajectory data set into a set of k-anonymized trajectories,
i.e., each one is a sequence of k-anonymized regions. Then,
for each k-anonymized trajectory, the algorithm uniformly
selects k atomic points from each anonymized region and
links a unique atomic point from each anonymized region
to reconstruct k trajectories. More details about these two
main steps are given below [43]:

1. Anonymization step. Given a trajectory data set T ,
each iteration of this step creates an empty anonymity
group G and randomly samples one trajectory Tr ∈ T .
Tr is put into G as the group representative RepG =
Tr. Then, the closest trajectory Tr′ ∈ T − G to
RepG is inserted into G and RepG is updated as the
anonymization of RepG and Tr′. This anonymization
process continues until G contains k trajectories. At
the end of the iteration, the trajectories in G are re-
moved from T . This step finishes when there are less
than k remaining trajectories in T .

Figure 10 gives an example of generalizing three tra-
jectories Tr1, Tr2 and Tr3 into a 3-anonymized tra-
jectory, where the timestamp of each location sam-
ple is shown beside its location. In this example, Tr2
is first added into an empty group G as its represen-
tative RepG. Next Tr1 is added to G and the loca-
tion samples of Tr1 and Tr2 are generalized into a se-
quence of anonymized regions (represented by shaded
rectangles), as depicted in Figure 10b. RepG is up-
dated as the anonymization of Tr1 and Tr2, Tr∗ (Fig-
ure 10c). Tr3 is also added into G and a sequence of
new anonymized regions are formed forG (Figure 10d).
The time span of an anonymized region is the range
from the smallest and largest timestamps of the lo-
cation samples included in the region. Note that un-
matched points (e.g., the location sample of Tr3 at
timestamp t7) are suppressed in this step. Since G al-
ready contains k = 3 trajectories, the anonymization
process for G is done (Figure 10e).

2. Reconstruction step. Given a k-anonymized tra-
jectory, k locations are uniformly selected in each of
its anonymized region, as illustrated in Figure 11a.
Next, for each selected location, a timestamp is also
uniformly selected from its associated time span. k
trajectories are reconstructed by linking a unique lo-
cation sample in each monitored region (Figure 11b).
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The reconstructed trajectory data set can be released to the
public or third parties for answering spatio-temporal queries
and data analysis (e.g., data mining).

5. CONCLUSION
Location privacy protection in continuous location-based
services (LBS) and trajectory data publication has drawn
a lot of attention from the industry and academia. It is
expected that more effective and efficient privacy preserv-
ing technologies will be developed in the near future. We
want to provide some future directions in these two problems
as the conclusion of this survey. For continuous LBS, new
privacy-preserving techniques are needed to protect person-
alized LBS. This is because personalized LBS require more
user semantics, e.g., user preferences and background in-
formation, such as salary and occupation, rather than just
some simple query parameters, such as a distance range and
an object type of interest. An adversary could use such user
semantics to infer the user location with higher certainty.
For example, suppose that an adversary knows that a tar-

get user Alice usually has dinner from 6pm to 7pm during
weekdays and she does not like Japanese and Thailand food.
Given a cloaked spatial region of Alice’s location at 6:30pm
on Monday and the region contains two Japanese restau-
rants, one Thailand restaurant and one Chinese restaurant,
the adversary can infer that Alice in the Chinese restaurant
with very high certainty. Existing privacy-preserving tech-
niques for location trajectory publication only support sim-
ple aggregate analysis, such as range queries and clustering.
Researchers should develop new trajectory anonymization
techniques that support more useful and complex spatio-
temporal queries (e.g., how many vehicles travel from a
shopping mall to a cinema from 1pm to 2pm during week-
ends, the most popular path, and their average travel time)
and data analysis (e.g., pattern recognition and association
rules).
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