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Abstract This paper presents the Scalable On-Line
Execution algorithm (SOLE, for short) for continuous
and on-line evaluation of concurrent continuous spatio-
temporal queries over data streams. Incoming spatio-
temporal data streams are processed in-memory against
a set of outstanding continuous queries. The SOLE algo-
rithm utilizes the scarce memory resource efficiently by
keeping track of only the significant objects. In-memory
stored objects are expired (i.e., dropped) from memory
once they become insignificant. SOLE is a scalable algo-
rithm where all the continuous outstanding queries share
the same buffer pool. In addition, SOLE is presented
as a spatio-temporal join between two input streams,
a stream of spatio-temporal objects and a stream of
spatio-temporal queries. To cope with intervals of high
arrival rates of objects and/or queries, SOLE utilizes a
load-shedding approach where some of the stored objects
are dropped from memory. SOLE is implemented as a
pipelined query operator that can be combined with tra-
ditional query operators in a query execution plan to sup-
port a wide variety of continuous queries. Performance
experiments based on a real implementation of SOLE in-
side a prototype of a data stream management system
show the scalability and efficiency of SOLE in highly dy-
namic environments.

This work was supported in part by the National Sci-
ence Foundation under Grants IIS-0093116, IIS-0209120, and
0010044-CCR.

Mohamed F. Mokbel
Department of Computer Science and Engineering, Univer-
sity of Minnesota, Minneapolis, MN, 55455 E-mail: mok-
bel@cs.umn.edu

Walid G. Aref
Department of Computer Science, Purdue University, West
Lafayette, IN 47907 E-mail: aref@cs.purdue.edu

1 Introduction

The wide spread of location-detection devices (e.g., GPS
devices, handheld devices, and cellular phones) results in
new environments where massive spatio-temporal data
are continuously streamed out from mobile users. The
high arrival rates of spatio-temporal data streams along
with its massive data sizes make it infeasible for tradi-
tional spatio-temporal data management techniques to
store, query, or index incoming spatio-temporal data.
Unfortunately, most of the exiting techniques for spatio-
temporal databases (e.g., see [27–29,31,33–35,39,43,46,
48,51,52,57]) rely mainly on the basic assumption that
all incoming spatio-temporal data can be stored on disk.
Thus, continuous query processing techniques (e.g, [27,
39,52,57]) aim to utilize the disk storage to produce in-
cremental results of continuous queries. While this as-
sumption is valid for certain data sizes and data arrival
rates, it may not be feasible for high arrival rates and
massive data sizes. When considering data streaming en-
vironment, only in-memory solutions are feasible.

On the other side, recent research efforts in data
stream management systems (e.g., see [2,7,13,14,42]) fo-
cus mainly on processing continuous queries over tradi-
tional data streams. However, the spatial and temporal
properties of both data streams and continuous queries
are overlooked. Continuous query processing in spatio-
temporal streams is distinguished from traditional data
streams in the following: (1) Queries as well as data have
the ability to continuously change their locations. Thus,
spatio-temporal data streams are considered as a series
of data updates rather than the append-only model of
traditional data streams. (2) An object may be added
to or removed from the answer set of a spatio-temporal
query. Consider moving vehicles that move in and out
of a certain query region. (3) The commonly used model
of sliding-window queries [4,5,23] does not support com-
mon spatio-temporal queries that are interested on the
current state of the database rather than on the recent
historical state.
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In this paper, we aim to combine the recent advances
in both the traditional spatio-temporal query processors
and data stream query processors in order to provide
an efficient query processing for spatio-temporal streams.
Towards this goal, we propose the Scalable On-Line
Execution algorithm (SOLE, for short) for continuous
and on-line evaluation of concurrent continuous spatio-
temporal queries over spatio-temporal data streams. On-
line execution is achieved in SOLE by allowing only in-
memory processing of each single data input as it is re-
ceived by the system. Such on-line execution model is
distinguished from most of the existing spatio-temporal
continuous query processors (e.g., [39,46,57]) that buffer
a set of updates together and process them once every T
time units.

As in traditional data streaming application, the
memory is the most scarce resource. Thus, memory in
SOLE is efficiently utilized by keeping track of only those
objects that are considered significant. A moving object
is considered significant if it satisfies at least one active
continuous query. As a result of keeping only those sig-
nificant objects, continuous queries may encounter some
regions of uncertainty in which certain moving objects
may not be reported in the result. SOLE avoids such
query uncertainty regions using a conservative caching
approach in which the query area is extended to cover
any possible uncertainty area. Scalability in SOLE is
achieved by using a shared buffer pool that is accessible
by all active queries. Furthermore, SOLE is presented
as a spatio-temporal join between two input streams; a
stream of spatio-temporal objects and a stream of spatio-
temporal queries. To cope with intervals of very high
arrival rates of objects and/or queries, SOLE adopts a
load-shedding approach that dynamically adopts the no-
tion of significant objects based on the current workload.
The main goal of load-shedding in SOLE is to support
larger numbers of continuous queries, yet with an ap-
proximate answer.

The online nature of SOLE makes it possible to en-
capsulate its functionalities inside pipelinable query op-
erators that can be combined with traditional query op-
erators (e.g., join, aggregates, and distinct) in a query
pipeline. Combining traditional query operators with
SOLE operators enables the support for a wide variety of
complex continuous spatio-temporal queries. In addition,
having SOLE as query operators enables the involve-
ment of the query optimizer to support multiple can-
didate execution plans for continuous spatio-temporal
queries. Such design of SOLE results in orders of mag-
nitude of performance than traditional spatio-temporal
query processing techniques that can be implemented
only on-top of existing database engines. The SOLE op-
erator is implemented inside the PLACE server [38,40]; a
prototype data stream management system for support-
ing spatio-temporal applications. In general, the contri-
butions of this paper can be summarized as follows:

1. We propose SOLE as the the first attempt to combine
spatio-temporal continuous query processing tech-
niques with data stream management systems to sup-
port continuous queries over spatio-temporal data
streams.

2. We show that due to the nature of data stream-
ing environments, continuous spatio-temporal queries
may encounter uncertainty areas. We show also that
SOLE can overcome such uncertainty areas using a
conservative caching technique.

3. We provide a scalable framework for SOLE that
modifies the commonly used shared execution par-
adigm to support data streaming environments, un-
certainty areas, and online execution of continuous
spatio-temporal queries.

4. We provide load shedding schemes within SOLE that
can be triggered at instances of high system work-
load. Load shedding techniques aim to support larger
numbers of continuous queries with an approximate
answer.

5. We encapsulate the functionalities of SOLE into
pipelined query operators by utilizing the online na-
ture of SOLE. The SOLE operators are implemented
inside the PLACE prototype for spatio-temporal data
stream management systems.

6. We provide experimental evidence, based on the real
implementation of SOLE, that various aspects of
SOLE (e.g., query operators, uncertainty manage-
ment, scalability, and load shedding) can efficiently
support large numbers of continuous queries over
spatio-temporal data streams.

The rest of this paper is organized as follows: Sec-
tion 2 highlights related work to SOLE in the context
of spatio-temporal databases and data stream manage-
ment systems. The basic concepts of SOLE are discussed
in Section 3. The SOLE algorithms for single and multi-
ple continuous spatio-temporal queries are presented in
Sections 4 and 5, respectively. Section 6 discusses the
load shedding techniques in SOLE. Experimental results
that are based on a real implementation of SOLE in-
side a data stream management system are presented in
Section 7. Finally, Section 8 concludes the paper.

2 Related Work

Up to the authors’ knowledge, SOLE provides the first
attempt to furnish query processors in data stream man-
agement systems with the required operators and al-
gorithms to support a scalable execution of concurrent
continuous spatio-temporal queries over spatio-temporal
data streams. Since SOLE bridges the areas of spatio-
temporal databases and data stream management sys-
tems, in this section we discuss the related work in each
area separately.
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2.1 Spatio-temporal Databases

Existing algorithms for continuous spatio-temporal
query processing focus mainly on materializing incom-
ing spatio-temporal data in disk-based index structures
(e.g., hash tables [12,49], grid files [21,39,44], the B-
tree [29], the R-tree [33,35], and the TPR-tree [48,52]).
Thus, it is implicitly assumed that all incoming data
can be stored. Scalable execution of continuous spatio-
temporal queries is addressed recently for centralized [21,
39,46,57] and distributed environments [9,21]. However,
the underlying data structure is either a disk-based grid
structure [21,39] or a disk-based R-tree [9,46]. None of
these techniques deal with the issue of spatio-temporal
data streams where only in-memory solutions are al-
lowed. Memory-based data structures have been pro-
posed in [31,32,59] to deal with reasonable size of data
that can fit in memory, but it is not scalable to large
data sizes or streaming environments.

The most related work to SOLE in the context of
spatio-temporal databases is the SINA framework [39].
SOLE has common functionalities with SINA where both
of them utilize a shared grid structure as a basis for
shared execution and incremental evaluation paradigms.
However, SOLE distinguishes itself from SINA and other
spatio-temporal query processors in the following as-
pects: (1) SOLE is an in-memory algorithm where all
the employed data structures are built in memory while
SINA is a disk-based query processing technique that
mainly relies on the disk storage to perform its opera-
tions. (2) Due to the size limitations of memory, not all
objects are really stored in SOLE. On the other side, in
SINA, all data objects are physically stored. (3) As some
data objects are not stored, SOLE suffers from having
uncertainty areas in its queries where part of the query
area may not be aware by the existence of some mov-
ing objects. Such scenario cannot happen in SINA as it
is proven to be correct based on the knowledge of all
stored objects. (4) SOLE is an online algorithm where it
produces the incremental result with the change of any
location of the query and/or objects. This online feature
is in contrast to SINA where SINA buffers all the updates
for the last T time units and processes them as a bulk.
Such online behavior of SOLE makes it suitable to be en-
capsulated into a pipelined operator. On the other side,
the bulk behavior of SINA hinders its applicability to be
implemented inside real systems. (5) SOLE is equipped
with load shedding techniques to cope with intervals of
high arrival rates of moving objects and/or queries. The
main idea is to drop some data objects from memory
to allow for supporting more queries with an approxi-
mate answer. Such load shedding cannot be supported
in SINA as it is mainly a disk-based algorithm and does
not suffer from limited storage space.

2.2 Data Stream Management Systems

Existing prototypes for data stream management sys-
tems [1,10,13,15,26,30,42] aim to efficiently support
continuous queries over data streams. However, the spa-
tial and temporal properties of data streams and/or con-
tinuous queries are overlooked by these prototypes. With
limited memory resources, existing stream query proces-
sors adopt the concept of sliding windows to limit the
number of tuples stored in-memory to only the recent
tuples [4,5,23]. Such model is not appropriate for many
spatio-temporal applications where the focus is on the
current status of the database rather than on the recent
past. The only work for continuous queries over spatio-
temporal streams is the GPAC [37] which is designed
to deal only with the execution of a single continuous
query.

Scalable execution of continuous queries in tradi-
tional data streams aims to either detect common subex-
pressions [14,15,36] or share resources at the operator
level [4,20,24]. SOLE evaluates multiple spatio-temporal
continuous queries as a spatio-temporal join between an
object stream and a query stream while a shared memory
resource (buffer pool) is maintained to support all contin-
uous queries. Load shedding and adaptive memory man-
agement in data stream management systems are ad-
dressed recently in [6,11,18,19,47,53]. The main idea is
to either add a special operator to the query plan to regu-
late the load by discarding unimportant incoming tuples
or dynamically adjust the window size and time granu-
larity at runtime. However, none of these approaches can
be directly applicable to SOLE as they are not designed
to deal with the spatial and temporal properties of data
streams. In addition, none of these approaches deals with
the special features of SOLE, e.g., uncertainty areas, con-
current spatio-temporal queries, and significant objects.
Our proposed load shedding techniques are not compet-
itive to any of the previous approaches. Instead, they
are specifically designed to be applied within the SOLE
framework in which previously proposed techniques can-
not be applied.

The most related work to SOLE in the context of data
stream management systems is the NiagaraCQ frame-
work [15]. SOLE has common functionalities with Nia-
garaCQ where both of them utilize a shared operator
to join a set of objects with a set of queries. However,
SOLE distinguishes itself from NiagaraCQ and other
data stream management systems in the following: (1) As
a result of the spatio-temporal environment, SOLE has
to deal with new challenging issues, e.g., moving queries,
uncertainty in query areas, incremental evaluation up-
dates to the query result. (2) In a highly overloaded sys-
tem, SOLE provides approximate results by employing
load shedding techniques. (3) In addition to sharing the
query operator as in NiagaraCQ, SOLE share memory
resources at the operator level.
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3 Basic Concepts in SOLE

In this section, we discuss the basic concepts of SOLE
including the input/output model, supporting various
queries, SOLE pipelined operator, and the SQL syntax.

3.1 Input/Output Model

Input. The inputs to SOLE are two streams: (1) A
stream of spatio-temporal data that is sent from continu-
ously moving objects with the format (OID, Loc, time),
where OID is the object identifier, and Loc is the current
location of the moving object at time time. For simplic-
ity, we consider moving objects as moving points in the
two-dimensional space. Such scenario depicts the mov-
ing of pedestrians, vehicles, or ships in the space. Exten-
sions of SOLE to deal with moving regions with various
extents and shapes can be done by replacing the Loc at-
tribute to be a Polygon attribute with size and shape.
In the rest of this paper, we focus on the simple and
common case of having moving points. Moving objects
are required to send updates of their locations periodi-
cally. Failure to do so results in considering the moving
object as disconnected. For example, if a moving P did
not send any location update in the last t time units,
SOLE would delete P from its memory and appropri-
ate actions will be taken. (2) A stream of continuous
queries. Queries can be sent either from moving objects
or from external entities (e.g., a traffic administrator).
Although, continuous queries may be be received with
different formats, their internal representation at SOLE
is unified. In general, a query Q is internally represented
as (QID, Region), where QID is the query identifier,
and Region is the spatial area covered by Q. The query
region is determined based on the query type. For exam-
ple, in range queries, the query region is the area that
the query wants to monitor. The rest of this section gives
details on how to set the query region.
Output. SOLE employs an incremental evaluation para-
digm similar to the one used in SINA [39]. The main idea
is to avoid continuous reevaluation of continuous spatio-
temporal queries. Instead, SOLE updates the query re-
sult by computing and sending only updates of the pre-
viously reported answer. This is in contrast to previous
continuous query approaches (e.g., [21,34,46,50,51,60,
61]) that abstract the continuous queries to a set of snap-
shot queries that are continuously reevaluated with the
change of data inputs or queries. SOLE distinguishes be-
tween two types of query updates: Positive updates and
negative updates. A positive update indicates that a cer-
tain object needs to be added to the result set of a cer-
tain query. In contrast, a negative update indicates that
a certain object is no longer in the answer set of a cer-
tain query. Thus, the output of SOLE is a stream of
tuples with the format (QID,±, OID), where QID is
the query identifier that would receive this output tuple,

± indicates whether this output is a positive or negative
update. A positive/negative update indicates the addi-
tion/removal of object OID to/from query QID. For
example, if a new object P becomes part of the query
answer of Q, we send the positive update (Q, +P ). On
the other side, if an object P that was in the query an-
swer of Q changes its status to be out of the answer of Q,
we send the negative update (Q,−P ) to the query. For
more details about the concepts of positive and negative
updates, the reader is referred to [38,39].

3.2 Supporting Various Query Types

SOLE is a unified framework that deals with range
queries as well as k-nearest-neighbor (kNN) queries. In
addition SOLE supports both stationary and moving
queries within the same framework.

Moving Queries. Each moving query is bounded
to a focal object. For example, if a moving object M
submits a query Q that asks about objects within a
certain range of M , then M is considered the focal
of Q. A moving query Q is submitted to SOLE as
(QID, FocalID, Region), where QID is the query iden-
tifier, FocalID is the object identifier that submits Q,
and Region is the spatial area of Q. Internally in SOLE,
the moving query is represented as (QID, Region) where
Region is a moving area that changes its location accord-
ing to the movement of the FocalID moving object.

kNN Queries. A kNN query is represented as a
circular range query. The only difference is that the
size of the query range may grow or shrink based on
the movement of the query and objects of interest. Ini-
tially, a kNN query is submitted to SOLE with the for-
mat (QID, center, k) or (QID, FocalID, k) for station-
ary and moving queries, respectively. Internally in SOLE,
the kNN query is represented as (QID, Region) where
the Region is a circle with center c and radius r. The
center c is either stated explicitly as center in stationary
queries or implicitly as the current location of the object
FocalID in case of moving queries. Once the kNN query
is registered in SOLE, the first incoming k objects are
considered as the initial query answer. Then, the radius
r is determined as the distance from the query center c
to the kth farthest neighbor. Once the kNN query de-
termines its initial circular region, the query execution
continues as a regular range query, yet with a variable
region size. Whenever a newly coming object P lies in-
side the circular query region, P removes the kth farthest
neighbor from the answer set (with a negative update)
and adds itself to the answer set (with a positive update).
The query circular region is shrunk to reflect the new kth
neighbor. Similarly, if an object P , that is one of the k
neighbors, updates its location to be outside the circu-
lar region, we expand the query circular region to reflect
the fact that P is considered the farthest kth neighbor.
Notice that in case of expanding the query region, we do
not output any updates.
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3.3 SOLE as a Pipelined Operator

SOLE is encapsulated into a physical pipelined operator
that can interact with traditional query operators in a
large pipelined query plan. Having the SOLE operator ei-
ther in the bottom or in the middle of the query pipeline
requires that all the above operators be equipped with
special mechanisms to handle negative tuples. Fortu-
nately, recent data stream management systems (e.g.,
Borealis [1], NILE [26], STREAM [42]) have the ability
to process such negative tuples.

Basically, negative tuples are processed in traditional
operators as follows: Selection and Join operators handle
negative tuples in the same way as positive tuples. The
only difference is that the output will be in the form
of a negative tuple. Aggregates update their aggregate
functions by considering the received negative tuple. The
Distinct operator reports a negative tuple at the output
only if the corresponding positive tuple is in the recently
reported result. For detailed algorithms about handling
the negative tuples in various traditional query operators,
the reader is referred to [25].

3.4 SQL Syntax

Since SOLE is implemented as a query operator, we use
the following SQL to invoke the processing of SOLE.

SELECT select clause

FROM from clause

WHERE where clause

INSIDE in clause

kNN knn clause

The in clause may have one of two forms:

– Static range query (x1, y1, x2, y2), where (x1, y1) and
(x2, y2) represent the top left and bottom right cor-
ners of the rectangular range query.

– Moving rectangular range query (′M ′, ID, xdist, ydist),
where ′M ′ is a flag indicates that the query is mov-
ing, ID is the identifier of the query focal point, xdist
is the length of the query rectangle, and ydist is the
width of the query rectangle.

Similarly, the knn clause may have one of two forms:

– Static kNN query (k, x, y), where k is the number
of the neighbors to be maintained, and (x, y) is the
center of the query point.

– Moving kNN query (′M ′, k, ID), where ′M ′ is a flag
indicates that the query is moving, k is the number of
neighbors to be maintained, and ID is the identifier
of the query focal point.

4 Execution of Single Continuous Queries in

SOLE

To clarify the new ideas used in SOLE, in this section,
we present SOLE in the context of single query execu-
tion [37]. In the next section, we show how SOLE can be
generalized to the case of evaluating multiple concurrent
continuous spatio-temporal queries.

4.1 Predicate-based Spatio-temporal Queries

Traditional stream query processing techniques (e.g.,
see [2,13,42]) employ the so-called sliding-window
queries to accommodate the massive amount of stream-
ing data. The main idea is to limit the execution of
continuous queries to only the recently received data
tuples rather than the whole received tuples. In slid-
ing window queries, incoming streaming data follow a
first-in-first-expire model in which whenever a tuple be-
comes old enough, it is expired (i.e., deleted) from mem-
ory leaving its space to a more recent tuple. As a re-
sult, traditional sliding-window queries can support only
(recent) historical queries. Such model is not suitable
for spatio-temporal queries where most of the spatio-
temporal queries in mobile environments are concerned
with the current state of data rather than the recent his-
tory.

To suit the needs of mobile environments, SOLE em-
ploys a new kind of window queries, termed, predicate-
based window queries [22]. In predicate-based window
queries, an incoming data tuple is stored in memory
only if it satisfies the query predicate. Once an object
becomes out of the predicate, it is expired (i.e., deleted)
from memory. Thus, data tuples are expired out-of-order.
To support predicate-based window queries in SOLE, for
each query Q, we store the tuples that satisfy Q’s predi-
cate in a data structure termed Q.Answer. Then, if any
object P with location Pold sends a new location update
Pnew, SOLE distinguishes among four cases:

– Case I: P ∈ Q.Answer and P satisfies Q (e.g., Q1

in Figure 1a). As SOLE reports only the updates of
the previously reported result, P will not be sent to
the user.

– Case II: P ∈ Q.Answer and P does not satisfy Q
(Figure 1b). In this case, SOLE reports a negative
update P− to the user.

– Case III: P /∈ Q.Answer and P satisfies Q (Fig-
ure 1c). In this case, SOLE reports a positive update
to the user.

– Case IV: P /∈ Q.Answer and P does not satisfy Q
(e.g., Q2 in Figure 1a). In this case, P has no effect
on Q. Thus, P will not be sent to the user.

On the other side, whenever SOLE receives an update
from a moving query, it classifies in-memory stored ob-
jects into the following four non-overlapped sets C1 to C4
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Fig. 1 Positive/Negative updates in SOLE.

where: (1) C1 is represented by the white objects in Fig-
ure 1d where C1 ⊂ Q.Answer and every moving object
in C1 satisfies the new Q.Region. SOLE does not report
any of the objects in C1 as none of them affects the pre-
viously reported query result. (2) C2 is represented by
the gray objects in Figure 1d where C2 ⊂ Q.Answer
and none of the objects in C2 satisfies the query re-
gion. For each data object in C2, SOLE produces a neg-
ative update. (3) C3 is represented by the black objects
in Figure 1d where C3 6⊂ Q.Answer and every mov-
ing object in C3 satisfies the new Q.Region. For each
data object in C3, SOLE produces a positive update.
(4) C4 6⊂ Q.Answer and none of the objects in C4 satis-
fies Q.Region (not shown in Figure 1d). SOLE does not
produce any output for objects in C4.

4.2 Memory Optimizations

In data streaming environments, storing data objects in
disk is not a feasible solution while the memory storage
is limited and is considered as the most scarce resource.
To efficiently utilize the memory resource, SOLE stores
only those data objects that are of interest to the out-
standing continuous queries. Considering only a single
outstanding continuous query Q, a moving object P will
be stored in memory only if it satisfies Q. Similarly, if
an object P which is stored in-memory becomes out of
interest of Q, P is immediately dropped from memory.

As a general rule, the memory is only occupied by
those objects that contribute to the query answer. For
example, in Figure 1b, once Pold stepped out form the
query region Q3, it is discarded from memory while in
Figure 1c, Pnew will be stored in memory as it satis-
fies Q4. Similarly, in Figure 1d, all gray objects will be
dropped from memory as they become out of interest
of Q5. In this case, the query region is considered as
the predicate in the predicate-based window query model
where SOLE operates only on those data objects that
satisfy the query predicate.

4.3 Uncertainty in SOLE

Since there are many data objects that are not physically
stored in SOLE, i.e., those objects that are not of interest
to the outstanding query, some uncertainty areas may
take place. The uncertainty area of a query Q is defined
as follows:

Definition 1 The uncertainty area of query Q is the
spatial area of Q that may contain potential moving ob-
jects that satisfy Q, with Q not being aware of the con-
tents of this area.

The query uncertainty is a new concept for spatio-
temporal data streams. Traditional spatio-temporal
query processing techniques (e.g., SINA [39]) do not suf-
fer from any uncertainty as all location data updates are
materialized in the disk storage. Thus, traditional spatio-
temporal processors provide accurate results which is dif-
ferent from the case of SOLE where data are not materi-
alized anywhere. In general, SOLE distinguishes among
the following three types of uncertainty: uncertainty in
new queries, uncertainty in stationary queries, and un-
certainty in moving queries. Figure 2 gives an example of
these uncertainty types as it represents a three consecu-
tive snapshots of a database with ten moving objects P1

to P10 and four queries Q1 to Q4.

1. Uncertainty in new queries. Initially, there are no
active queries in the system. Thus, continuously ar-
rived data streams are neither processed nor stored.
Once a query Q is submitted to the system, we can-
not provide a fast answer to Q, simply because there
is nothing currently stored in the database. In this
case, all the area covered by Q is considered an un-
certainty area. Later on, moving objects update their
locations and the answer of Q is progressively built.
As an example, consider the moving object P4 in Fig-
ure 2. P4 arrives to the server at T0. Since no query
shows interest in P4 at time T0, P4 is ignored and
not stored in SOLE. Then, at time T1, a new range
query Q3 is issued. At this time, all the region of Q3

is considered uncertainty. Since P4 is not stored in
the system, it would not be reported in the query an-
swer. At time T2, object P4 sends another location
update to the server, yet, the new location update is
outside Q3, thus, it will not be included in the an-
swer. Thus, due to the Q3 uncertainty area, P4 will
not be reported in the query answer though it was in
the answer from [T1,T2].

2. Uncertainty in moving queries. Uncertainty in
moving queries comes from the fact that those queries
tend to cover new spatial areas as they move. New
areas may have moving objects that was dropped ear-
lier. For example, consider the range query Q1 in Fig-
ure 2. At time T0 (Figure 2a), P1 is outside the area of
Q1. Thus, P1 is not physically stored in the database.
Recall that only objects that satisfy the query region
are stored in the database. At time T1 (Figure 2b),
Q1 is moved. The shaded area in Q1 represents its
uncertainty area, i.e., the new area covered by Q1.
Although P1 is inside the new query region, P1 is not
reported in the query answer where it is not actually
stored. At T2 (Figure 2c), P1 moves out of the query
region. Thus, P1 is never reported at the query result,
although it was inside the query region in the time
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interval [T1, T2]. Another example for uncertainty in
moving k−nearest-neighbor (k=2) queries is Q4 in
Figure 2. At time T0 , P8 is outside the area of Q4.
Thus, P8 is not physically stored in the database. At
time T1, Q4 is moved. The shaded area in Q4 repre-
sents its uncertainty area. Although P8 is inside the
new query region, P8 is not reported in the query an-
swer where it is not actually stored. At T2, P8 moves
out of the query region. Thus, P8 is never reported
at the query result, although it was inside the query
region in the time interval [T1, T2].

3. Uncertainty in stationary queries. Uncertainty
in stationary queries comes from the fact that those
queries may change their shapes over time. In this
case, new spatial areas that are covered by the new
shapes are considered as uncertainty areas. For exam-
ple, consider the stationary k-nearest-neighbor query
(k = 2) Q2 in Figure 2. At time T0, the answer of
Q2 is (P5, P6). The query circular region is centered
at Q2 with its radius being the distance from Q2 to
P5. Since P7 is outside the query spatial region, P7 is
not stored in the database. At time T1, P5 is moved
far from Q2. Since Q2 is aware only of P5 and P6, we
extend the region of Q2 to include the new location
of P5. Thus, an uncertainty area is produced. Notice
that Q2 is unaware of P7 since P7 is not stored in
the database. At T2, P7 moves out of the new query
region. Thus, P7 never appears as an answer of Q2,
although it should have been part of the answer in
the time interval [T1, T2].

In general, the uncertainty area in SOLE comes from
the fact that moving objects are not actually stored in
the database unless they are needed by existing queries.
Such definition of uncertainty is an orthogonal definition
from the location uncertainty in moving objects that has
been used extensively in the literatures (e.g., [3,16,17,45,
54–56]). Location uncertainty refers to the lower resolu-
tion and inaccuracy of location-detection devices where
the system is not aware of the exact location of mov-
ing objects. Instead, the system has a vague knowledge
about the possible locations of moving objects. In con-
trast, in SOLE, the uncertainty is related to the query
not to the object as new spatial areas are covered by
existing or new queries.
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Fig. 3 Avoiding uncertainty in SOLE (range queries).

4.4 Avoiding Uncertainty in SOLE

SOLE does not handle the uncertainty areas that re-
sult from the newly submitted continuous queries. New
continuous queries suffer from uncertainty areas for the
first few seconds where the query answer is built progres-
sively. Continuous queries are issued to run for hours and
days. Thus, having a warming up period for a few seconds
does not affect neither the accuracy nor the efficiency of
the query result. Section 7 provides more elaboration on
the effect of uncertainty areas of new queries. On the
other side, uncertainty areas that result from stationary
or moving queries are crucial and are handled efficiently
by SOLE.

SOLE avoids uncertainty areas in moving and sta-
tionary spatio-temporal queries using a caching tech-
nique. The main idea is to predict the uncertainty area
of a continuous query Q and cache in-memory all mov-
ing objects that lie in Q’s uncertainty area. Whenever
an uncertainty area is produced, SOLE probes the in-
memory cache and produces the result immediately. A
conservative approach for caching is to expand the query
region in all directions with the maximum possible dis-
tance that a moving object can travel between any two
consecutive updates. Such conservative approach com-
pletely avoids uncertainty areas where it is guaranteed
that all objects in the uncertainty area are stored in the
cache. The underlying assumption with the conservative
cache approach is that all moving objects are required
to report their location updates every t time units. Fail-
ure to do so would result in disconnecting the moving
object. The conservative caching approach requires only
the knowledge of the maximum object speed, which is
typically available in moving object applications (e.g.,
moving cars in road network have limited speeds). This
is in contrast to all validity region approaches (e.g., the
safe region [46], the valid region [60], and the No-Action
region [58]) that require the knowledge of the locations
of other objects. This information is not available in our
case since SOLE is aware only of objects that satisfy the
query predicate. Thus, validity region approaches are not
applicable in the case of spatio-temporal streams. In the
rest of this section, we give two examples of using the
conservative caching approach to avoid any uncertainty
area in both moving and stationary queries.

Example 1. Moving Queries. Figure 3 gives an
example of using caching to avoid uncertainty in moving
queries. The shaded area represents the query region.
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The cached area is represented as a dashed rectangle.
Moving objects that belong to the query answer or to
the query’s cache area are plotted as white or gray cir-
cles, respectively. At time T0 (Figure 3a), two objects
satisfy the query answer (P1, P2), three objects are in the
cache area (P3, P4, P5), and two objects outside the cache
area (P6, P7). Only objects that either in the query or
the cache area are stored in-memory. At T1 (Figure 3b),
all objects change their locations. However, we only re-
port P−

2 and P+
3 . The cache area is updated to contain

(P2, P4, P6). Changes in the cache area do NOT result
in any updates. At T2 (Figure 3c), the query Q moves
within its cache area. Two updates are sent to the user;
P−

3 and P+
4 . The cache area is adjusted to contain P3

and P6 only. Notice that without employing the cache
area, we would miss P+

4 .
Example 2. Stationary Queries. Figure 4 gives an

example of continuous k-nearest-neighbor query (k = 3).
A snapshot of the database at time T0 is given in Fig-
ure 4a with P1, P2, and P3 represent the query answer.
P4, P5, and P6 are stored in the cache list, while P7 and
P8 are not stored in the database (since they are out-
side the cache region). At time T1 (Figure 4b), object P3

moves out of the query region but not outside the cached
area. Since P3 is still inside the cache area, we probe the
cache list to find P4 that is nearer to the focal point than
P3. Thus, we send a negative update P−

3 and a positive
update P+

4 to indicate that the current answer contains
P1, P2, and P4. At time T2 (Figure 4c), P6 moves from
the cache area into the query area. Thus, P6 is nearer to
the query focal point than the kth previous answer (P4).
Thus, we send the negative update P−

4 and the positive
update P+

6 to indicate that the current answer contains
P1, P2, and P6. At time T3 (Figure 4d), the query is
moved along with its cache area. The query movement
results in two updates: the negative update P−

1 and the
positive update P+

3 .

4.5 Analysis of the Caching Approach

In this section, we study various parameters that affect
the performance of the caching technique in terms of
both the cache overhead and the query accuracy. With-
out loss of generality, we assume that the query original
area is a square area with a side length x. Also, we as-
sume that moving objects are distributed uniformly in
the space.

Cache overhead. Assume that the caching tech-
nique would increase each side length of the square area
by a distance d. Then, the overhead percentage of using
the caching technique can be measured by the percentage
of the increase in the total area from the original query
to the extended query (i.e., the query area plus the cache
area). Thus, the cache overhead can be formulated as:

cache overhead = 100 ×
(x + d)2 − x2

x2

Assuming that the original square side length x can
be represented as a factor of the non-zero increase in the
side length d, i.e., x = md, where m is termed as the
expansion factor of the original query. Then, the cache
overhead can be represented as

cache overhead = 100 ×
(md + d)2 − m2d2

m2d2
(1)

= 100 ×
2md2 + d2

m2d2
= 100 ×

2m + 1

m2
(2)

This means that the larger the expansion factor m,
the lower the cache overhead. For example, if m is so
large, (i.e., order of tens), the cache overhead percentage
will be boiled down to be 200

m
. Having m as 50 will result

in only 4% overhead.
To get a better estimation of the value of the ex-

pansion factor m and the effect of various paraments,
we consider that moving objects have a maximum ve-
locity of v miles per hour. Furthermore, moving objects
are assumed to report their locations to the server every
t seconds, otherwise, moving objects will be considered
as disconnected. Thus, the maximum possible distance
dmax that a certain moving object can travel between
any two consecutive updates is dmax = t×v

3600
. Then, for a

conservative caching approach, we set d = 2dmax to in-
dicate the increase of each query region side by the max-
imum possible distance. However, for a non-conservative
approach, we only set d = 2×c×dmax where c, 0 ≤ c ≤ 1,
is a factor that indicates the percentage of caching we
would like to have. Having c = 1 indicates the conserva-
tive caching approach while having c = 0 indicates that
no caching is used. In terms of the velocity v and the
time interval t, the distance d can be represented as:

d =
t × v × c

1800

Since, x = md, the expansion factor m can be repre-
sented as:

m =
1800 × x

t × v × c
(3)

As given in Equation 2, the higher the value of m, the
lower the cache overhead. Then, Equation 3 determines
the factors that affect the cache overhead. For example,
the higher the value of x, the original query side length,
the lower is the cache overhead percentage. The main
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idea is that the larger the original query, the lower the
effect of extending its region. Similarly, the lower the
value of c, the higher the value of m, and hence the lower
is the cache overhead. Recall that 0 ≤ c ≤ 1, the lowest
value of c would result in a very large value of m. In
contrast increasing the value of v and/or t reduces m and
hence increases the cache overhead. This indicates that if
moving objects are moving with very high velocity, then
it is expected that moving objects would travel relatively
long distances between two consecutive updates. Then,
the cache area needs to have a large area to accommodate
such distance. Similarly, if the time interval t between
any two updates is relatively large, then the distance
between two consecutive updates would call for a large
cache area and hence a large percentage of the cache
overhead.

Query accuracy. The conservative cashing ap-
proach guarantees to have 100% query accuracy as all
uncertainty areas are covered, i.e., c = 1. Thus, the query
accuracy QA is measured as the ratio of the extended
query area with respect to the area covered by the con-
servative approach:

QA = 100 ∗
(x + 2cdmax)2

(x + 2dmax)2

Given that dmax = t×v
3600

, then:

QA = 100 ∗

(

x + tvc
1800

x + tv
1800

)2

= 100 ∗

(

1800x + tvc

1800x + tv

)2

(4)

Example. In a practical scenario, consider a square
range query with side length x = 3 miles that monitors
the traffic in a downtown area. If objects are moving
with speed v = 30 miles/hour while updating their loca-
tions every t = 30 seconds, then the maximum traveled
distance for each object is dmax = 1/4 mile. Using a con-
servative caching approach, i.e., c = 1, then the increase
in the side length is d = 1/2 mile. Thus, the expan-
sion factor m = 6, and the percentage of the increase in
the query area is only around 35% (from Equation 2).
On the other hand, because c = 1, then the query ac-
curacy is 100% (from Equation 4). However, if we use
a non-conservative caching with c = 0.5, then, d = 1/4,
m = 12, and the cache overhead will be only 17% (Equa-
tion 2), while the query accuracy will be dropped to 86%
(Equation 4). Similarly, if c = 0.25, the cache overhead
will be only 8.5% while the query accuracy is 80%. Fi-
nally, in the extreme case, i.e., when c = 0, there is no
cache overhead at all. In this case, as computed from
Equation 4, the query accuracy drops to 73%.

5 SOLE: Scalable On-Line Execution of

Continuous Queries

In a typical spatio-temporal application (e.g., location-
based servers), there are large numbers of concurrent

spatio-temporal continuous queries. Dealing with each
query as a separate entity (e.g., as discussed in Section 4)
would easily consume the system resources and degrade
the system performance. In this section, we present the
scalability of SOLE in terms of handling large numbers
of concurrent continuous queries of mixed types (e.g.,
range and kNN queries). Similar to the SINA frame-
work [39], SOLE employs both shared execution and in-
cremental evaluation paradigms as a means to achieve
scalability. However, SOLE employs these paradigms in
a completely different environments that include, data
streaming, in-memory only algorithms and data struc-
tures, online execution where the query answer is imme-
diately updated with any change in the input. Without
loss of generality, all the discussion in the rest of this pa-
per is presented in the context of stationary and moving
range queries. The applicability to k-nearest-neighbor
queries is straightforward as described in Section 3, Fig-
ure 2, and Figure 4. Basically, an kNN query is treated
as range queries, yet with only a variable region size.

5.1 Overview of Sharing in SOLE

Figure 5a gives the pipelined execution of N queries (Q1

to QN) of various types with no sharing, i.e., each query
is considered a separate entity. The input data stream
goes through each spatio-temporal query operator sepa-
rately. With each operator, we keep track of a separate
buffer that contains all the objects that are needed by
this query (e.g., objects that are inside the query region
or its cache area). With a separate buffer for each sin-
gle query, the memory can be exhausted with a small
number of continuous queries.

Figure 5b gives the pipelined execution of the same
N queries as in Figure 5a, yet with the shared SOLE
operator. The problem of evaluating concurrent continu-
ous queries is reduced to a spatio-temporal join between
two streams; a stream of moving objects and a stream of
continuous spatio-temporal queries. The shared spatio-
temporal join operator has a shared buffer pool that is
accessible by all continuous queries. The output of the
shared SOLE operator has the form (Qi,±Pj) which in-
dicates an addition or removal of object Pj to/from query
Qi. The shared SOLE operator is followed by a split op-
erator that distributes the output of SOLE either to the
users or to the various query operators. The split oper-
ator is similar to the one used in NiagaraCQ [15] and it
is out of the focus of this paper. Our focus is in realiz-
ing: (1) The shared memory buffer, and (2) The shared
SOLE spatio-temporal join operator.

5.2 Shared Memory Buffer

SOLE maintains a simple grid structure that divides
the space into equal non-overlapped rectangular cells as
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an in-memory shared buffer pool among all continuous
queries and objects. The shared buffer pool is logically
divided into two parts; a query buffer that stores all out-
standing continuous queries and an object buffer that is
concerned with moving objects. In addition to the grid
structure, SOLE employs a hash table h to index moving
objects based on their identifers. To optimize the scarce
memory resource, SOLE employs two main techniques:
(1) Rather than redundantly storing a moving object P
multiple times with each query Qi that needs P , SOLE
stores P at most once along with a reference counter that
indicates the number of continuous queries that need P .
(2) Rather than storing all moving objects, SOLE keeps
track with only the significant objects. Insignificant ob-
jects are ignored (i.e., dropped) from memory. Significant
objects are defined as follows:

Definition 2 A moving object P is considered signif-

icant if P satisfies any of the following two conditions:
(1) There is at least one active continuous query Q that
shows interest in object P (i.e., P has a non-zero ref-
erence counter), (2) P is the focal object of at least one
active continuous query.

We define when a query Q shows interest in an
object P as follows:

Definition 3 A query Q is interested in object P if P
either lies in Q’s spatial area or in Q’s cache area.

Having the previous definition of significant objects,
SOLE continuously maintains the following assertion:

Assertion 1 Only significant objects are stored in the
shared memory buffer

To always satisfy this assertion, SOLE continuously
keeps track of the following: (1) A newly incoming data
object P is stored in memory only if P is significant, (2) If
an object P that is already stored in the shared buffer
becomes insignificant, we drop P immediately from the
shared buffer. Significant moving objects are hashed to
grid cells based on their spatial locations. An entry of
a significant moving object P in a grid cell C has the

Buffer

Object

Expired

Objects

(1)Read

(3)Delete

object(s)

(2)Ignore

queries

Stationary

queries

+
− ji

(Q   ,    P  )

(1)Store

with

Moving

object

(3)Delete

temporal queries (Q)moving objects (P)

Queries (Q) Objects (P)

with

JOIN

+/− +/−

Yes/No

Yes

(2)Read

JOIN

Stream of spatio−Stream of

Query

Buffer

Is Focal?

(2)Store

Fig. 6 Shared join operator in SOLE.

form (PID, Location,RefCount,FocalList). PID and Lo-
cation are the object identifer and location, respectively.
RefCount indicates the number of queries that are inter-
ested in P . FocalList is the list of active moving queries
that have P as their focal object. Unlike data objects
that are stored in only one grid cell, continuous queries
are stored in all grid cells that overlap either the query
spatial area or the query cache area. A query entry in a
grid cell contains only the query identifier (QID). The
spatial region for each query is stored separately in a
global lookup table in the format (QID, Region).

5.3 Shared Spatio-temporal Join Operator

Overview. Figure 6 puts a magnifying glass over the
shared spatio-temporal join operator in Figure 5b. For
any incoming data object, say P , the shared spatio-
temporal join operator consults its query buffer to check
if any query is affected by P (either in a positive or a
negative way). Based on the result, we decide either to
store P in the object buffer or to ignore P and delete P ’s
old location (if any) from the object buffer. On the other
hand, for any incoming continuous query, say Q, first we
store Q or update Q’s old location (if any) in the query
buffer. Then, we consult the object buffer to check if any
of the objects needs to be added to or removed from Q’s
answer. Based on this operation, some in-memory stored
objects may become insignificant, hence, are deleted im-
mediately from the object buffer. Stationary queries are
submitted directly to the shared spatio-temporal join
operator, while moving queries are generated from the
movement of their focal objects.

Algorithm. Based on the data stored in the shared
buffer, SOLE distinguishes among four types of data in-
puts: (1) A new data object P that is not stored in mem-
ory, (2) Update of the location of object P , (3) A new
stationary query Q, (4) An update of the region of a mov-
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Algorithm 1 Pseudo code for receiving a new object P

1: Function NewObject(Object P , GridCell CP )

2: for each Query Qi ∈ CP AND P ∈ Q̂i do
3: P.RefCount + +
4: if (P ∈ Qi) then
5: output (Qi, +P ).
6: end if
7: end for
8: if P.RefCount > 0 then
9: store P in CP and in hash table h.

10: end if

(b) Action taken for each case(a) All cases of updating P’s location
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Fig. 7 All cases of updating P ’s location.

ing query Q. Algorithms 1, 2, 3, and 4 give the pseudo
code of SOLE upon receiving each input type. The de-
tails of the algorithms are described below. SOLE makes
use of the following notations: Q̂ indicates the extended
query region that covers the cache area so that Q ⊂ Q̂.
CQ, ĈQ are the set of grid cells that are covered by Q

and Q̂, respectively. CP represents a single grid cell that
covers the object P .

Input Type I: A new object P . Algorithm 1 gives
the pseudo code of SOLE upon receiving a new object
P in the grid cell CP (i.e., P is not stored in memory).
P is tested against all the queries that are stored in CP

(Lines 2 to 7 in Algorithm 1). For each query Qi ∈ CP ,

only three cases can take place: (1) P lies in Q̂i but
not in Q. In this case, we need only to increase the ref-
erence counter of P to indicate that there is one more
query interested in P (Lines 3 in Algorithm 1). Notice
that no output is produced in this case since P does not
satisfy Qi. (2) P satisfies Qi. In this case, in addition
to increasing the reference counter, we output a positive
update that indicates the addition of P to the answer
set of Qi (Lines 4 to 6 in Algorithm 1). In the above two
cases, P is stored in the shared buffer as it is considered
significant. (3) P neither satisfies Qi nor lies in Q̂i. Thus,
P is simply ignored as it is insignificant.

Input Type II: An update of P . Algorithm 2 gives
the pseudo code of SOLE upon receiving an update of ob-
ject P ’s location. The old location of P is retrieved from
the hash table h. First, we evaluate all moving queries
(if any) that have P as their focal object (Lines 2 to 4
in Algorithm 2). Then, we check all the queries that be-
long to either CP or CPold

(Lines 6 to 26 in Algorithm 2)
against the line L that connects P and Pold. Figure 7a
gives nine different cases for the intersection of L with Q
where Pold and P are plotted as white and black circles,
respectively. Both Pold and P can be in one of the three

Algorithm 2 Pseudo code for updating P ’s location.

1: Function UpdateObject(Object Pold,P , GridCell
CPold

,CP )
2: for each query Qi ∈ P.FocalList do
3: UpdateQuery(Qi)
4: end for
5: Let L be the line (Pold, P )
6: for each query Qi ∈ (CPold

∪ CP ) do
7: if Qi intersects L then
8: if P ∈ Qi then
9: Output (Qi, +P )

10: if Pold /∈ Q̂i then
11: P.RefCount + +
12: end if
13: else
14: Output (Qi,−P )

15: if P /∈ Q̂i then
16: P.RefCount −−
17: end if
18: else if Q̂i intersects L then

19: if P ∈ Q̂i then
20: P.RefCount + +
21: else
22: P.RefCount −−
23: end if
24: end if
25: end if
26: end for
27: if P.RefCount = 0 then
28: delete Pold and ignore P
29: return.
30: end if
31: if CPold

6= CP then
32: move Pold from CPold

to CP .
33: end if
34: Update the location of Pold to that of P in CP .

states, in, cache, or out that indicates that P satisfies Q,
in the cache area of Q, or does not satisfy Q, respectively.
The actions taken for each case is given in Figure 7b. Ba-
sically, if there is no change of state from Pold to P (e.g.,
L1, L5, and L9), no action will be taken. If Pold was in Q,
however, P is not (e.g., L2 and L3), we output the nega-
tive update (Q,−P ). The reference counter is decreased
only when Pold is of interest to Q while P is not (e.g., L3

and L6). Notice that in the case of L2, we do not need
to decrease the reference counter where although P does
not satisfy Q, P is still of interest to Q as P lies in Q̂i.
Also, in the case of L6, we do not need to output a nega-
tive update, however we decrease the reference counter.
In this case, since P and Pold are not in the answer set
of Q, there is no need to update the answer. Similarly,
with a symmetric behavior, we output a positive update
in the cases of L4 and L7 and we increment the refer-
ence counter in the cases of L7 and L8. After testing all
cases, we check whether object P becomes insignificant.
If this is the case, we immediately drop P from memory
(Lines 27 to 30 in Algorithm 2). If P is still significant,
we update P ’s location and cell (if needed) in the grid
structure (Lines 31 to 34 in Algorithm 2).
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Algorithm 3 Pseudo code for receiving a new query Q.

1: Function NewQuery(Query Q)

2: for each grid cell cj ∈ ĈQ do
3: Register Q in cj

4: for each object Pi ∈ cj AND Pi ∈ Q̂ do
5: P.RefCount + +
6: if P ∈ Q then
7: output (Q, +P )
8: end if
9: end for

10: end for

Algorithm 4 Pseudo code for updating Q’s location.

1: Function UpdateQuery(Query Qold, Q)

2: for each object Pi ∈ (ĈQold
∩ ĈQ) do

3: if Pi ∈ Qold then
4: if Pi /∈ Q then
5: Output (Q,−Pi)

6: if Pi /∈ Q̂ then
7: Pi.RefCount −−
8: if Pi.RefCount = 0 then
9: delete Pi

10: end if
11: end if
12: end if
13: else if Pi ∈ Q then
14: Output (Q,+Pi)

15: if Pi /∈ Q̂old then
16: Pi.RefCount + +
17: end if
18: else if Pi ∈ Q̂old AND Pi /∈ Q̂ then
19: Pi.RefCount −−,
20: if Pi.RefCount = 0 then
21: delete Pi

22: end if
23: else if Pi ∈ Q̂ AND Pi /∈ ˆQold then
24: Pi.RefCount + +
25: end if
26: end for
27: Register Q in ĈQ − ĈQold

,

28: unregister Q from ĈQold
− ĈQ

Input Type III: A new query Q. Algorithm 3
gives the pseudo code of SOLE upon receiving a contin-
uous query Q. Basically, we register Q in all the grid cells
that are covered by Q̂. In addition, we test Q against all
data objects that are stored in these cells. We increase
the reference counter of only those objects that lie in Q̂.
In addition, objects that satisfy Q results in producing
positive updates.

Input Type IV: An update of Q’s region. Algo-
rithm 4 gives the pseudo code of SOLE upon receiving
an update of a moving query region. The update can be
either coming from the user directly or from a change
of location of the focal query object. Also, the query up-
date can be either an update in location or an update
in the query area size. All stored objects in all cells that
are covered by the old and new regions of Q are tested
against Q. Figure 8a divides the space covered by the old
and new regions of Q into seven regions (R1-R7). The ac-
tions taken for any point that lies in any of these regions
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Fig. 8 All cases of updating Q’s region.

are given in Figure 8b. Similar to Figure 7b, a region Ri

could have any of the three states in, cache, or out based
on whether Ri is inside Q, is in the cache area of Q, or is
outside Q. Basically, no action is taken for objects in any
region Ri that maintains its state for both Q and Qold

(e.g., R4). If a region Ri is inside Qold, but is not in Q,
(e.g., R2 and R3), we output a negative update for each
object in Ri. We decrement the reference counter of these
objects only if they lie in the region that is out of the
new cache area (e.g., R2) (Lines 3 to 12 in Algorithm 4).
Also, the reference counter is decremented for all objects
in the region that are in the old cache area but are out
of the new cache area (e.g., R1) (Lines 13 to 17 in Algo-
rithm 4). Similarly, the reference counter is increased for
regions R6 and R7 while a positive output is sent for the
points in regions R5 and R6. Notice that whenever we
decrement the reference counter for any moving object
P , we check whether P becomes insignificant. If this is
the case, we immediately drop P from memory (Lines 18
to 25 in Algorithm 4). Finally, Q is registered in all the
new cells that are covered by the new region and not the
old region. Similarly, Q is unregistered from all cells that
are covered by the old region and not the new region.

6 Load Shedding in SOLE

Even with the scalability features of SOLE, the memory
resource may be exhausted at intervals of unexpected
massive numbers of queries and moving objects (e.g.,
during rush hours). To cope with such unexpected inter-
vals, SOLE employs a load-shedding approach that tunes
the memory load to support a large number of concur-
rent queries, yet with an approximate answer. The main
idea is to change the definition of significant objects (De-
finition 2) based on the current workload. By adapting
the definition of significant objects, the memory load will
be shed in two ways: (1) In-memory stored objects will
be revisited for the new meaning of significant objects. If
an already existing object becomes insignificant accord-
ing to the new definition, it is dropped from memory.
(2) Newly input data will be tested for significance ac-
cording to the new definition. If an object does not meet
the new definition of significant objects, it will be ig-
nored.

The rest of this section is organized as follows. Sec-
tion 6.1 gives a high level architecture of the integration
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of the load shedding module within the SOLE framework.
The accuracy of load shedding is discussed in Section 6.2.
Sections 6.3 and 6.4 propose two new methods for re-
alizing load shedding inside SOLE, namely, query load
shedding and object load shedding. Finally, Section 6.5
discusses maintaining the query accuracy while perform-
ing the load shedding.

6.1 Architecture of Load Shedding

Figure 9 gives the architecture of load-shedding in SOLE.
Once the shared join operator incurs high resource con-
sumption, e.g., the memory becomes almost full, the join
operator triggers the execution of the load shedding pro-
cedure. The load shedding procedure may consult some
statistics that are collected during the course of execu-
tion to decide on a new meaning of significant objects.
While the shared join operator is running with the new
definition of significant objects, it may send updates of
the current memory load to the load shedding procedure.
The load shedding procedure replies back by continu-
ously adopting the notion of significant objects based on
the continuously changing memory load. Finally, once
the memory load returns to a stable state, the shared
join operator retains the original meaning of significant
objects and stops the execution of the load shedding pro-
cedure. Solid lines in Figure 9 indicate the mandatory
steps that should be taken by any load shedding tech-
nique. Dashed lines indicate a set of operations that may
or may not be employed based on the underlying load
shedding technique.

6.2 Accuracy of Load Shedding

Load shedding aims to drop some of the in-memory tu-
ples which may be needed by some outstanding queries.
As a result, load shedding produces approximate query
results. To make sure that the approximate query results
are acceptable, whenever a query, say Q, is submitted
to SOLE, Q specifies its minimum acceptable accuracy.
Initially, every query Q is evaluated with complete ac-
curacy. However, when the system is overloaded, Q’s ac-
curacy is degraded to its minimum permissible accuracy.
Assuming a uniform distribution of moving objects over-
all the space, the accuracy of the query answer of SOLE
is defined as AccQ = 100×NCurrent

NActual
where NCurrent is the

number of stored moving objects within the query range
and cache areas while NActual is the number of objects
that should be in both the query range and cache area if
load shedding was not employed. Notice that in the case
of no load shedding, the query accuracy is 100%. Our
definition of the query accuracy is independent from the
query type as it relies mainly on the query area. For ex-
ample, the accuracy of nearest neighbor queries is com-
puted based on the area it covers not on the required
number of neighbors.

(3) Memory Load

QueriesObjects

(5) STOP (Memory is OK)

Update

(1) Trigger

(Memory is almost full)

(2) Update criteria

(4) Update criteria

Statistics

Shared

Join

Operator

Expired

Objects
Shedding

Load

Fig. 9 Architecture of load shedding in SOLE.

6.3 Query Load Shedding

The main idea of the query load shedding is to shrink
the query area. For example, if it is required to reduce
the memory load to only 75%, then we aim to shrink
the query area for each single query to its 75%, given
that this will be within the permissible query accuracy.
Query load shedding is performed in two stages. In the
first stage, the query cache area is shrunk. All moving
objects that become out of the new query area are elimi-
nated if they are not needed by other queries. If the first
stage did not result in the desired load shedding, the
second stage starts by shrinking the query main area till
the minimum permissible accuracy for each query is met
or the memory load becomes acceptable. With the query
load shedding, all the algorithms given in Section 5 are
still valid. The only difference is that the notion of sig-
nificant objects is adopted to be those tuples that lie in
the reduced query area of at least one continuous query.
By reducing the query sizes of all continuous queries,
objects that are outside the reduced area and are not of
interest to any other query are immediately dropped
from memory and the corresponding negative updates
are sent. During the course of execution, we gradually
increase the query size to cope with the memory load.
Finally, when the system reaches a stable state, we retain
the original query sizes.

Figures 10a and 10b give an example of query load
shedding. The complete snapshot of the database with-
out load shedding is given in Figure 10a with seven
queries Q1 to Q7 and 15 moving objects. Figure 10b
gives the snapshot of the database after applying the
query load shedding. Each query area (including the
cache area) is reduced to 90%. This results in dropping
a total of four objects (plotted as white circles in Fig-
ure 10b) from Q1, Q4, Q5, and Q6. Given an assumption
of a uniform data distribution over the whole space and
the query region, reducing the query area by 10% would
result in a 90% query accuracy.

Query load shedding has two main advantages: (1) It
is intuitive and simple to implement where there is no
need to maintain any kind of statistical information or
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Fig. 10 Example of load shedding in SOLE.

additional data structures, and (2) Insignificant objects
are immediately dropped from memory. On the other
hand, there are two main disadvantages for the query
load shedding: (1) The query load shedding process is ex-
pensive where it scans all stored objects and queries. This
exhaustive behavior results in pause time intervals where
the system cannot produce output nor process data in-
puts. (2) Reducing the query accuracy to x% does not
guarantee reducing the memory load to its x%. Since the
main objective is to reduce the memory workload, this
may end up in trying to have more stages in reducing
the query area. Assume the case that the reduced area
from a query Qi lies completely inside another query Qj.
Thus, even though Qi is reduced, we cannot drop tuples
from the reduced area where they are still needed by Qj.
Thus, the accuracy of Qi is reduced, yet the amount of
memory is not. As an example, consider the case of Q4 in
Figure 10b, reducing the query area results in ignoring
the three moving objects inside Q4. However, only one of
these three objects is really dropped from the memory.
The other two object did not get dropped form memory
as they are still needed by Q2 and Q6.

6.4 Object Load Shedding

The object load shedding aims to avoid the drawbacks of
the query load shedding by smartly choosing the objects
to drop so that a dropped object has less effect on the
query accuracy. The main idea is to drop those data ob-
jects that are of interest of only low number of queries.
To realize such idea, the definition of significant objects
is changed to be those objects that are of interest to
at least k queries (i.e., objects with a reference counter
greater than or equal k). Then, the object load shedding

drops data objects with a reference counter lower than k.
Notice that the original definition of significant objects
implicitly assumes that k = 1.

Data structure. A main challenge in the object load
shedding is to decide upon the value k. Thus, we main-
tain a simple one-dimensional statistical array S where
S[i] is the number of moving objects with a reference
counter i. If a new object is received with a non-zero
reference counter, k, in addition to storing this object
in the hash table (Line 9 in Algorithm 1), we increase
the entry S[k] by one. Similarly, when an object with
a reference counter k is dropped from memory, we de-
crease the array entry S[k] by one. Similarly, if due to
the execution of any of the algorithms 2, 3, or 4, a certain
object changes its reference counter from kold to knew ,
we decrease S[kold] by one while increasing S[knew] by
one.

Algorithm. Once the memory is overloaded with N
data objects and the system decides to drop the mem-
ory load to be only x% of the current load, we consult
the statistical array S for an appropriate value of k. The
main idea is to initialize a counter C by zero, then, we
scan S starting from S[1] while accumulating its values
into C = C + S[k]. We stop only when the ratio of C/N
is less than the desired ratio x. At this point, we set
the new notion of significant objects to be those objects
that are of interest to less than k queries. To accom-
modate such change in SOLE, we modify the condition
of line 8 in Algorithm 1 to be P.RefCount > k. Also,
we modify the condition of line 27 in Algorithm 2 to be
P.RefCount < k. Finally, we modify the condition of
line 20 in Algorithm 2 to be P.RefCount < k.

Example. Figure 10c gives an example of object load
shedding with seven outstanding queries Q1 to Q7 and 15
data objects. Objects that are plotted in white, gray, and
black represent those objects with reference counter one,
two, and three, respectively. Thus, S[1] = 7, S[2] = 5,
and S[3] = 3 to indicate that the number of objects that
has reference counters one, two, and three are seven, five,
and three, respectively. To reduce the memory load o
80%, we will need to set k to two. In this case, all white
circles are candidate to be dropped. However, they are
not dropped immediately. Instead, they are dropped only
when they get accessed till the memory is reduced to the
desired load. Once the memory load becomes 80%, we set
the value of k to one again and stop dropping memory
objects.

Advantages. A key point in object load shedding
is that we do not perform an exhaustive scan to drop
insignificant objects. Instead, insignificant objects are
lazily dropped whenever they get accessed later during
the course of execution. Such lazy behavior completely
avoids the pause time intervals in query load shedding. In
addition, in contrast to the query load shedding, in the
object load shedding, we guarantee the reduced memory
load as we have the ability to choose the objects that we
want to drop.
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6.5 Maintaining the Query Accuracy in Load Shedding

Each query submitted to SOLE would have a minimum
permissable accuracy. A straight forward application of
either the query load shedding or the object load shed-
ding does not guarantee the minimum permissable accu-
racy. For example, in Figure 10b, the query load shed-
ding shrinks Q1 slightly in which one object is dropped
among only two objects that are of interest to Q1. Thus,
the accuracy of Q1 is dropped to 50% which could be
lower than the minimum required accuracy. For the ob-
ject load shedding, dropping one object from Q7 in Fig-
ure 10c results in dropping its accuracy to zero as this
object is the only one that satisfies Q7.

To avoid such accuracy violation, each query has the
ability to lock itself once it discovers that removing any
object from its answer will degrade its accuracy below
the required level. Figure 10d gives an example of ob-
ject load shedding with locking where each query has a
minimum accuracy requirement 60%. In this case, both
Q1 and Q7 (plotted as bold rectangles) lock themselves
where removing an object from either Q1 or Q7 will de-
grade its accuracy to be 50% or 0%, respectively. Thus,
all moving objects in Q1 and Q7 are locked and are not
subject to dropping. To facilitate the execution of object
load shedding technique, locked objects do not contribute
in the computation of the statistical table S. Thus, once
an object with a reference counter k is locked, the corre-
sponding entry S[k] is decreased by one.

To make sure of the current query accuracy, we need
to take care of two types of dropped memory objects:
(1) Objects that are dropped from memory, and (2) Ob-
jects that are dropped from the input and before being
stored in memory. For each dropped object, we reduce
the accuracy of all the queries affected by the dropped
objects. To prevent the case that a dropped object is
reported twice, and hence, mistakenly reduce the query
accuracy, we keep track of a shadow table. The shadow
table only keeps track of the object identifiers of dropped
objects. A complete in-memory object may require large
storage to store its location, focal list, and other at-
tributes (if any), however, an object that is stored in
the shadow table has only the object identifier. Having
the shadow table, when a newly coming object P is con-
sidered insignificant as it satisfies less than k queries and
before completely ignoring P , we go through the shadow
table and make sure if this object was dropped before
or not. If P is not in the shadow table, then we only
reduce the accuracy of all the queries that P should be
part of their answer. In this process, we make sure that
no query will have an accuracy that is lower than its
minimum permissible one. However, in the case that the
object identifier of P is already in the shadow table, we
go through the queries that are affected before from P
and we update their accuracy only if they got affected
by p movement. In both case, object P is dropped and
its object identifier is stored at the shadow table.

Fig. 11 Greater Lafayette, Indiana, USA.

7 Experimental Results

In this section, we study the performance of various as-
pects of SOLE that include: the size of the cache area,
the benefit of encapsulating SOLE in a pipeline opera-
tor, the grid size of the shared memory buffer, the scal-
ability of SOLE, and load shedding techniques. All the
experiments in this section are based on a real imple-
mentation of SOLE algorithms and operators inside our
prototype database engine for spatio-temporal streams,
PLACE [40,41]. We run PLACE on Intel Pentium IV
CPU 2.4GHz with 512MB RAM running Windows XP.
As indicated throughout the paper, SOLE deals with
queries by their regions that may change their locations
(e.g., moving range queries) or change their shapes (e.g.,
stationary nearest-neighbor queries). It is not our ob-
jective in this section to compare various query types
with each other, instead, we aim to show the effective-
ness of applying SOLE to existing queries. For exam-
ple, although nearest-neighbor queries generally result in
higher cost than that of range queries, the effect of ap-
plying SOLE techniques to nearest-neighbor queries is
similar to that of applying SOLE techniques for range
queries. Thus, without loss of generality, all the pre-
sented experiments are conducted using rectangular re-
gion queries.

We use the Network-based Generator of Moving Ob-
jects [8] to generate a set of moving objects and mov-
ing queries in the form of spatio-temporal streams. The
input to the generator is the road map of the Greater
Lafayatte (a city in the state of Indiana, USA) given in
Figure 11 which is almost a square area of side length
28 miles. The output of the generator is a set of mov-
ing points that move on the road network of the given
city. Moving objects can be cars, cyclists, pedestrians,
etc. Any moving object can be a focal of a moving query.
Unless mentioned otherwise, we generate 110K moving
objects as follows: Initially, we generate 10K moving ob-
jects from the generator, then we run the generator for
1000 time units. At each time unit, we generate new 100
moving objects. Moving objects are required to report
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their locations every time unit t. Failure to do so results
in disconnecting the moving object from the server.

The rest of this section is organized as follows. Sec-
tions 7.1 to 7.3 study the effect of the cache size, the
velocity, and the gain of having SOLE as a pipelined op-
erator in terms of single query execution. In Sections 7.4
to 7.6, we study the scalability of SOLE. Finally, Sec-
tions 7.7 and 7.8 study the performance of load shedding
techniques.

7.1 Single Execution: Size of the Cache Area

Figures 12a-d give the performance of the first 25 sec-
onds of executing a moving query with a square region
of a side length 2 miles with no cache, 25% cache, 50%
cache, and conservative cache (i.e., 100% cache), respec-
tively. Such query represents 0.5% of the whole space.
Also, an x% cache area corresponds to setting the c fac-
tor in Section 4.5 to x/100. Our performance measure is
the query accuracy that is represented as the percentage
of the number of data objects that lie on the query re-
gion to the actual number that should have been in the
query region if all moving objects are materialized into
secondary storage. Notice that this definition of accuracy
is similar to the one used with load shedding accuracy in
Section 6.2 and is independent from the query type as it
deals with the query region itself regardless of the query
type. For all cache sizes, once a query Q is submitted
to the system, Q needs a warming up period to com-
plete its result. The warming up period is represented in
Figures 12a-d as the initial line that is (almost) parallel
to the vertical axis. Figure 12e provides a zoom on the
warming up period.

Without caching (Figure 12a), the query accuracy
suffers from continuous fluctuations where sometimes the
accuracy drops to 85%. With only 25% cache the query
accuracy is greatly enhanced (Figure 12b). The accuracy
is almost stable with minor fluctuations that degrade the
accuracy to only 95%. A conservative caching would re-
sult in having a single line that always have 100% accu-
racy (Figure 12d). Although continuous queries are ex-
pected to last for hours and days, we plot only the first 25
seconds of the query execution. The main reason is that
these few seconds represent the steady state behavior
of the query execution along its course of execution.For
example, having 50% cache would always have near-to-
optimal result with very few drops in accuracy every
now and then, while having 100% caches has always a
steady state performance of 100% accuracy. The main
reason of of having a very good performance with a non-
conservative caching area (e.g., 50%) is that most of the
moving objects do not move with the maximum speed. In
addition, the only case that a conservative cache would
be better than a non-conservative one is the case of a
moving object who lies on the boundary of the query
region and moves with its maximum speed in one di-
rection. If this case did not take place, then a slightly

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60

O
v
e
r
h
e
a
d
 
P
e
r
c
e
n
t
a
g
e

Velocity (miles/hour)

100% Cache
75% Cache
50% Cache
25% Cache

(a) Cache

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

O
v
e
r
h
e
a
d
 
P
e
r
c
e
n
t
a
g
e

Velocity (miles/hour)

T = 90 seconds
T = 60 seconds
T = 30 seconds
T = 10 seconds

(b) Time Interval

Fig. 13 Effect of velocity.

non-conservative cache approach would achieve a high
performance.

Figure 12e puts a magnifying glass over the warming
up period (the first 10 msec) of the query execution time
of Figures 12a-d. This warming up period corresponds to
the uncertainty of new queries that has been described in
Section 4.3. The main idea of this figure is to show that
the query answer is built progressively and it took very
small time from the query execution time to reach to
a steady state performance. Thus, the uncertainty that
comes from new queries can be amortized by the long
running time of execution queries.

Figure 12f gives the memory overhead when using a
25%, 50%, or 100% (conservative) cache sizes. The over-
head is computed as a percentage from the original query
memory requirements. Thus a 0% cache does not incur
any overhead. On average a 25% cache results in only
10% overhead over the original query, while the 50% and
100% caches result in 25% and 50% overhead, respec-
tively. As a compromise between the cache overhead and
the query accuracy, we use a 25% cache in SOLE in all
the following experiments. These results are consistent
with our analytical analysis in Section 4.5.

7.2 Single Execution: Effect of Velocity

Figure 13a gives the effect of the maximum object veloc-
ity on the cache overhead for different cache sizes (25%,
50%, 75%, and 100% cache size). The query size is 0.5%
of the space while moving objects report their locations
every 30 seconds. The maximum object velocity varies
from 1 to 60 miles/hour. The increase in the velocity lin-
early increases the cache overhead. Also, increasing the
cache size increases the cache overhead as was depicted
also in Figure 12f. In addition, the slope of the effect
of velocity over the cache overhead increases with the
increase in the cache area.

Figure 13b exploits a similar experiment to that of
Figure 13a. The only difference is that we set the cache
area to be 50% while running the experiment for dif-
ferent values of the time interval t (10, 30, 60, and 90
seconds). Consistently with the analytical analysis given
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Fig. 12 Cache area in SOLE.

Fig. 14 Effect of velocity and query size.

in Section 4.5, increasing the time interval t results in an
increase in the cache overhead.

Figure 14 studies the effect of both the velocity and
query size on the cache overhead. The cache area is set
to be 50% while the time interval t is set to 30 seconds.
The maximum object velocity varies from 1 to 60 miles
per hour while the side length of the query square area
varies from 1 mile (0.13% of the space) to 6 miles (4.6%
of the space). The worst case scenario takes place at the
smallest query size (1 mile) with the largest maximum

velocity (60 miles/hour). In this case, the cache overhead
may exceed 100%. On the other side, for small velocity
(v ≤ 10), the overhead is almost negligible for all query
sizes. Similarly, for large query sizes, the cache overhead
is almost negligible for all velocities. For example, for
query sizes greater than 5 miles, the cache overhead is
always less than 20% regardless of the maximum object
velocity. Also, for query sizes between 3 and 5 miles, the
cache overhead is always less than 40%.

Notice that in this section we have studied the effect
of the various parameters on the cache overhead, but not
on the query accuracy. The query accuracy is controlled
by the size of the cache area. For example, a 100% cache
will always result in a 100% query accuracy regardless
of the value of other parameters, e.g., velocity v, time
interval t, or query size x.

7.3 Single Execution: Pipelined Query Operators

Consider the query Q:“Continuously report all trucks
that are within MyArea”. MyArea can be either a sta-
tionary or moving range query. A high level implemen-
tation of this query is to have only a selection operator
that selects only the “trucks”. Then, a high level algo-
rithm implementation would take the selection output
and incrementally produce the query result. However, an
encapsulation of SOLE into a physical pipelined query
operator allows for more flexible plans. Figure 15a gives
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a query evaluation plan when pushing the SOLE oper-
ator before the selection operator. The following is the
SQL presentation of the query.

SELECT M.ObjectID
FROM MovingObjects M
WHERE M.type = ”truck”
INSIDE MyArea

Figure 16 compares the high level implementation
of the above query with pipelined INSIDE operator for
both stationary and moving queries. The selectivity of
the queries varies from 2% to 64%. The selectivity of
the selection operator is 5%. Our measure of compari-
son is the number of tuples that go through the query
evaluation pipeline. When SOLE is implemented at the
application level, its performance is not affected by the
query selectivity. However, when INSIDE is pushed before
the selection, it acts as a filter for the query evaluation
pipeline, thus, limiting the tuples through the pipeline
to only the progressive updates. With INSIDE selectiv-
ity less than 32%, pushing INSIDE before the selection
greatly affects the performance. However, with selectiv-
ity more than 32%, it would be better to have the INSIDE
operator above the selection operator.

Consider a more complex query plan that contains a
join operator. The query Q: “Continuously report mov-
ing objects that belong to my favorite set of objects and
that lie within MyArea”. A high level implementation of
SOLE would probe a streaming database engine to join
all moving objects with my favorite set of objects. Then,
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the output of the join is sent to the SOLE algorithm for
further processing. However, with the INSIDE operator,
we can have a query evaluation plan as that of Figure 15b
where the INSIDE operator is pushed below the Join op-
erator. The SQL representation of the above query is as
follows:

SELECT M.ObjectID
FROM MovingObjects M, MyFavoriteCars F
WHERE M.ObjectID = F.ObjectID
INSIDE MyArea

Figure 17 compares the high level implementation of
the above query with the pipelined INSIDE operator for
both stationary and moving queries. The selectivity of
the queries varies from 2% to 64%. As in Figure 16, the
selectivity of SOLE does not affect the performance if it
is implemented in the application level. Unlike the case of
selection operators, SOLE provides a dramatic increase
in the performance (around an order of magnitude) when
implemented as a pipelined operator. The main reason in
this dramatic gain in performance is the high overhead
incurred when evaluating the join operation. Thus, the
INSIDE operator filters out the input tuples and limit
the input to the join operator to only the incremental
positive and negative updates.

7.4 Scalable Execution: Grid Size

Figure 18 studies the trade-offs for the number of grid
cells in the shared memory buffer of SOLE for 50K mov-
ing queries of various sizes. Increasing the number of cells
in each dimension increases the redundancy that results
from replicating the query entry in all overlapping grid
cells. On the other hand, increasing the grid size results
in a better response time. The response time is defined as
the time interval from the arrival of an object, say P , to
either the time that P appears at the output of SOLE or
the time that SOLE decides to discard P . When the grid
size increases over 100, the response time performance
degrades. Having a grid of 100 cells in each dimension
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results in a total of 10K small-sized grid cells, thus, with
each movement of a moving query Q, we need to reg-
ister/unregister Q in a large number of grid cells. As
a compromise between redundancy and response time,
SOLE uses a grid of size 30 in each dimension.

7.5 Scalable Execution: SOLE Vs. Non-Shared
Execution

Figure 19 compares the performance of the SOLE shared
operator as opposed to dealing with each query as a sep-
arate entity (i.e., with no sharing). Figure 19a gives the
ratio of the number of supported queries via sharing over
the non-sharing case for various query sizes. Some of the
actual values are depicted in the table in Figure 19b. For
small query sizes (e.g., 0.01%) with sharing, SOLE sup-
ports more than 60K queries, which is almost 8 times
better than the case of non-sharing. The performance of
sharing increases with the query size where it becomes 20
times better than non-sharing in case of query size 1% of
the space. The main reason of the increasing performance
with the size increase is that sharing benefits from the
overlapped areas of continuous queries. Objects that lie
in any overlapped area are stored only once in the shar-
ing case rather than multiple times in the non-sharing
case. With small query sizes, overlapping of query areas
is much less than the case of large query sizes.
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Figures 20a and 20b give the memory requirements
for storing objects in the query region and the query
cache area, respectively, for 1K queries over 100K mov-
ing objects. In Figure 20a, for large query sizes (e.g., 1%
of the space), a non-shared execution would need a mem-
ory of size 1M objects, while in SOLE, we need, at most,
a memory of size 100K objects. The main reason is that
with non-sharing, objects that are needed by multiple
queries are redundantly stored in each query buffer, while
with sharing, each object is stored at most once in the
shared memory buffer. Thus, in terms of the query area,
SOLE has a ten times performance advantage over the
non-shared case. Figure 20b gives the memory require-
ment for storing objects in the cache area. The behavior
of the non-sharing case is expected where the memory re-
quirements increase with the increase in the query size.
Surprisingly, the caching overhead in the case of sharing
decreases with the increase in the query size. The main
reason is that with the size increase, the caching area of
a certain query is likely to be part of the actual area of
another query. Thus, objects that are inside this caching
area are not considered an overhead, where they are part
of the actual answer of some other query.

7.6 Scalable Execution: Response Time

Figure 21a gives the effect of the number of concurrent
continuous queries on the performance of SOLE. The
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number of queries varies from 5K to 50K. Our perfor-
mance measure is the average response time. We run the
experiment twice; once with only stationary queries, and
the second time with only moving queries. The increase
in response time with the number of queries is accept-
able since as we increase the number of queries 10 times
(from 5K to 50K), we get only twice the increase in re-
sponse time in the case of stationary queries (from 11 to
22 msec). The performance of moving queries has only a
slight increase over stationary queries (2 msec in case of
50K queries).

Figure 21b gives the effect of varying both the query
size and the percentage of moving queries on the response
time of the SOLE operator. The number of outstanding
queries is fixed to 30K. The response time increases with
the increase in both the query size and the percentage
of moving queries. However, the SOLE operator is less
sensitive to the percentage of moving queries than to the
query size. Increasing the percentage of moving queries
results in a slight increase in response time. This per-
formance indicates that SOLE can efficiently deal with
moving queries in the same performance as with station-
ary queries. On the other hand, increasing the query size
from 0.01% to 1% only doubles the response time (from
around 12 msec to around 24 msec) for various moving
percentages.

7.7 Load Shedding: Accuracy in Query Answer

Figures 22a and 22b compare the performance of query
and object load shedding techniques for processing 1K
and 25K queries with various sizes, respectively. Our per-
formance measure is the reduced load to achieve a certain
query accuracy. When the system is overloaded, we vary
the required accuracy from 0% to 100%. In degenerate
cases, setting the accuracy to 100% requires keeping the
whole memory load (100% load) while setting the accu-
racy to 0% requires deleting all memory load. The bold
diagonal line in Figure 22 represents the required accu-
racy. It is “expected” that if we ask for m% accuracy, we
will need to keep only m% of the memory load. Thus,
reducing the memory load to be lower than the diago-
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Fig. 24 Performance of Object Load Shedding.

nal line is considered a gain over the “expected” behav-
ior. The object load shedding always maintains better
performance than that of the query load shedding. For
example, in the case of 1K queries, to achieve an aver-
age accuracy of 90%, we need to keep track of only 85%
of the memory load in the case of object load shedding
while 97% of the memory is needed in the case of query
load shedding. The performance of both load shedding
techniques is worse with the increase in the number of
queries to 25K. However, the object load shedding still
keeps a good performance where it is almost equal to
the “expected” performance. The performance of query
load shedding is dramatically degraded where we need
more than 90% of the memory load to achieve only 20%
accuracy.

Figures 23a and 23b compare the performance of
query and object load shedding to achieve an accuracy of
70% and 90%, while varying the number of queries from
2K to 32K. The object load shedding greatly outperforms
the query load shedding and results in a better perfor-
mance than the “expected” reduced load for all query
sizes. The main reason behind the bad performance of
query load shedding is that in the case of a large number
of queries, there are high overlapping areas. Thus, the
reduced area of a certain query is highly likely to over-
lap other queries. So, even though we reduce the query
area, we cannot drop any of the tuples that lie in the
reduced area. Such tuples are still of interest to other
outstanding queries.

Figure 24 focuses on the performance of object load
shedding. The required reduced load varies from 10% to
90% while the number of queries varies from 1K to 32K.
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This experiment shows that object load shedding is scal-
able and is stable when increasing the number of queries.
For example, when reducing the memory load to 90%, we
consistently get an accuracy around 94% regardless of
the number of queries. Such consistent behavior appears
in various reduced loads.

7.8 Load Shedding: Scalability with Load Shedding

Figure 25a gives the ratio of the number of supported
queries with query and object load shedding techniques
over the sharing case with no load shedding. All queries
are supported with a minimum accuracy of 90%. De-
pending on the query size, query load shedding can sup-
port up to 3 times more queries than the case with no
load shedding. This indicates a ratio of up to 60 times
better than the non-sharing cases (refer to the table in
Figure 19b). On the other hand, object load shedding has
much better scalable performance than that of query load
shedding. With object load shedding SOLE can have up
to 13 times more queries than the case of no load shed-
ding, which indicates up to 260 times than the case of
no sharing.

Figure 25b gives the performance of the query and
object load shedding techniques in terms of maintaining
the average query accuracy with the arrival of continu-
ous queries. The horizontal access advances with time to
represent the arrival of each continuous query. With tight
memory resources, the memory is consumed completely
with the arrival of about 1200 queries. At this point,
the process of load shedding is triggered. The required
memory consumption level is set to 90%. Since query
load shedding immediately drops tuples from memory,
the query accuracy is dropped sharply to 90%. In con-
trast, in object load shedding, the accuracy degrades
slowly. With the arrival of more queries, query load shed-
ding tries to slowly enhance its performance. However,
the memory consumption is faster than the recovery of
query load shedding. Thus, soon, we will need to drop
some more tuples from memory that will result in less
accuracy. The behavior continues with two contradict-
ing actions: (1) Query load shedding tends to enhance
the accuracy by retaining the original query size, and
(2) The arrival of more queries consumes memory re-
sources. Since the second action is faster than the first
one, the performance has a zigzag behavior that leads to
reducing the query accuracy. On the other hand, object
load shedding does not suffer from this drawback. In-
stead, due to the smartness of choosing victim objects,
object load shedding always maintains sufficient accuracy
with minimum memory load.

8 Conclusion

We presented the Scalable On-Line Execution algorithm
(SOLE, for short) for continuous and on-line evaluation
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of concurrent continuous spatio-temporal queries over
spatio-temporal data streams. SOLE is an in-memory
algorithm that utilizes the scarce memory resources ef-
ficiently by keeping track of only those objects that are
considered significant. SOLE is a unified framework for
stationary and moving queries that is encapsulated into
a physical pipelined query operator. To cope with in-
tervals of high arrival rates of objects and/or queries,
SOLE utilizes load shedding techniques that aim to sup-
port more continuous queries, yet with an approximate
answer. Two load shedding techniques were proposed,
namely, query load shedding and object load shedding.
Experimental results based on a real implementation of
SOLE inside a prototype data stream management sys-
tem show that SOLE can support up to 20 times more
continuous queries than the case of dealing with each
query separately. With object load shedding, SOLE can
support up to 260 times more queries than the case of
no sharing.
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