Continuous Query Processing of Spatio-temporal Data
Streams in PLACE

Mohamed F. Mokbel Xiaopeng Xiong

Moustafa A. Hammad Walid G. Aref*

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{mokbel,xxiong,mhammad,aref}@cs.purdue.edu

Abstract

The tremendous increase of cellular phones,
GPS-like devices, and RFIDs results in highly
dynamic environments where objects as well
as queries are continuously moving. In this
paper, we present a continuous query proces-
sor designed specifically for highly dynamic
environments (e.g., location-aware environ-
ments). We implemented the proposed con-
tinuous query processor inside the PLACE
server (Pervasive Location-Aware Comput-
ing Environments); a scalable location-aware
database server currently developed at Pur-
due University. The PLACE server extends
data streaming management systems to sup-
port location-aware environments. Such envi-
ronments are characterized by the wide vari-
ety of continuous spatio-temporal queries and
the unbounded spatio-temporal streams. The
proposed continuous query processor mainly
includes: (1) Developing new incremental
spatio-temporal operators to support a wide
variety of continuous spatio-temporal queries,
(2) Extending the semantic of sliding window
queries to deal with spatial sliding windows as
well as temporal sliding windows, and (3) Pro-
viding a shared execution framework for scal-
able execution of a set of concurrent con-
tinuous spatio-temporal queries. Preliminary
experimental evaluation shows the promising
performance of the continuous query proces-
sor of the PLACE server.

This work was supported in part by the National Sci-
ence Foundation under Grants 11S-0093116, ETA-9972883, IIS-
9974255, 11S-0209120, 0010044-CCR,, and EIA-9983249.

Copyright held by the author(s).
Proceedings of the Second Workshop on Spatio-

Temporal Database Management (STDBM’04),
Toronto, Canada, August 30th, 2004.

1 Introduction

The wide spread of cellular phones, handheld de-
vices, and GPS-like technology enables environments
where virtually all objects are aware of their loca-
tions. Such environments call for new query pro-
cessing techniques to efficiently support location-aware
servers. Unlike traditional database servers, location-
aware servers have the following distinguished char-
acteristics: (1) Data are received from moving and
stationary objects in the form of unbounded spatio-
temporal streams, (2) Large number of continuous
stationary and moving spatio-temporal queries, and
(3) Any delay of the query response results in an ob-
solete answer. Consider a query that asks about the
moving objects that lie in a certain region. If the query
answer is delayed, the answer may be outdated where
objects are continuously changing their locations.

Existing techniques for handling continuous spatio-
temporal queries in location-aware environments (e.g.,
see [3, 16, 18, 31, 34, 36, 39, 40]) focus on devel-
oping specific high level algorithms that utilize tra-
ditional database servers. In this paper, we go be-
yond the idea of high level algorithms, instead, we
present a continuous query processor that aims to
modify the database engine to support a wide vari-
ety of continuous spatio-temporal queries. Our con-
tinuous query processor is implemented inside the
PLACE (Pervasive Location-Aware Computing En-
vironments) server; currently developed at Purdue
University [2, 24]. The PLACE server extends both
the PREDATOR relational database management sys-
tem [30] and the NILE streaming database manage-
ment system [15] to support efficient continuous query
processing of spatio-temporal streams. In particular,
the continuous query processor of the PLACE server
has the following distinguishing characteristics:

1. Incremental evaluation. The PLACE con-
tinuous query processor employs an incremen-
tal evaluation paradigm by continuously updat-
ing the query answer. We distinguish between
two types of updates; namely positive and neg-
ative updates [23]. A positive/negative update

indicates that a certain object needs to be added
to/removed from the query answer.

2. Spatio-temporal operators. The PLACE con-
tinuous query processor employs a new set of
spatio-temporal incremental operators (e.g., IN-
SIDE and kNN operators) that support incre-
mental evaluation of a wide variety of continuous
spatio-temporal queries.

3. Predicate-based Sliding Windows: We ex-
tend the notion of sliding windows beyond time-
based and tuple-count windows to accommodate
for predicate-based windows (e.g., an object ex-
pires from the window when it appears again in
the stream).

4. Scalability. We use a shared execution paradigm
as a means of achieving scalability in terms of
the number of outstanding continuous spatio-
temporal queries.

The rest of the paper is organized as follows: Sec-
tion 2 highlights the challenges we faced in building
the continuous query processor of the PLACE server
along with the related work of each challenge. In Sec-
tion 3, we present an overview of the data model and
SQL language used by the PLACE server. Section 4
presents different methods of expiring incoming tuples
in the PLACE server. The incremental processing of
continuous queries is discussed in Section 5. Section 6
discusses the shared execution of concurrent contin-
uous queries. The graphical user interface (GUI) of
the PLACE server is presented in Section 7. Section 8
introduces preliminary experimental results from the
PLACE server. Finally, Section 9 concludes the paper.

2 Challenges and Related Work

In this section, we go through some of the challenges
we faced while building the continuous query proces-
sor of the PLACE location-aware server. With each
challenge, we present its related work.

2.1 Challenge I: Incremental Evaluation of
Continuous Queries

Most of spatio-temporal queries are continuous in na-
ture. Unlike snapshot queries that are evaluated only
once, continuous queries require continuous evaluation
as the query result becomes invalid with the change
of information [37]. A naive way to handle continu-
ous queries is to abstract the continuous query into
a series of snapshot queries executed at regular inter-
val times. Existing algorithms for continuous spatio-
temporal queries aim to optimize the time interval
between each two instances of the snapshot queries.
Mainly, three different approaches are investigated:
(1) The validity of the results [39, 40]. With each

query answer, the server returns a walid time [40] or

a wvalid region [39] of the answer. Once the valid time
is expired or the client goes out of the valid region,
the client resubmits the continuous query for reeval-
uation. (2) Caching the results. The main idea is to
cache the previous result either in the client side [31]
or in the server side [18]. Previously cached results
are used to prune the search for the new results of
k-nearest-neighbor queries [31] and range queries [18].
(3) Precomputing the result [18, 34]. If the trajectory
of query movement is known apriori, then by using
computational geometry for stationary objects [34] or
velocity information for moving objects [18], we can
identify which objects will be nearest-neighbors [34]
to or within a range [18] from the query trajectory.
If the trajectory information changes, then the query
needs to be reevaluated.

With the large number of continuous queries,
reevaluating a continuous spatio-temporal query, even
with large time intervals, poses a redundant processing
for the location-aware servers. In the PLACE continu-
ous query processor, we go beyond the idea of reevalu-
ating continues spatio-temporal queries. Instead, we
provide an incremental evaluation paradigm, where
only the updates of the result are reported to the user.

2.2 Challenge II: Wide Variety of Continuous
Queries

Most of the existing query processing techniques focus
on solving special cases of continuous spatio-temporal
queries, e.g., [31, 34, 39, 40] are valid only for moving
queries on stationary objects, [5, 9, 11, 25] are valid
only for stationary range queries. Other work focus on
aggregate queries [11, 32, 33] or k-NN queries [16, 31].
Trying to support such wide variety of continuous
spatio-temporal queries in a location-aware server re-
sults in implementing a variety of specific algorithms
with different access structures.

In the PLACE continuous query processor, we avoid
using tailored algorithms for each kind of continu-
ous spatio-temporal queries. Instead, we furnish the
PLACE server with a set of primitive pipelined query
operators that can support a wide spectrum of contin-
uous spatio-temporal queries.

2.3 Challenge ITII: Large Number of Concur-
rent Continuous Queries

Most of the existing spatio-temporal algorithms fo-
cus on evaluating only one spatio-temporal query
(e.g., [3, 16, 18, 31, 34, 36, 39, 40]). In a typi-
cal location-aware server [2, 21, 24], there is a huge
number of concurrently outstanding continuous spatio-
temporal queries. Handling each query as an individ-
ual entity dramatically degrades the performance of
the location-aware server.

Although there is a lot of research in sharing the
execution of continuous web queries (e.g., see [8]) and

continuous streaming queries (e.g., see [6, 7, 14]), opti-
mization techniques for evaluating a set of continuous
spatio-temporal queries are recently addressed for cen-
tralized [25] and distributed environments [5, 9]. The
main idea of [5, 9] is to ship part of the query pro-
cessing down to the moving objects, while the server
mainly acts as a mediator among moving objects. In
centralized environments, the Q-index [25] is presented
as an R-tree-like [10] index structure to index the
queries instead of objects. However, the Q-index is
limited in two aspects: (1) It performs reevaluation of
all the queries (through the R-tree index) every T time
units. (2) It is applicable only for stationary queries.
Moving queries would spoil the Q-index and hence dra-
matically degrade its performance.

2.4 Challenge IV:
jects/Queries

Indexing Moving Ob-

Most of the existing spatio-temporal index struc-
tures [22] aim to modify the traditional R-tree [10] to
support the highly dynamic environments of location-
aware servers. In particular, two main approaches
are investigated: (1) Indexing the future trajectories
such that the existing tree would last longer before
an update is needed. Examples of this category are
the TPR-tree [29], RFXP_tree [28], and the TPR*-
tree [35]). (2) Modifying the deletion and insertion
algorithms for the original R-tree to support frequent
updates. Examples of this category include the Lazy-
update R-tree [17] and the Frequently-updated R-
tree [19]

Even with the proposed modifications of the R-tree
structures, highly dynamic environments degrades the
performance of the R-tree and results in a bad per-
formance. In the PLACE continuous query proces-
sor, we avoid using R-tree-like structure. Instead,
we use a grid-like index structure [23] that is sim-
ple to update and retrieve. Moreover, fixed grids are
space-dependent, thus there is no need to continuously
change the index structure with the continuous inser-
tion and deletion.

3 The PLACE Server

In this section, we present the data modelling and SQL
language used by the PLACE server.

3.1 Data Model

By subscribing with the PLACE server, moving ob-
jects are required to send their location updates pe-
riodically to the PLACE server. A location update
from the client (moving object) to the server has the
format (OID, z,y), where OID is the object identifier,
(z,y) is the location of the moving object in the two-
dimensional space. An update is timestamped upon
its arrival at the server side. Once an object stops
moving (e.g., an object reaches to its destination or

the cellular phone is shut down) it sends to the server
a disappear message which indicates that the object is
no further moving.

Due to the highly dynamic nature of location-aware
environments and the infinite size of incoming spatio-
temporal streams, we cannot store all incoming data.
Thus, the PLACE server employs a three-level storage
hierarchy. First, a subset of the incoming data streams
is stored in in-memory buffers. In-memory buffers are
associated with the outstanding continuous queries at
the server. FEach query determines which tuples are
needed to be in its buffer and when these tuples are
expired, i.e., deleted from the buffer. Second, we keep
an in-disk storage that keeps track with only one read-
ing of each moving object and query. Since, we cannot
update the disk storage every time we receive an up-
date from moving objects, we sample the input data by
chosing every kth reading to flush to disk. Moreover,
we cache the readings of moving objects/queries and
flush them once to the secondary storage every 1" time
units. Data on the secondary storage are indexed us-
ing a simple grid structure [23]. Third, every Tarchive
time units, we take a snapshot of the in-disk database
and flush it to a repository server. The repository
server acts as a multi-version structure of the moving
objects that supports historical queries. Stationary
objects (e.g., gas stations, hospitals, restaurants) are
preloaded to the system as relational tables that are
infrequently updated.

3.2 Extended SQL Syntax

As the PLACE server [24] extends both PREDA-
TOR [30] and NILE [15], we extend the SQL language
provided by both systems to support spatio-temporal
operators. Mainly, we add the INSIDFE and kNN
operators to support continuous range queries and k-
nearest-neighbor queries respectively. A continuous
query is registered at the PLACE server using the
SQL:

REGISTER QUERY query_-name AS
SELECT select_clause

FROM from_clause

WHERE where_clause

INSIDE inside_clause

kNN knn_clause

WINDOW window_clause

The REGISTER QUERY statement registers the con-
tinuous query at the PLACE server with the
query_name as its identifier. The select_clause,
from_clause, and where_clause are inherited from the
PREDATOR [30] database management statement.
The window_clause is inherited from the NILE [15]
stream query processor to support continuous slid-
ing window queries [14]. A continuous query is
dropped form the system using the SQL: DROP QUERY
query_name.

The inside_clause can represent stationary rectan-
gular or circular range queries by specifying the two
corners or the center and radius of the query region,
respectively. If the first parameter to the inside_clause
is set to M, then the query is moving and the second
parameter represents the ID of the focal object of the
query. Similarly, the knn_clause can represent station-
ary as well as moving k-nearest-neighbor queries.

4 Tuple Expiration

With the wunbounded incoming spatio-temporal
streams, it becomes infeasible to store all incoming
tuples. However, some input tuples may be buffered
in memory for a limited time. The choice of the stored
tuples are mainly query dependent, i.e., we store only
the tuples of interest. Since the queries are continu-
ously changing, there should be a mechanism to expire
(delete) some of the stored tuples and replace them
with other tuples that becomes more relevant to the
outstanding continuous spatio-temporal queries. In
the PLACE continuous query processor, we employ
three types of tuple expiration, namely, temporal expi-
ration, spatial expiration, and predicate-based expira-
tion.

4.1 Temporal Expiration

Most of the data stream management systems use the
concept of temporal expiration as a mechanism to an-
swer continuous sliding window queries. A sliding
widow query involves a time window w. Any object
that has a timestamp within the current sliding win-
dow of any outstanding query @ is in-memory buffered
with the associated buffer of Q.

An example for a sliding window query submitted
to the PLACE server is: Q1: ”Continuously, report
the number of cars that passed by region R in the last
hour”.

SELECT COUNT(ObjectID)
FROM MovingObjects
WHERE type = Car
INSIDE R

WINDOW 1 hour

Notice that @1 buffers all incoming tuples during
the previous hour. A tuple is expired (i.e., deleted
from the query buffer) once it goes out of the sliding
time window (i.e., if it becomes more than one hour
old).

4.2 Spatial Expiration

The PLACE server introduces a new type of expira-
tion that depends on the spatial location of the moving
objects instead of their timestamps. An incoming tu-
ple o is stored in the in-memory buffer associated with
a query @ only if o satisfies the spatial window (e.g.,
region) of Q.

An example of spatial expiration query is: @a2:
”Continuously, report the number of cars in a certain
area.”. Notice that unlike @)1, in @2, we are concerned
about the actual current number of cars not the num-
ber of cars in the recent history. The SQL of @2 is
similar to that of @)1 with only the removal of the win-
dow statement.

4.3 Predicate-based Expiration

Due to the nature of spatio-temporal streams, other
forms of tuple expiration may arise. For example, con-
sider the query Q3: ”For each moving object, contin-
uously report the elapsed time between each two con-
secutive readings”. Such a query contains a self join
where objects from the stream of moving objects are
self joined based on the object identifier. The query
buffer needs to maintain only the latest reading of each
moving object. Once the reading of a certain object
is reported, the previous reading is expired. We call
such kind of expiration as predicate-based where it is
mainly dependent on the query semantic.

5 Incremental Evaluation

To avoid reevaluating continuous spatio-temporal
queries, we employ an incremental evaluation
paradigm in the PLACE continuous query processor.
The main idea is to only report the changes of the an-
swer from the last evaluation time. By employing in-
cremental evaluation, the PLACE server achieves the
following goals: (1) Fast query evaluation, since we
compute only the updates of the answer not the whole
answer. (2) In a typical location-aware server, query
results are sent to the users via satellite servers [1, 12].
Thus, limiting the amount of transmitted data to the
updates only rather than the whole query answer saves
in network bandwidth. (3) When encapsulating incre-
mental algorithms into physical pipelined query oper-
ators, limiting the tuples that go through the whole
query pipeline to only the updates reduces the flow
in the pipeline. Thus, efficient query processing is
achieved.

To realize the incremental evaluation processing in
the PLACE server, we go through three main steps.
First, we define the high level concept of incremen-
tal updates, by defining two types of updates; posi-
tive and negative updates [20, 23]. Second, we encap-
sulate the processing of incremental algorithms into
pipelined query operators. Third, we modify tradi-
tional pipelined query operators (e.g., distinct and
join) to deal with the concept of negative tuples [13].

5.1 Positive/Negative Updates

Incremental evaluation is achieved through updating
the previous query answer. Mainly, we distinguish be-
tween two types of updates; positive updates and neg-
ative updates. A positive/negative update indicates

v Y
By e &
o Q)
Py - - 1
® o e | PQ* L
Pg P7 Y : P |P; 1 Fg,

3 T
2 Poe B | Pog !
i
Yo & L Py | S | ox
Jsj

oH

(a) Snapshot at time T, (b) Snapshot at time T,

Figure 1: Incremental evaluation of range queries

that a certain object needs to be added to/removed
from the query answer. A query answer is represented
in the form (QID,OList), where QID is the query
identifier and OList is the query answer. The PLACE
server continuously updates the query answer with up-
dates of the form (QID,4,0ID) where + indicates
the type of the update and OID is the object identi-
fier.

Figure 1 gives an example of applying the concept
of positive/negative updates on a set of continuous
range queries. The snapshot of the database at time
Ty is given in Figure la with nine moving objects,
p1 to pg, and five continuous range queries, Q1 to
Q5. The answer of the queries at time T is repre-
sented as (Q17 P5)7 (QQ} P1)7 (Q3a P67 P7)7 (Q4a P37 P4)7
and (Qs, Py). At time Ty (Figure 1b), only the ob-
jects p1,p2, p3, and py and the queries Q1, @3, and Q5
change their locations. As a result, the PLACE server

reports the following updates: (Q1,—Ps), (@3, —Fs),
(Q?n +P8)7 and (Q47 _p4)
5.2 Spatio-temporal Incremental Pipelined

Operators

Two alternative approaches can be utilized in imple-
menting spatio-temporal algorithms inside the PLACE
server: using SQL table functions [26] or encapsulat-
ing the algorithms in physical query operators. Since
there is no straightforward method for pushing query
predicates into table functions [27], the performances
is limited and the approach does not give enough flex-
ibility in optimizing the issued queries. In the PLACE
server we encapsulate our algorithms inside physical
pipelined query operators that can be part of a query
execution plan. By having pipelined query operators,
we achieve three goals: (1) Spatio-temporal operators
can be combined with other operators (e.g., distinct,
aggregate, and join operators) to support incremen-
tal evaluation for a wide variety of continuous spatio-
temporal queries. (2) Pushing spatio-temporal oper-
ators deep in the query execution plan reduces the
number of tuples in the query pipeline. This reduction
comes from the fact that spatio-temporal operators act
as filters to the above operators. (3) Flexibility in the
query optimizer where multiple candidate execution
plans can be produced.

The main idea of spatio-temporal operators is to
keep track of the recently reported answer of each
query @ in a query buffer termed Q.Answer. Then,
for each newly incoming tuple P, we perform two tests:
Test I: Is P part of the previously reported Q.Answer?
Test II: Does P qualify to be part of the current an-
swer? Based on the results of the two tests, we distin-
guish among four cases:

e Case I: P is part of Q.Answer and P still qualify
to be part of the current answer. As we process
only the updates of the previously reported result,
P will not be processed.

e Case II: P is part of Q.Answer, however, P does
not qualify to be part of the answer anymore. In
this case, we report a negative update P~ to the
above query operator. The negative update indi-
cates that P is spatially expired from the answer.

e Case III: P is not part of Q.Answer, however,
P qualifies to be part of the current answer. In
this case, we report a positive update to the above
query operator.

e Case IV: P is not part of Q.Answer and P still
does not qualify to be part of the current answer.
In this case, P has no effect on Q.

5.3 Traditional Operators

Having the spatio-temporal operators at the bottom or
at the middle of the query evaluation pipeline requires
that all the above operators be equipped with special
handling of negative tuples. The NILE query proces-
sor [15] handles negative tuples in pipelined operators
as follows:

e Selection and Join operators handle negative tu-
ples in the same way as positive tuples. The only
difference is that the output will be in the form of
a negative tuple.

e Aggregates update their aggregate functions by
considering the received negative tuple.

e The Distinct operator reports a negative tuple at
the output only if the corresponding positive tuple
is in the recently reported result.

For more details about handling the negative tu-
ples in various query operators, the reader is referred
to [13].

6 Scalability

The PLACE continuous query processor exploits a
shared execution paradigm [21, 23, 38] as a means for
achieving scalability in terms of the number of concur-
rently executing continuous spatio-temporal queries.

SopLACE Cient =1zl =10l
— - [Total Running Gueries:|
3 F =={| | Total Running Queries:|
I [
P il
1 ! s L <
] L <A
B 2 I I No. of Static Range Queries: |
i 7 E - = |
= 5. £ %
Wi i 162 S [No. of Moving Range Queries: |
(‘4—?7 : \ l:l
I 3 Wk LA
= 1 =
W [No. of Static NN Queries: |
L (R
e [T :
—] J:F [No. of Moving NN Queries: |
|Select objects inside: | [submc | 1 y o
(34223, 224322) (32432, 343222)] M, o S e 8 = = L.
;‘TPL |

3

.

I

Shatic NN
Static Range
[

[issued Queries @Dy | [3 =]
- - |RUNNING QUERY DETAILS |
S ' J
= - QD QUERY TYPE | COUNT ORLY QUERY PARAMTERS ii
[Query Result for e | B Static Range ND (8033, 12635) (44867, 25503)
12 Static NN NO (26962, 29358) 2 NNs
0D I LOGATION ii 3 Static NN NO (23281, 28145) 4NNs
4 Moving Range VES (e x-4980, Me.y-24) (Me.x+ 4980, Me y/+245)
s Moving Range NO (Me3xE971, Mey-2413) (Mexs5371. Mey+2413)
6
17

YES (3902, 14604) 2 NNs
YES (171249, 6334) (17713, 31086)
LA AN

wn Mhkme bdn e
3

(a) Client GUI

(b) Server GUI

Figure 3: Snapshot of the PLACE client and server

Qq f Q
Select ID Where
location inside R1

Select ID Where
location inside R2

[~ R~ "
g

(b) A global shared plan for two range queries

Moving Objects Moving Objects

(a) Local query plan for two range queries

Figure 2: Shared execution of continuous queries.

The main idea is to group similar queries in a query ta-
ble. Then, the evaluation of a set of continuous queries
is modelled as a spatial join between moving objects
and moving queries. Similar ideas of shared execu-
tion have been exploited in the NiagaraCQ [8] for web
queries and PSoup [6, 7] for streaming queries.

Figure 2a gives the execution plans of two simple
continuous spatio-temporal queries, Q1: "Find the ob-
jects inside region R1”, and Q2: "Find the objects in-
stde region Rs”. With shared execution, we have the
execution plan of Figure 2b. Shared execution for a
collection of spatio-temporal range queries can be ex-
pressed in the PLACE server by issuing the following
continuous query:

SELECT Q.ID, O.ID
FROM QueryTable Q, ObjectTable O
WHERE O.location inside Q.region

7 User interface in PLACE

Figure 3 gives snapshots of the client and server graph-
ical user interface (GUI) of PLACE. The client GUI
simulates a client end device used by the users. Users
can choose the type of query from a list of available
query types. The spatial region of the query can be
determined using the map of the area of interest! (the
bold plotted rectangle on the map). By pressing the
submit button, the client translates the query into SQL
language and transmits it to the PLACE server. Once
the query is submitted to the server, the result appears
to the query as a list at the bottom of Figure 3a. A
client can send multiple queries of different types to
the PLACE server.

The PLACE server GUI is for the purpose of admin-
istration at the server side. The main idea is to keep
track of the concurrently executing continuous queries
from each type. All the processed queries along with
their parameters are displayed in the bottom left of
the screen. In addition, the server GUI contains a re-
gional map showing the movement of objects, and the
parameters of the selected queries.

8 Performance Evaluation

In this section, we present preliminary experiments
that show the promising performance of the continu-
ous query processor in the PLACE server. We use the

1The map in Figure 3 is for the Greater Lafayette, IN, USA.

400 1600

300

200

Answer Size (KBytes)
Ansver Size (KBytes)

Increnental Evaluation —@—
Conpl ete ansver —g— 3 7000

100 7 4
crenental Eval uati on —@— 200] 1000
L Conpl ete answer —— |r—H—‘."’_‘.’+H—H 4

Stationary Pipelined Query —e—
Moving Pi pel i ned Query
6000 Appl i cation I'evel

Tuples in the Pipeline
IS
S
S
<]

0 1 2 3 4 5 6 7 8 9 10 1 1.2
Update rate for objects (%

(a) Moving objects (%)

Figure 4: The answer size

Network-based Generator of Moving Objects [4] to gen-
erate a set of 100K moving objects and 100K moving
queries. The output of the generator is a set of moving
objects that move on the road network of a given city.
We choose some points randomly and consider them
as centers of square range queries.

8.1 Size of Incremental Answer

Figure 4 compares between the size of the incremental
answer returned by utilizing the incremental approach
and the size of the complete answer. The location-
aware server buffers the received updates from moving
objects and queries and evaluates them every 5 sec-
onds. Figure 4a gives the effect of the number of mov-
ing objects that reported a change of location within
the last 5 seconds. The size of the complete answer
is constant and is orders of magnitude of the size of
the worst-case incremental answer. In Figure 4b, the
query side length varies from 0.01 to 0.02. The size of
the complete answer increases dramatically to up to
seven times that of the incremental result. The saving
in the answer size directly affects the communication
cost from the server to the clients.

8.2 Pipelined Spatio-temporal Operators

Consider the query Q: “Continuously report all trucks
that are within MyArea”. MyArea can be either a sta-
tionary or moving range query. A high level implemen-
tation of this query has only a selection operator that
selects only the “trucks”. Then, a high level algorithm
implementation would take the selection output and
incrementally produce the query result. However, an
encapsulation of INSIDFE algorithm into a physical
operator allows for more flexible plans.

Figure 5 compares the high level implementation
of the above query with pipelined operators for both
stationary and moving queries. The selectivity of the
queries varies from 2% to 64%. The selectivity of the
selection operator is 5%. Our measure of comparison
is the number of tuples that go through the query eval-
uation pipeline. When algorithms are implemented at
the application level, the performance is not affected

Query side Iength (x0.01)

(b) Query size

1.6 1.8 2 2 4 8 16 32 64
Query Selectivity

(a) INSIDE Operator

Figure 5: Pipelined operators.

by the selectivity. However, when INSIDE is pushed
before the selection, it acts as a filter for the query
evaluation pipeline, thus, limiting the tuples through
the pipeline to only the incremental updates. With
INSIDE selectivity less than 32%, pushing INSIDE
before the selection greatly affects the performance.

9 Conclusion

In this paper, we present the continuous query proces-
sor of the PLACE (Pervasive Location-Aware Com-
puting Environments) server; a database server for
location-aware environments currently developed at
Purdue University. The PLACE server extends both
the PREDATOR database management system and
the NILE stream query processor to deal with un-
bounded spatio-temporal streams. In addition to the
temporal tuple expiration defined in sliding window
queries, we maintain other forms of tuple expirations
(e.g., spatial expiration). To efficiently handle large
number of continuous queries, we employ an incremen-
tal evaluation paradigm that contains: (1) Defining
the concept of positive and negative updates, (2) En-
capsulating the algorithms for incremental processing
into pipelined spatio-temporal operators, and (3) Mod-
ifying traditional query operators (e.g., distinct and
join) to deal with the negative updates that comes
from the spatio-temporal operators. Shared execution
is employed by the continuous query processor as a
means of achieving scalability in terms of the number
of concurrently continuous queries. Preliminary ex-
perimental results show the promising performance of
the PLACE continuous query processor.

References

[1] S. Acharya, M. J. Franklin, and S. B. Zdonik. Dis-
seminating Updates on Broadcast Disks. In VLDB,
1996.

[2] W. G. Aref, S. E. Hambrusch, and S. Prabhakar.
Pervasive Location Aware Computing Environments
(PLACE). http://www.cs.purdue.edu/place/, 2003.

3]

(16]

(17]

(18]

(19]

20]

(21]

R. Benetis, C. S. Jensen, G. Karciauskas, and S. Salte-
nis. Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. In IDEAS, 2002.

T. Brinkhoff. A Framework for Generating Network-
Based Moving Objects. Geolnformatica, 6(2), 2002.

Y. Cai, K. A. Hua, and G. Cao. Processing Range-
Monitoring Queries on Heterogeneous Mobile Objects.
In Mobile Data Management, MDM, 2004.

S. Chandrasekaran and M. J. Franklin. Streaming
Queries over Streaming Data. In VLDB, 2002.

S. Chandrasekaran and M. J. Franklin. PSoup: a sys-
tem for streaming queries over streaming data. VLDB
Journal, 12(2):140-156, 2003.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Ni-
agaraCQ: A Scalable Continuous Query System for
Internet Databases. In SIGMOD, 2000.

B. Gedik and L. Liu. MobiEyes: Distributed Pro-
cessing of Continuously Moving Queries on Moving
Objects in a Mobile System. In EDBT, 2004.

A. Guttman. R-Trees: A Dynamic Index Structure
for Spatial Searching. In SIGMOD, 1984.

M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and
V. J. Tsotras. On-Line Discovery of Dense Areas in
Spatio-temporal Databases. In SSTD, 2003.

S. E. Hambrusch, C.-M. Liu, W. G. Aref, and S. Prab-
hakar. Query Processing in Broadcasted Spatial Index
Trees. In SSTD, 2001.

M. A. Hammad, W. G. Aref, M. J. Franklin, M. F.
Mokbel, and A. K. Elmagarmid. Efficient execution of
sliding-window queries over data streams. Technical
Report TR CSD-03-035, Purdue University Depart-
ment of Computer Sciences, Dec. 2003.

M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K.
Elmagarmid. Scheduling for shared window joins over
data streams. In VLDB, 2003.

M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G.
Aref, A. C. Catlin, A. K. Elmagarmid, M. Eltabakh,
M. G. Elfeky, T. M. Ghanem, R. Gwadera, I. F. Ilyas,
M. Marzouk, and X. Xiong. Nile: A Query Processing
Engine for Data Streams (Demo). In ICDE, 2004.

G. S. Iwerks, H. Samet, and K. Smith. Continuous
K-Nearest Neighbor Queries for Continuously Moving
Points with Updates. In VLDB, 2003.

D. Kwon, S. Lee, and S. Lee. Indexing the Current
Positions of Moving Objects Using the Lazy Update
R-tree. In Mobile Data Management, MDM, 2002.

I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic
Queries over Mobile Objects. In EDBT, 2002.

M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Sup-
porting Frequent Updates in R-Trees: A Bottom-Up
Approach. In VLDB, 2003.

M. F. Mokbel. Continuous Query Processing in
Spatio-temporal Databases. In Proceedings of the
ICDE/EDBT PhD Workshop, 2004.

M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and
S. Prabhakar. Towards Scalable Location-aware Ser-

vices: Requirements and Research Issues. In GIS,
2003.

(22]

23]

(39]

(40]

M. F. Mokbel, T. M. Ghanem, and W. G. Aref.
Spatio-temporal Access Methods. IEEE Data Engi-
neering Bulletin, 26(2), 2003.

M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scal-
able Incremental Processing of Continuous Queries in
Spatio-temporal Databases. In SIGMOD, 2004.

M. F. Mokbel, X. Xiong, W. G. Aref, S. Ham-
brusch, S. Prabhakar, and M. Hammad. PLACE:
A Query Processor for Handling Real-time Spatio-
temporal Data Streams (Demo). In VLDB, 2004.

S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref,
and S. E. Hambrusch. Query Indexing and Velocity
Constrained Indexing: Scalable Techniques for Con-
tinuous Queries on Moving Objects. IEEE Trans. on
Computers, 51(10), 2002.

B. Reinwald and H. Pirahesh. Sql open heterogeneous
data access. In SIGMOD, 1998.

B. Reinwald, H. Pirahesh, G. Krishnamoorthy,
G. Lapis, B. T. Tran, and S. Vora. Heterogeneous
query processing through sql table functions. In
ICDE, 1999.

S. Saltenis and C. S. Jensen. Indexing of Moving Ob-
jects for Location-Based Services. In ICDE, 2002.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the Positions of Continuously Moving
Objects. In SIGMOD, 2000.

P. Seshadri. Predator: A Resource for Database Re-
search. SIGMOD Record, 27(1):16-20, 1998.

Z. Song and N. Roussopoulos. K-Nearest Neighbor
Search for Moving Query Point. In SSTD, 2001.

J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying
about the Past, the Present and the Future in Spatio-
Temporal Databases. In ICDE, 2004.

Y. Tao, G. Kollios, J. Considine, F. Li, and D. Pa-
padias. Spatio-Temporal Aggregation Using Sketches.
In ICDE, 2004.

Y. Tao, D. Papadias, and Q. Shen. Continuous Near-
est Neighbor Search. In VLDB, 2002.

Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An
Optimized Spatio-temporal Access Method for Predic-
tive Queries. In VLDB, 2003.

Y. Tao, J. Sun, and D. Papadias. Analysis of Predic-
tive Spatio-Temporal Queries. TODS, 28(4), 2003.

D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous Queries over Append-Only Databases. In
SIGMOD, 1992.

X. Xiong, M. F. Mokbel, W. G. Aref, S. Hambrusch,
and S. Prabhakar. Scalable Spatio-temporal Continu-

ous Query Processing for Location-aware Services. In
SSDBM, June 2004.

J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based Spatial Queries. In SIGMOD, 2003.

B. Zheng and D. L. Lee. Semantic Caching in
Location-Dependent Query Processing. In SSTD,
2001.

