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ABSTRACT

Most database systems allow query processing over at-
tributes that are derived at query runtime (e.g., user-defined
functions and remote data calls to web services), making
them expensive to compute relative to relational data stored
in a heap or index. In addition, core support for efficient
preference query processing has become an important objec-
tive in database systems. This paper addresses an important
problem at the intersection of these two query processing ob-
jectives: efficient preference query evaluation involving ex-
pensive attributes. We explore an efficient framework for
processing skyline and multi-objective queries in a database
when the data involves a mix of “cheap” and “expensive” at-
tributes. Our solution involves a three-phase approach that
evaluates a correct final preference answer while aiming to
minimizing the number of expensive attributes computa-
tions. Unlike previous works for distributed preference al-
gorithms that assume sorted access over each attribute, our
framework assumes expensive attribute requests are state-
less, i.e., know nothing previous requests. Thus, the pro-
posed approach is more in line with realistic system architec-
tures. Our framework is implemented inside the query pro-
cessor of PostgreSQL, and evaluated over both synthetic and
real data sets involving computation of expensive attributes
over real web-service data (e.g., Microsoft MapPoint).

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems

General Terms

Algorithms, Design, Performance

1. INTRODUCTION
Embedding preference query evaluation in database sys-

tems has proven to be very important, having spawned the
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realization of useful, non-trivial systems such as context and
preference-aware databases [16, 17, 23] that in turn enable
exciting new application scenarios. Preference queries re-
turn to a user a set of preferred answers from a large set
of multi-dimensional objects. An example of a preference
query is: “find my preferred restaurants based on my prefer-
ences for price, rating, driving time, and current wait time”.
Here, each preference represents a “dimension” of a restau-
rant object. The answer to such a query depends on the
preference method used to evaluate the query. Two of the
most popular preference evaluation methods are the sky-
line [4], and its derivative the multi-objective method [1].
For our example query, a skyline would return the set of
restaurants that are not dominated by other restaurants. A
restaurant x dominates another restaurant y if x is better
than y in one dimension (e.g., price, rating, driving time, or
wait time), while it is better-than or equal to y in all other
dimensions. The multi-objective preference method, mean-
while, combines some dimensions using a monotone scoring
function, and performs a skyline over the newly transformed
objects. For our example query, the multi-objective method
may sum the drive time and wait time attributes into a sin-
gle dimension and perform the skyline over three dimensions:
price, rating, and total time.

An important systems issue behind implementing pref-
erence query processing in database systems is gracefully
handling expensive attributes. There are two main sources
of expensive attributes that are widely supported in most
database systems, commercial or otherwise: (1) User-defined
functions (abbr. UDFs). Attributes retrieved through
UDFs are considered expensive if the function incurs high
computational overhead (e.g., distance computation in a
road network). (2) Third-party retrieval. Attributes re-
trieved through third-party data sources are considered ex-
pensive due to the network overhead/delay in transmitting
the values of this attribute to the local table (e.g., restaurant
rating stored at a third party website). Coupling preference
query processing with a mix of “cheap” and “expensive” at-
tributes changes the algorithmic cost model. Computation
over cheap attributes are essentially free relative to com-
putation/transmission of expensive attributes. To test this
disparity, we ran a simple experiment comparing retrieval
of third-party web data to local disk reads in our system
implementation in PostgreSQL (setup in Section 7). The
retrieval of a single expensive attribute (driving time from
the Microsoft MapPoint web service [19]) takes 502 ms. Al-
ternatively, the time needed to read a cold and hot 8 KB
buffer page from disk is 27 ms and 0.0047 ms, respectively.



Clearly, local DBMS operations incur order of magnitudes
less cost than retrieving a single expensive attribute.
A straightforward solution for skyline and multi-objective

preference queries given a mix of expensive and cheap (i.e.,
local) attributes would first request all expensive attributes
for all objects in the data. Then, any skyline or multi-
objective algorithm can be invoked to compute the final an-
swer. This method is prohibitively expensive, as it makes
the maximum amount of unnecessary requests. As we will
show, not all expensive attributes need retrieval to compute
a correct skyline or multi-objective answer. Thus, develop-
ment of a new framework that minimizes the unnecessary
requests for expensive attributes is necessary.
In this paper, we propose an efficient preference evalu-

ation framework for skyline and multi-objective preference
queries that involve expensive attributes. The efficiency of
this framework comes from its ability to prune objects with-
out computing their expensive attributes, thereby reducing
unnecessary requests. Our framework can be summarized
by three main phases: initialization, pruning, and clean-
ing. Phase I, the initialization phase, analyzes the “cheap”
attributes in order to find a set of initial objects that are
guaranteed to be in the final preference answer (abbr. Sc).
Phase II, the pruning phase, utilizes the results obtained
from the initial phase to make a range request to retrieve the
expensive attributes for a small sample of objects that are
not in Sc. Phase II then prunes incomplete objects (i.e., ob-
jects without their expensive attributes) that are guaranteed
not to be in the final answer regardless of the actual value of
their expensive attribute(s). Pruning reduces the number of
total unnecessary requests in our framework. Phase III, the
cleaning phase, makes a random-access request to retrieve
the expensive attributes for the remaining (non-pruned) ob-
jects, and computes a final preference answer.
Our framework can be seamlessly added to existing sys-

tems as: (1) We do not have any special requirements for
the underlying skyline or multi-objective algorithm used in
the first phase, thus, any existing algorithm can be used.
(2) We require only two fundamental access operations to
retrieve expensive attributes: Random-access (given an ob-
ject id, return the attribute value for that object), used in
the first and third phases, and Range-access (given a certain
value v, return object ids and attribute values for the ob-
jects whose values below v), used in the second phase. Most
importantly, our framework does not hold special assump-
tions about expensive attribute sources (e.g., third-party,
UDFs). We simply assume sources (a) are stateless, i.e., do
not store information about previous requests, and (b) do
not necessarily store data in a sorted order (especially true
when asking for a distance/driving time to a given point).
These assumptions are in contrast to previous research in
our problem space that assume sources store state, and re-
turn all attributes in sorted order [2, 18].
The novel contributions of this paper can be summarized

as follows. First, we provide an efficient query execution
framework for skyline queries involving both single and mul-
tiple expensive attributes. Secondly, we provide an effi-
cient query execution framework for multi-objective queries
over both single and multiple expensive attributes. Third,
our methods are implemented inside the query processor of
PostreSQL [21], and experimentally evaluated using both
synthetic and real data sets involving computation of ex-
pensive attributes over real web-based data.

The rest of this paper is organized as follows. Section 2
highlights related work. We provide a problem overview in
Section 3, and provide an overview of our solution in Sec-
tion 4. Section 5 presents and efficient preference evalua-
tion framework for skyline evaluation involving both single
and multiple expensive attributes. Section 6 discusses our
framework applied to multi-objective preference evaluation.
Experimental evidence for our framework is provided in Sec-
tion 7. Finally, Section 8 concludes this paper.

2. RELATED WORK
Processing expensive, computationally-bound attributes is

a necessity for database systems. The problem has been
studied in core database systems [12, 15] for boolean pred-
icates involving computationally-bound attributes. Like-
wise, data-aggregation system architectures process data
from computationally expensive remote sources [14]. In this
vein, many query processing algorithms have been proposed
to deal with remote data ranging from whole query optimiza-
tion strategies [25] to specific query operators [24]. Recently,
preference query processing over computationally-bound at-
tributes has been studied for the case of top-k queries [5,
6]. The data access model in these works is similar to ours,
where data may come from costly web-based sources [5], or
be probed from expensive predicate functions [6]. This is
different from our work where we mainly study the problem
in the context of “Pareto-optimal” preference evaluation for
skyline and multi-objective queries.

Most of existing work in skyline and multi-objective query
processing (e.g., see [4, 20]) assume all data is available lo-
cally at the same“cost”. Exceptions lie in three different cat-
egories: (a) skyline query processing over distributed data
sources [2, 3, 13, 26]. The distributed skyline web query [2,
3] studies the case where all attributes are aggregated from
remote sources. However, these algorithms assume that each
source returns data in sorted order. Such an assumption is
too strict, and does not follow realistic system behavior (e.g.,
attribute retrieval over web-services that do not support
sorted access [19, 27]). Conversely, in our framework, we do
not assume or require sorted access from any data source.
(b) peer-to-peer mobile skylines [13, 26] study the case where
data is horizontally partitioned in a peer-to-peer or mobile
network. Conversely, we assume the data is “vertically-
partitioned” between relatively “cheap” data attributes and
“expensive” computationally-bound attributes. (c) skyline
query processing over a mix of non-spatial (cheap) and spa-
tial (expensive) attributes [7, 11, 22]. However, these frame-
works assume the computationally-bound attribute always
involves a distance computation from a set of data objects to
query objects. Thus, optimizations exist for the special case
of distance computation in Euclidean or Metric space. We
study the more general case of skyline and multi-objective
query processing over expensive attributes from any domain,
rendering spatial optimizations useless.

3. PROBLEM OVERVIEW
System Architecture Assumptions. Our framework

supports both the skyline [4] and multi-objective [1] prefer-
ence methods. Throughout the rest of this paper, without
loss of generality, we assume: (1) Minimum is better in each
dimension, i.e., a user prefers the minimum value over each
attribute. (2) All relevant attributes (i.e., the attributes
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Figure 1: Running Example Data

used to compute the skyline or multi-objective answer) must
be returned to the user. Also, we assume a realistic system
architecture where expensive attribute retrieval only relies
on (1) Random-access requests: given an object id, return
the attribute value for that object, and (2) Range-access
requests: given an upper-bound U , return the object ids
and attribute values for the objects whose values are less
than U . Moreover, we assume the entity that calculates and
returns expensive attributes (e.g., web-based data source)
is stateless, i.e., does not store information about previous
requests. This assumption contrasts previous attempts to
build efficient skyline algorithms over remote, distributed
web sources that assume only sorted access [2, 18], that re-
quire the expensive attribute source to store a cursor with
the position of each sorted access session.
Expensive and Cheap Attributes. Expensive at-

tributes require non-trivial evaluation costs to materialize.
For example, (1) the computation of a user-defined func-
tion (UDF) or (2) the network overhead induced by request-
ing/receiving an attribute value from a remote source (e.g.,
web-based source). We use a simple cost model to denote ex-
pensive attributes operations: costc is the cost of computing
a single expensive attribute while costt is the cost to trans-
mit the attribute from the attribute source. On the other
hand, cheap attributes require “zero” cost to derive relative
to their expensive counterpart. Of course, cheap attributes
incur disk I/O costs if they do not reside in memory.
Primary objective. The objective of our framework

is to minimize the number of unnecessary requests while
answering the preference query given a mix of r cheap at-
tributes and s expensive attributes (r ≥ 1 and s ≥ 1). We
define an unnecessary request as the computation and/or
transmission of an expensive attribute for a tuple that is
not in the final preference answer.
Supported Preference Methods. The preference

method our framework supports are: (1) Skyline. Given a
dataset D, a skyline query computes the Pareto-optimal set
S of D. S are those objects that are not dominated by any
other objects. An n-dimensional object x is said to domi-
nate another object y if x is better than or equal to y in n
dimensions, and strictly better than y in at least one dimen-
sion. For our running example in Figure 1, objects {b,f ,g,i}
are the skyline objects. (2) Multi-objective. Given a set of
n-dimensional objects, multi-objective evaluation combines
m dimensions (1 < m < n) using a monotone function. A
skyline is then computed over the resulting (n − m)+1 in-
dependent dimensions. For example, in Figure 1, consider
a multi-objective query that sums attributes DTime and
WTime, the answer for this query is {f ,g,i}.
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Figure 2: Solution overview

4. SOLUTION OVERVIEW
We now provide an overview of our solution to skyline

and multi-objective preference evaluation over expensive at-
tributes. We begin by discussing a naive algorithm and its
drawbacks. We then discuss the outline of our solution.

A Naive Solution. A naive solution to our problem
of preference evaluation over expensive attributes is as fol-
lows. Given N objects where each object has r cheap at-
tributes and s expensive attributes, request the N expensive
attributes from each of the s expensive sources using random
access. At this point, all necessary data is materialized and
any skyline or multi-objective algorithm can be run locally
over the N objects to yield a correct preference answer. This
method is exactly how a DBMS would execute the query.
The back-end executor will call a given UDF (that contains
expensive computations) on every get_next() iteration of
the scan operator to materialize an attribute.

This naive approach is unnecessarily expensive. If m is
the size of the preference answer, this solution makes s ×
(N −m) unnecessary requests as it requires the retrieval of
every expensive attribute for each object. The cost of this
solution is s×N × (costt + costc) where costt and costc are
the costs to transmit the attribute from the attribute source
and to compute a single expensive attribute, respectively.

Overview of Our Solution. Figure 2 outlines the main
three phases of our framework: the initialization phase,
pruning phase, and cleaning phase. Each phase has a com-
putation step applied to the “cheap” attributes and a request
step that issues either a random-access or range request to
retrieve “expensive” attributes. It is important to note that
these phases are the same for skyline and multi-objective
queries for both single and multiple expensive attributes.

Phase I: The initialization phase. Given a dataset D,
Phase I forms an initial query answer (abbr. Sc) by running
the preference query over the “cheap” attributes. A random
access request then retrieves the “expensive” attributes for
objects in Sc. Phase I does not incur unnecessary requests
as it retrieves only the expensive attributes for those objects
that are guaranteed to be in the final answer.

Phase II: The pruning phase. Given the dataset D from
Phase I, this phase performs three main operations:
(a) Making a range request to retrieve the expensive at-
tributes for a small sample of objects that are not in the
initial answer Sc, (b) Creating a pruning set P by combin-
ing the returned objects from the range request with some of
the objects in Sc. A set of objects M ⊆ (P − Sc) are added
to the final preference answer at this point. (c) Using P
to prune a set of incomplete objects L that are guaranteed
not to be in the final answer regardless of their expensive



attribute values. Thus, the efficiency of our framework is to
maximize the number of objects in L.
Phase III: The cleaning phase. This is a final phase takes

as input the dataset (D − L), and computes a final answer
by first making a random request for remaining incomplete
objects in D − (L ∪ Sc). Any dominated objects are then
discarded. Any remaining objects are added to the final
preference answer. Ideally, Phase III is unnecessary as all
incomplete (and non-preferred) objects would be pruned by
Phase II. Realistically, Phase III may incur some unneces-
sary requests.

5. SKYLINE QUERY PROCESSING
In this section, we present our framework applied to the

skyline preference method [4]. We first discuss the query
processing case for a single expensive attribute, then discuss
multiple expensive attributes.

5.1 Single Expensive Attribute Case
This section discusses a skyline framework involving a

single expensive attribute, and one or multiple “cheap” at-
tributes. The overarching goal of this framework aims to
minimize unnecessary requests for expensive attributes. In
this vein, two concepts help our framework achieve this goal:
(1) bounding values and (2) U -values. Both of these con-
cepts are used in the pruning phase, and will be discussed in
detail in subsequent sections. The input to the framework
is a data set D, a reference to “cheap” attributes C, and a
reference to the expensive attribute source E. Figures 3 will
be used to aid presentation by providing a numeric example
where attributes Price, Rating, and WTime are “cheap” at-
tributes, and DTime is the single expensive attribute. For
the rest of this section, the term e-values will be used to re-
fer to “expensive” attribute values, while the term c-values
refers to “cheap” attribute values.

5.1.1 Phase I: Initialization

Phase I of the skyline framework is responsible for (1) find-
ing initial preference answers, Sc, by analyzing only “cheap”
attributes, and (2) deriving a bounding value v for each ob-
ject q /∈ Sc such that q′s e-value should be less than v in
order to be in consideration for the final answer. Phase I
involves three main steps. First, it starts by calculating an
initial set of skyline objects, Sc, using only the cheap at-
tributes. Sc represents a subspace skyline of D over the set
of cheap dimensions C. Assuming no ties between objects,
i.e., objects do not have the same value across all attributes,
Sc is guaranteed to be part of the final preference answer.
Since each object in Sc is not dominated in subspace C,
it cannot be dominated in a larger dimensional space (i.e.,
over more attributes). Two observations can be made at
this point: (1) We do not assume a particular skyline al-
gorithm for computing Sc, thus the storage scheme for the
cheap attributes can guide the algorithm choice (e.g., non-
indexed [4], pre-sorted [8], or indexed [20]), and (2) We can
guarantee that existing skyline algorithms allow us to de-
rive, for each dominated object q, a single object p known
to dominate it, defined as q’s dominating object. More than
one object may dominate q, but we are only guaranteed to
find one dominating object as most skyline algorithms rely
on the property of transitivity to run efficiently. Thus, once
an object is found to be dominated, it is instantly discarded
(i.e., compared to no further objects). During the compu-
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Figure 3: Skyline over a single expensive attribute

tation of Sc, we store, for each dominated object q /∈ Sc,
a pointer to its dominating object p ∈ Sc that is known to
dominate q over cheap attributes C. This pointer will be
used as the basis for bounding values that are used in the
pruning step of Phase II.

Due to efficiency concerns, maintenance of dominating ob-
jects requires special attention. For this purpose, we use a
disjoint set data structure [10]. Each set represents an ob-
ject p in Sc, along with the objects p is found to dominate
during skyline computation. Each set has a representative
object (i.e., the root), that stores the count of all other ob-
jects in the set. In our case, p is the root. We require two
efficient operations over disjoint sets. (1) Set(p,q), that sets
p to be the dominating object of q. This is an O(1) opera-
tion that can be embedded in the dominance check of any
skyline algorithm that simply stores a pointer from q to p.
Later, object f may be found to dominate i, causing set i
to point to f , making f the root with a count of three. At
this point, f is the dominating object for objects a, i, and
c. (2) Find(q), that finds the dominating object for q, an
operation important in finding the bounding value. Find re-
quires traversing the pointer from q to the root of its set.
Using disjoint sets, both operations are efficient, and have
been shown to exhibit O(α(n)) complexity, where α(n) < 5
for any practical value of n [10].

Second, Phase I performs its request step by retrieving the
expensive attributes for all objects in Sc. It is important to
note that these are necessary requests as objects in Sc are
guaranteed to be part of the final answer. Third, and finally,
Phase I assigns a bounding value v for each object q /∈ Sc as
the value of the expensive attribute of q’s dominating object.
The bounding value represents an upper bound of the value
of its expensive attribute in order to maintain consideration
as a preferred object. Bounding values are used in Phase II
for pruning purposes.

Example. Figure 3 depicts the result of Phase I in our
running example. The skyline computation using the cheap
attributes price, rating, and Wtime results in Sc = {b, f, g}.
Also, there is a pointer from each object q /∈ Sc to a corre-
spondingly dominating object p ∈ Sc. For example, object
a has a pointer to object f , given f was the object found
to dominate a during skyline processing over the cheap at-
tributes. Again, although an object can be dominated by
more than one object (e.g., c is dominated by both f and
g), we maintain only one dominating object pointer as de-
termined by the underlying skyline algorithm. The values
of the expensive attribute values are depicted in gray for ob-
jects in Sc. These values also represent bounding values for



the dominated objects not in Sc. For instance, the bounding
value for object c is 10 (i.e., its dominating object g’s expen-
sive attribute value). Intuitively, if c’s expensive attribute
is greater than 10, it is guaranteed to be dominated by g.
Cost. The cost of retrieving the expensive attributes

in Phase I is influenced by the size of Sc. Let |Sc| be
the cardinality of set Sc. Then, Phase I incurs a cost of
|Sc|(costc + costt). In our running example (Figure 3(a)),
|Sc| = 3, thus the cost is 3(costc + costt). Since object in Sc

are guaranteed to be in the final answer, then the number
of unnecessary requests of Phase I is zero.

5.1.2 Phase II: Pruning

Phase II reduces unnecessary e-value requests by pruning
some incomplete objects (i.e., objects not in Sc and without
their e-values) that are guaranteed not to be final answers.
Phase II has five main steps. First, Phase II starts by cal-

culating a value U that is used in a subsequent range request
to the remote source. The U -value has a great effect on the
efficiency of our framework, thus options for deriving U will
be detailed in Section 5.1.4. Second, Phase II issues a range
request to the remote source to retrieve all objects with e-
values less than or equal to U . Third, Phase II constructs
two sets, the pruning set P that will be used to prune a
set of objects without computing their e-values. The set P
contains: (1) all objects returned from the range request, de-
noted PR and (2) any objects in Sc with e-values less than
or equal to U , denoted PSc , i.e., P = PR ∪ PSc . We also
construct a set Q that contains those objects in neither Sc

nor P . Two properties hold over objects in Q: (1) their e-
values have not yet been computed/retrieved and (2) their
e-values are known to be dominated by the e-values of ob-
jects in P , otherwise they would have been returned by the
range request.
Fourth, we clean the set P by removing those objects in

P that cannot be in the final answer. We do so by running a
regular skyline algorithm over the objects in PR while seed-
ing the initial skyline result with the objects in PSc . The
main idea is that objects in PSc ⊂ Sc are guaranteed to be
skylines, so, there is no need to run a skyline algorithm over
them while objects in PR may contain some objects that are
not skylines. Objects in PR are discarded (cleaned) if found
to be dominated. Each dominated object in PR represents
an unnecessary request by our framework as its expensive at-
tribute is requested even though it is not in the final answer.
Cleaning P ensures that (a) the remaining objects in P are
guaranteed to be in the final preference answer and (2) P is
as small as possible, which leads to more efficient pruning
operation (discussed shortly). Fifth, and finally, we prune
objects from the set Q that are guaranteed not to be in the
final answer regardless of their e-values. Each object q ∈ Q
is considered for two pruning cases, each progressively more
expensive. Case 1: q is pruned if its bounding value v is less
than or equal to U . This is an O(1) operation (per object)
that compares U to an object’s bounding value. If this case
holds, we can guarantee that q is dominated by its dominat-
ing object over all attributes. Case 2: q is compared against
each object p ∈ P and pruned if dominated by p over cheap
attributes. This operation is O(m) (per object), where m
is the cardinality of P . The pruned object q is guaranteed
never to be in the final preference answer as (a) it is domi-
nated over cheap attributes by an object in P and (b) it is
guaranteed to be dominated over its expensive attribute, as

all objects in P have better e-values than all objects in Q.
It is clear that the efficiency of our framework relies on the
punning ability of Phase II. The more we prune the more
we save by avoiding unnecessary requests for e-values.

Example. Figure 3(b) provides an example of a range
request for U = 10 that returns object i. Pruning set P
consists of PR = {i} and PSc = {g}. Here, objects c, d, and
j (all part of set Q) have a bounding values equal to U = 10.
These objects are pruned in Case 1 as they are guaranteed
to be dominated by g (their dominating object). Objects a
and h are pruned in Case 2 after comparison with P . Only
object e survives both pruning cases.

Cost. The cost of Phase II is affected by how the range
request deals with overlapping objects from Sc. Let |R| be
the cardinality of the objects that are returned by the range
request, and |Sc|<U be those objects in Sc with expensive
attribute values less than U . Given our assumption of a
stateless request (Section 3), objects in |Sc|<U that were
requested in Phase I would also be returned by the range
request of Phase II. To handle overlapping objects, we pass
the id of each object in |Sc|<U to the expensive source to
imply the e-values are not needed for these objects. The cost
of transmitting the id values is |Sc|<U (costt). The second
part of the cost model accounts for the computation and
transmission of e-values for non-overlapping objects. The
cost of this retrieval (in addition to the overlapping object
id transmission) is (|R| − |Sc|<U )(costt + costc). For our
running example (Figure 3(b)), |Sc|<U = 0 and |R| = 1,
thus the cost is 0 + 1(costt + costc).

5.1.3 Phase III: Cleaning

Phase III is responsible for computing the final preference
answer by cleaning any remaining objects in Q that cannot
be preferred objects. Up to this point, objects in Sc and P
are guaranteed skyline answers, while objects in Q may or
may not be skyline objects. Phase III involves two steps.

First, a request step makes a random request to source
E for objects in Q. If possible, we also request that E
only return the objects such that their e-values are less than
Sc−max, the maximum e-value over all objects in Sc, as ob-
jects in Q with e-values greater than Sc−max are guaranteed
to be dominated by any object in Sc.

Second, a computation step cleans objects in Q that are
not preference answers. Similar to the cleaning step in
Phase II, we seed the initial skyline result with objects in Sc

and P . We then invoke any skyline algorithm over objects in
Q. Any cleaned objects in Q represent unnecessary requests
by our framework. After cleaning, all objects in Sc, P , and
Q represent the final preference answer.

Example. The final answer {b, e, f , g, i} for our running
example in Figure 3 (b) would attempt to clean Q = {e}
using an the known skyline set as {b, f, g, i}.

Cost. The cost of e-value retrieval in Phase III is influ-
enced by the random-access request for all non-pruned in-
complete objects in Q. Let |D| be the size of the entire data
set, |NP |Q be the number of objects pruned from Q during
Phase II, and |Q|>Sc−max

be the number of objects in Q that
have e-values greater than Sc−max. The cost of Phase III
retrieval is (|D| − (|Sc| + (|R| − |Sc|<U ) + |Q|>Sc−max

+
|NP |Q))(costt + costc). For our running example (Fig-
ure 3(b)), |D| = 10, |Q|>Sc−max

= 0, and |NP |Q = 5, thus
the cost is (10−(3+(1−0)+0+5))(costt+costc), or simply
1(costt + costc).



5.1.4 Choosing a U Value

The pruning effectiveness of Phase II depends widely on
the range request determined by the value U . Inherently,
U determines the pruning set P , which in turn prunes ob-
jects from Q, thereby reducing the number of unnecessary
requests. The theoretical best value for U creates a set P
such that two pruning objectives are met: (1) All objects
in P are part of the final answer set and (2) P is able to
prune all objects from Q. If both objectives are met, no
unnecessary requests will be made, and there is no need for
Phase III, as all objects in P are in the final answer and
all excessive objects in Q are pruned. However, achieving
both objectives is not always possible. For space reasons,
we omit proof of this claim. However, it is straightforward
to construct an example where it is not possible to find a U
value that achieves both objectives.
We propose five heuristic methods to derive U such that

we come as close as possible to meeting both pruning objec-
tives.
MAX. The MAX method selects U as the maximum e-

value of the objects in Sc. For the running example data in
Figure 3, the MAX method would set U = 80 (the DTime
value of object f). The intuition behind this method is
that the range request is guaranteed to retrieve e-values for
all objects in the final preference answer. Since U is the
maximum value in Sc, any object q whose value is not re-
turned cannot be in the final preference answer, as (1) q is
dominated over the subspace C by at least one object in
Sc and (2) q’s e-value is guaranteed to be dominated, as it
is worse than all e-values in Sc. Thus, using MAX implies
Phase III is not needed. The drawback of MAX is that it
potentially retrieves e-values for many extraneous objects
that are instantly discarded. This method also causes the
greatest amount of overlap between Phase I and Phase II
e-value requests, as all objects in Sc are retrieved by the
range request.
MIN. The MIN method selects U as the minimum e-value

of the objects in Sc. The example in Figure 3 uses the MIN

method, as (U = 10). The advantage of MIN is that at least
one returned object is guaranteed to be in the final prefer-
ence answer, as its e-value will dominate all the e-values for
objects in Sc. Also, the MIN method causes no overlap be-
tween Phase I and Phase II e-value requests, as |Sc|<U = 0.
A potential drawback is that a small set of objects may be
returned, thus Q may not be pruned effectively.
MOSTDOM. The MOSTDOM method selects U as the

e-value of the object p in Sc that is found to dominate the
most objects during Phase I. Given that p is a “strong”dom-
inating object, the intuition behind this method is that ob-
jects with an e-value less than p will have a greater chance
of being in the final preference answer, i.e., they will not
be dominated by the e-value of p. To find p, we use of the
disjoint set data structures (discussed in Section 5.1.1) to
quickly find the dominating count for each object in Sc.
BOUNDMAX. The BOUNDMAX method selects U as

the maximum boundary value of the objects not in Sc. The
goal of this method is to get a tighter maximum than the
MAX method. For instance, if the object p in Sc used for the
MAXmethod does is not found to dominate any objects, this
implies all objects not in Sc are dominated by an object with
an e-value v that is less than p’s e-value. The BOUNDMAX

method derives this value v.
BOUNDMIN. The BOUNDMINmethod selects U as the
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Figure 4: Skyline evaluation over multiple expensive

attributes

minimum boundary value of the objects not in Sc. This
method is similar in nature to BOUNDMAX, except it at-
tempts to find a minimum value based on boundary values.

5.2 Multiple Expensive Attributes
This section discusses the case of skyline preference eval-

uation over multiple expensive attributes. The framework is
similar to that of the single expensive-attribute case. Thus,
we outline the unique features of the multiple expensive-
attribute framework. For illustrative purposes, we use the
running example in Figure 4 that depicts the data in Fig-
ure 1 where attributes Price and Rating are “cheap”, while
attributes WTime and DTime are expensive.

5.2.1 Phase I: Initialization

Phase I is similar to that of the single expensive-attribute
framework, where we compute Sc over all “cheap”attributes.
The only difference is that we request the expensive at-
tributes values (e-values) for all objects in Sc from each of
the s expensive sources, instead of a single expensive at-
tribute.

Example. In Figure 4 (a), Sc is comprised of objects f
and g, thus we retrieve the WTime and DTime attributes
for both objects, highlighted in gray.

5.2.2 Phase II: Pruning

Instead of computing a single U value in the case of the
single expensive attribute case, this phase begins by com-
puting a different upper-bound U value [U1, ..., Us] for each
expensive attribute. Each U value may be different, and
calculated independent of one another. A range request is
then made to each expensive source using the corresponding
U value. After this request, a pruning set P is created that
contains objects that are complete, i.e., have all of their at-
tribute values (both cheap and expensive). A set Q is then
formed that consists of incomplete objects, i.e., objects that
do not have all of their expensive attribute values. Note that
objects in Q may have had some of their e-values returned
from the range request. Each object q ∈ Q is then compared
to each object in P and pruned in a manner similar to the
single expensive-attribute framework.

Example. In Figure 4(a), with U1 = 30 for attribute
WTime and U2 = 10 for attribute DTime, the range re-
quests will retrieve WTime values 19 and 29 for objects b
and i, respectively, and DTime value 9 for object i. After
this retrieval, object i is the only object that forms set P .
Finally, the pruning step discards objects a, d, h, and j from
set Q.



5.2.3 Phase III: Cleaning

Similar to the single expensive attribute case, Phase III
makes a random request for expensive attributes in Q, ex-
cept to each expensive attribute source such that the e-
values are less than or equal to the corresponding maxi-
mum e-value in Sc. Unlike the simpler skyline case, objects
can still be incomplete after this random request. At this
point, Phase III proceeds with a fill-in step, where a re-
quest is made for each incomplete attribute of objects that
are known to have at least one e-value that is less than its
boundary value. If this condition holds, the object has a
chance of being in the preference answer based on its supe-
riority in that attribute compared to its dominating object.
Otherwise, the object is instantly discarded as: (1) if the
complete expensive attribute is greater than it’s boundary
value, it is known to be dominated, and (2) the incomplete
expensive attributes cannot dominate any object in Sc, as
the attributes are guaranteed to be greater than the maxi-
mum attribute value in Sc. After this fill-instep, all objects
in Sc, P , and Q are complete, and Phase III finished by
cleaning Q similar to the single expensive attribute case,
yielding a final answer.
Example. In Figure 4(b), the initial random request for

attribute DTime returns values 76, 62, and 60 for objects
b, c, and e, respectively, while value WTime value 39 is re-
turned for object e. Objects b, c, and e all have g as a
dominating object in Sc. In this case, c has a boundary
values of 10 for attribute DTime, which is better than its
actual DTime values of 62. Thus, c can be discarded imme-
diately as (1) its DTime values is known to be dominated
by object g and (2) its WTime values cannot dominate any
other object in P or Sc, as it would have been returned dur-
ing Phase II or earlier random request for Phase III. Finally,
the cleaning step removes object e from Q to yield the final
skyline answer {b, f, g, i}

6. MULTI-OBJECTIVE QUERY

PROCESSING
This section presents our framework applied to the multi-

objective preference method [1]. We first discuss the query
processing case for a single expensive attribute, then discuss
multiple expensive attributes.

6.1 Single Expensive Attribute Case
This section covers a multi-objective preference evalua-

tion framework involving a single expensive attribute. We
focus on the multi-objective case that combines a single
cheap attribute (abbr. Cval) with the single expensive at-
tribute (abbr. Eval) using a monotone ranking function
F (Cval, Eval). Given our assumption that local computa-
tion is essentially “free” (Section 3), the multi-objective case
that combines two cheap attributes can be solved using the
skyline framework, as the monotone function can be exe-
cuted cheaply on-the-fly during runtime. The input to the
multi-objective framework involves a data set D, a reference
to “cheap” attributes C, a reference to the expensive at-
tribute source E, and a monotone function F that specifies
the two attributes it combines (i.e., Cval and Eval).

6.1.1 Phase I: Initialization

Unlike the skyline framework, Phase I of the multi-
objective framework functions over the independent cheap
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attributes. Independent attributes are those that do not
take part in the multi-objective function. A skyline is run
over these cheap attributes to form Sc. Objects in Sc are
guaranteed to be in the final preference answer. A random
request is then made to source E that retrieves the expensive
attributes for all objects in Sc. After, function F (Cval, Eval)
is applied to each object in Sc.

Example. Figure 5 gives an example of the set Sc for
the data in Figure 1, where the cheap attributes Price and
Rating are independent, while we apply function F (the
sum) to cheap attribute WTime and expensive attribute
DTime. The expensive DTime values are highlighted in
gray, while the combined attribute F (WTime+DTime) is
given in the right-most table column.

6.1.2 Phase II: Pruning

Phase II does not derive a U value like the skyline frame-
work, and begins by making a request to E for the minimum
e-value over all objects in D (abbr. MIN(E)), along with
its object id. We note this request is not sorted access (a
main assumption in Section 3), as we only request the min-
imum value, and no sorted values thereafter. The object
with value MIN(E) is marked as P , and may or may not be
an object already in Sc. If P is not an object in Sc, it is
compared with each object in Sc and discarded if found to
be dominated.

Like the skyline framework, Phase II then assigns all in-
complete objects to a set Q. However, pruning rules for the
multi-objective framework are different. Each object q in
set Q goes through a pruning step as follows: (1) calculate
the function value F for q using F (Cval,MIN(E)), this is a
lower bound on q’s function value, then (2) check if q is dom-
inated by P or any object in Sc over all dimensions. If q is
found to be dominated, it is instantly discarded. Intuitively,
the lower bound value F (Cval,MIN(E)) of q represents the
best functional value for q since it uses the minimum e-value
MIN(E) over all objects. Thus, if q is dominated by an ob-
ject in Sc or P over all attributes, it can be safely discarded.

Example. Consider our running example in Figure 5
where MIN(E)=9, meaning object i is marked as P . Fur-
ther, object i is not dominated by any object in Sc, thus is
not discarded. After retrieving i, all objects in Q have func-
tional values WTime+MIN(DTime). Only objects b and
e survive pruning, while all other objects in Q are marked
with the object that caused them to be pruned.



6.1.3 Phase III: Cleaning

Like the skyline framework, Phase III begins by first mak-
ing a random request to source E for objects remaining in
Q. Unlike the skyline case, Phase III then generates a final
preference answer by (1) computing the value F (Cval, Eval)
for objects in Q and (2) cleaning objects from P and Q using
Sc as the initial seed of Note that sets P and Q are cleaned,
as objects in P may be dominated once all e-values for Q
have been retrieved.
Example. We depict the final multi-objective preference

answer {f , g, i} for our running example in Figure 5, found
by cleaning Q={b,e} and P = {i}, using {f ,g} as the initial
seeded answer.

6.2 Multiple Expensive Attributes
We now discuss multi-objective queries over multiple ex-

pensive attributes. Our solution covers the case where a
single cheap attribute Cval is combined with s expensive at-
tributes E1,..., Es using function F (Cval, E1, ..., Es). Due to
space, we do not discuss the case where s cheap attributes
C1,...,Cs are combined with a single counterpart expensive
attribute E1, ..., Es as F (C1, E1),..., F (Cs, Es), as it can be
solved using a framework similar to that from Section 6.1.

6.2.1 Phase I: Initialization

Phase I, similar to the single expensive attribute case,
calculates Sc over the independent cheap attributes, except
it requests all expensive attributes for this set.

6.2.2 Phase II: Pruning

Phase II diverges from the case of a single expen-
sive attribute. First, the phase begins by requesting
the minimum e-value for each expensive attribute (abbr.
MIN(E1), ...,MIN(Es)). Each object with a minimum ex-
pensive attribute is assigned to set P . A random request
is then made to fill in each missing value for all objects in
P . At this point, the function F (Cval, E1, ..., Es) is cal-
culated for each object in P , and P is cleaned by seed-
ing the initial preference answer to Sc. Similar to the sin-
gle expensive attribute case, we create a set Q that con-
tains all incomplete objects. However, we then apply an
iterative pruning process to Q. Iterative pruning progres-
sively tightens the lower-bound function value for each ob-
ject q ∈ Q. Object q is pruned at any time if it is found
to be dominated by objects in Sc or P . In the initial
iteration, all objects q ∈ Q are assigned a lower-bound
function value F of F (Cval,MIN(E1), ...,MIN(Es)). Each
object q is then pruned through comparison with Sc and
P much like the single expensive attribute case. In the
next iteration, Phase II refines the lower bound function
value accuracy for each remaining object q ∈ Q by select-
ing an expensive attribute E1 to retrieve for each object
q, where E1 is the same attribute for all objects. Intu-
itively, E1 should be the attribute with minimum retrieval
cost (costt + costc) over all outstanding expensive attribute
sources. We then update the function value for each object
q as F (Cval, E1,MIN(E2)...,MIN(Es)). At this point, an-
other pruning operations is applied to all objects q ∈ Q.
The iterative request-then-prune steps of Phase II end when
either (1) Q is empty or (2) only a single expensive attribute
has yet to be retrieved.
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Figure 6: U-Value options for skyline framework

6.2.3 Phase III: Cleaning

Phase III, similar to the other frameworks, computes the
final preference answer by first making a random request for
the remaining incomplete expensive attribute for objects in
Q. At this point, objects in Q are complete. Set P and Q
are then cleaned to yield a final answer.

7. EXPERIMENTAL EVALUATION
We now experimentally evaluate the performance of our

frameworks for skyline and multi-objective query evalua-
tion. Our experiments involve the following implementa-
tions. (1) Our skyline framework for single and multiple
expensive attributes. Both skyline implementations have
five variants based on the U -value derivation method (pre-
sented in Section 5.1.4). Each variant is identified by the
following subscript: min, max, mdom (for MOSTDOM), bmax

(for BOUNDMAX), and bmin (for BMIN). (2) Our multi-
objective framework for single and multiple expensive at-
tributes. Note that unlike skylines, the multi-objective
framework do not have variants. (3) Since there is no related
work that applies to our problem directly, we implement two
alternative frameworks for skyline and multi-objective query
processing for comparison purposes: (a) Naive. This frame-
work mirrors the naive implementation outlined in Section 4.
(b) Opt. This is an optimal framework that is of theoretical
interest only, as it always make the optimal number of re-
quests for expensive attributes based on a priori knowledge
of their values. All frameworks use the BNL skyline algo-
rithm [4] for processing cheap attributes and pruning, as this
is the most straightforward method of executing skylines in
an real DBMS.

All frameworks are implemented in the back-end execu-
tor (query processor) of the PostgreSQL 8.3.5 open-source
database [21]. The experiment machine is an Intel Core2
8400 at 3Ghz with 4GB of RAM running Ubuntu Linux
8.04. Cheap attributes are stored locally in relational ta-
bles, while expensive attributes exist on a remote machine
(details shortly). Thus, extensive changes were made to the
Postgres query processor in order to request then materialize
third-party remote data. Our two main performance metrics
are remote requests, counting the number of expensive at-
tributes returned during query processing, and elapsed time
reported by the PostgreSQL EXPLAIN ANALYZE command.

We make use of two data sets in our experiments. (1) Syn-
thetic data using the generator specified in [4]. Unless other-
wise mentioned, this data contain six attributes, generated
independently of one another. Dataset sizes range from 10K
to 100K tuples, with the default set as 50K. To model remote
attributes for this dataset, we built a custom web service
running on a separate machine connected through a stan-
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Figure 7: Scalability of skyline framework

dard 10Base-T Ethernet local area network. (2) Real web
data for restaurants in the Minneapolis, MN area, contain-
ing five attributes. Three attributes were downloaded and
stored locally: (a) ZPrice and (b) Service rating, both taken
from the Zagat website [28]. (c) CPrice, taken from the City-
pages website [9]. Two remote attributes were accessed in
real-time through actual web service: (d) Rating, accessed
through the Yelp review web service [27], and (e) Driving
Time, accessed through the Micosoft MapPoint web ser-
vice [19].

7.1 Skyline Framework
This section studies the effectiveness of our skyline frame-

works for single and multiple expensive attribute cases as
presented in Sections 5. We first evaluate the U -value deriva-
tion methods for the skyline framework. We then evaluate
the scalability of both frameworks.

7.1.1 U-Value

Figure 6 gives the results for different U -value derivation
methods over the default 50K data set for the single expen-
sive attribute framework. Figure 6(a) depicts the number
of expensive attribute retrievals needed for the five methods
presented in Section 5.1.4, along with the counts for the opti-
mal and naive skyline algorithms. The naive method makes
a total of 50K requests, as each object requires an e-value
retrieval. Meanwhile, the optimal algorithm requires 10K
retrievals, mirroring the number of skyline objects. Many
of the U -value methods bring the skyline framework close
to the optimal number of requests. In this case, min re-
quires only 17,110 requests and represents the best perform-
ing method. This number represents an 82% improvement
over the naive method, i.e., min makes 82% less unnecessary
requests than the naive method. This percentage is mea-
sured as Countnaive−Countmin

Countnaive−Countopt
, where the denominator repre-

sents the amount of unnecessary requests made by the naive
method, and the numerator represents the difference in the
request count between the naive method and min method.
Meanwhile, mdom requires 28083 requests, representing the
worst case of all the methods, but still a 54% improvement
over the naive method. Figure 6(b) gives the runtime for
each of the five U -value methods, along with the runtime
of the optimal and naive implementations. The runtime of
each U -value is clearly correlated with its number expen-
sive attribute retrievals. The optimal implementation ex-
hibits superior performance. The performance discrepancy
between the optimal and other U -value methods is due to
our implementation approach. The optimal method runs a
skyline in a single pass, and then performs the optimal num-
ber of requests. Thus, it does not execute the three phases
of our proposed framework.

7.1.2 Scalability

Figure 7(a) gives the expensive attribute request error re-
duction percentage for the bmin, bmax, mdom methods in the
single expensive attribute (abbr. SEA) framework as the
data size increases from 10K to 100K. For readability, we
omit max and min, as they performed similarly to bmax and
bmin. Clearly, bmin and bmax scale well, and consistently re-
duce unnecessary requests. This performance is due to the
pruning effectiveness of Phase II. The error reduction drops
quickly for mdom as the data size grows. This drop occurs
because as data sizes grow, it is more likely an object in Q
will be dominated by more than one object in LA. Thus, it
is less likely the object chosen by mdom will have a U -value
capable of pruning effectively. Figure 7(b) provides the run-
times for each method. We omit Skynaive, as it did not scale
well. In fact, for larger data sets, its runtime was close to
an hour. The runtime for each method mirrors its pruning
effectiveness given in Figure 7(a).

Figure 7(c) gives the expensive attribute request error
reduction percentage for the multiple expensive attribute
framework (abbr. MEA, again omitting min and max). Un-
less otherwise noted, the default number of expensive at-
tributes is three. Also, the U -value derivation method is the
same across all expensive attributes. It is clear that the er-
ror reduction percentage of each variant drops as the data
size grows. However, even for larger data sizes the percent-
age remains at 20%. A main reason for this performance lies
in a property of the data set: since each attribute value is
generated independent of one another, none of the U -values
are able to adequately retrieve a near-optimal pruning set
as the data size grows. Figure 7(d) provides the run-times
for each method. Each method shows similar linear perfor-
mance. We also note that the run-times are less than the
single expensive attribute framework. The reason for this
performance is that more objects are pruned in the multi-
expensive attribute case, meaning less requests in Phase III.

7.2 Multi-Objective Framework
This section evaluates the effectiveness our multi-objective

frameworks for the case of single and multiple expensive
attributes presented in Sections 6.

7.2.1 Scalability

Figure 8 gives the results for the multi-objective frame-
works as the input data size ranges from 10K to 100K. Fig-
ure 8(a) plots the number of expensive attributes retrieved
by the single expensive attribute (abbr. SEA) framework
compared to the optimal and naive methods. The prun-
ing effectiveness of our approach is clear in this case, as
our framework shows an almost identical retrieval count as
the optimal method. The pruning effectiveness is also de-
picted in Figure 8(b), that plots the percentage improve-
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Figure 8: Scalability of multi-objective framework
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Figure 9: Skyline framework over real data

ment over the naive method (percentage calculation covered
in Section 7.1.1). Meanwhile, Figures 8(c) and 8(d) plot the
expensive attribute retrieval count and runtime for the mul-
tiple expensive attribute (abbr. MEA framework. In both
cases, we see performance in line with the optimal method.

7.3 Real Web Data
Figure 9 gives the expensive attribute retrieval count and

runtime for our skyline framework variants when run over
our real data set consisting of restaurants in the greater Min-
neapolis area. Each variant of our framework is far superior
to the naive implementation. The main reason for our supe-
rior performance is the correlation inherent in the data. For
instance, a high CPrice from Citypages review source will
likely imply a high ZPrice from the Zagat review. In this
case, pruning becomes more effective because objects dom-
inated in the “cheap” attribute subspace will likely not be-
come final skylines, as their expensive attributes are inferior
to those of the objects in Sc. Indeed, for our real experimen-
tal data, the “cheap” Service rating attribute and expensive
overall Rating attribute are correlated, causing more objects
to be pruned. We can conclude from this experiment that
our framework performs very well with real-world, correlated
data.

8. CONCLUSION
This paper presented a framework for evaluating both sky-

line and multi-objective preference queries involving expen-
sive attributes. We first defined expensive attributes as any
attribute requiring non-trivial computation/retrieval cost
during query runtime. We then presented our framework
capable of processing skyline and multi-objective queries in
the case of both single and multiple expensive attributes.
The efficiency of the framework is due to the ability to dis-
card objects without retrieving their expensive attributes,
thus reducing high computational overhead in query pro-
cessing. Our proposed framework is novel, in the sense that
we only assume random and range access to expensive at-
tributes: a model that translates well to real data domains.
Our experiments, implemented in an actual database and

run over synthetic and live web data, prove that our frame-
works are efficient, and provide superior performance to cur-
rent database implementations that must evaluate every ex-
pensive attribute to process preference queries.
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[16] W. Kießling and G. Köstler. Preference SQL: Design,
Implementation, Experiences. In VLDB, 2002.

[17] G. Koutrika and Y. Ioannidis. Personalization of Queries in
Database Systems. In ICDE, 2004.

[18] E. Lo, K. Y. Yip, K.-I. Lin, and D. W. Cheung. Progressive
skylining over Web-accessible databases. Data and Knowledge
Engineering, 57(2), 2006.

[19] Microsoft MapPoint: http://www.microsoft.com/virtualearth/.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD, 2003.

[21] PostgreSQL: http://www.postgresql.org.

[22] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In
VLDB, 2006.

[23] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding Context to
Preferences. In ICDE, 2007.

[24] T. Urhan and M. J. Franklin. XJoin: A Reactively-Scheduled
Pipelined Join Operator. IEEE Data Engineering Bulletin,
23(2), 2000.

[25] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query
scrambling for initial delays. In SIGMOD, 1998.

[26] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient skyline
query processing on peer-to-peer networks. In ICDE, 2007.

[27] Yelp: http://www.yelp.com.

[28] Zagat: http://www.zagat.com/.


