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ABSTRACT
Recently, several research efforts have addressed answering
skyline queries efficiently over large datasets. However, this
research lacks methods to compute these queries over un-

certain data, where uncertain values are represented as a
range. In this paper, we define skyline queries over continu-
ous uncertain data, and propose a novel, efficient framework
to answer these queries. Query answers are probabilistic,
where each object is associated with a probability value of
being a query answer. Typically, users specify a probabil-
ity threshold, that each returned object must exceed, and
a tolerance value that defines the allowed error margin in
probability calculation to reduce the computational over-
head. Our framework employs an efficient two-phase query
processing algorithm.

Categories and Subject Descriptors: H.2.4 Database
ManagementSystems

General Terms: Algorithms, Design.

1. INTRODUCTION
Since its introduction in databases [2], skyline query pro-

cessing has received formidable interest in the literature
(e.g., see [6, 7, 11, 15, 16]). This interest is mainly due to
the skyline’s importance in realizing useful, non-trivial ap-
plications ranging from multi-criteria decision-making tools
to personalized databases [9, 12]. Given a set of multi-
dimensional objects, skyline queries find the set of interest-
ing (i.e., non-dominated) objects. An n-dimensional object
P dominates another object Q if P is better than or equal
to Q in n − 1 dimensions, and strictly better than Q in
at least one dimension. An example of skyline queries is
“find my best restaurants based on minimal price and mini-

mal distance”, which returns those restaurants that are not
dominated by other restaurants based on price and distance.
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Figure 1: Skyline example over data with uncertain

ranges

Throughout the paper, we are using our running example
consisting of seven uncertain objects presented in Figure 1a
where the x dimension of each object is presented as a con-
tinuous range while the y dimension is a single certain point.
We assume lower is better for all dimensions. Figure 1b
gives the probability that each uncertain object is a sky-
line, assuming the probability density function within the
uncertainty range is uniform, and lower is better for all di-
mensions.

With the growing number of applications that include un-
certainty, e.g., sensor readings, human reading errors, and
data imperfection, it became essential to support skyline
queries over uncertain data. Existing work in this scope is
limited only to the case where uncertain data is represented
as a set of discrete values [16], i.e., a finite set of instances
a1, a2, · · · , an. The exact probability of object P (in Fig-
ure 1a) to be a skyline is the probability that point p in the
uncertainty range of P , i.e., 0 to 4, is less than all other
objects in the dataset, formally, this can be represented as
R 4

0
fP (x)[ΠJ 6=P

R ∞

x
fJ (y)dy]dx, where fA is the probability

density function of object A.
In this paper, we propose an efficient framework that sup-

ports skyline queries for uncertain data represented as a con-
tinuous range. The answer of the skyline query is presented,
similar to Figure 1, as the probability of each object to be a
skyline. Two user parameters are introduced in our frame-
work, namely a user-defined threshold H where the user is
only interested in those objects that have a probability more
than H to be a skyline, and a tolerance parameter δ that
represents a trade-off between the accuracy in probability
calculation, and the computational overhead. We mainly
propose three bounding methods, namely, uncertainty re-

duction, pairwise comparison, and bound tightening. The
first two methods give an upper bound probability of each



Table 1: Related Work
Related work Query Continuous Threshold Tolerance

[5] Range & 1-NN
√

— —

[1] 1-NN
√ √

—

[3] 1-NN
√ √ √

[4] k-NN
√ √

—

[14,18] Rank
√

— —

[13] Reserve Skyline
√ √

—

[19] Top-k — — —

[8] Top-k —
√

—

[17] Rank — — —

[16] Skyline —
√

—

Our work Skyline
√ √ √

object to be in the skyline, while the last method gives an
upper and lower bound probability.

We present a general two-phase framework that employs
our proposed three bounding methods and follows a filter-
refine approach, where the first phase (filtering) prunes a
set of objects from consideration before reaching a more ex-
pensive second phase (refinement). In particular, Phase I is
responsible on applying uncertainty reduction and pairwise

comparison to derive an initial upper-bound probability of
each object along with preparing a data structure that will
be used in the second phase. Given this initial upper-bound
value, Phase I may determine that an object can never be
a skyline where it is immediately discarded (i.e., filtered).
In Phase II, we continue pruning objects using the bound

tightening which is iteratively applied to each object O until
we either confirm that O is not in the skyline (i.e., O’s prob-
ability is below the threshold H) or we have O as a skyline
with the required probabilistic accuracy δ. Thus, we avoid
expensive exact probability calculations until a final answer
is found.

2. RELATED WORK
Table 1 divides existing work on preference queries for un-

certain data with respect to: (a) the query type, (b) the un-
certainty model, (c) utilizing a threshold value, and (d) uti-
lizing a tolerance value in probability calculation.

In contrary to our work in this paper (represented in the
last line of Table 1), there is no previous work that addresses
the case of skyline for continuous uncertainty model. The
two closest work to ours are [3] and [16]. The first one [3]
supports continuous uncertainty model, threshold, and tol-
erance values, yet it is limited only to the simpler case of
nearest-neighbor queries while our work supports skyline
queries. Moreover, it is limited to one uncertain dimension.
The second one [16] supports skyline queries with thresh-
old value, however, it is limited only to the case of discrete
uncertainty model while our work supports the case of con-
tinuous uncertainty model with a tolerance value in addition
to the threshold value.

3. BOUNDING OBJECT PROBABILITY
As computing the exact probability for each object to be

in the skyline set S is prohibitively expensive [10], we present
three methods that gradually bound the probability of each
object to be in S . These bounds are used to early prune
objects that are not of interest, i.e., those objects that have
a probability less than H . The main objective is to calculate
the exact probability, within tolerance δ, to only those ob-
jects that will have a probability more than H . These three
methods are: (1) Uncertainty reduction (Section 3.1) aims
to place an upper bound on the object probability to be in
S while reducing the object uncertainty region, (2) Pair-

wise comparison (Section 3.2) gives a tighter upper bound

probability, and (3) Adaptive Bound tightening (Section 3.3)
iteratively tightens the lower and upper bound probabilities
of an object to be within the required tolerance δ.

3.1 Uncertainty Reduction
Affected Objects. Uncertainty reduction is computed in a
pairwise fashion. An ordered pair of objects (Q,P ) qualifies
to uncertainty reduction only if the endpoint of Q domi-
nates the endpoint of P . The endpoint eP of an object P

is formulated by substituting P ’s uncertainty range by the
upper value on each uncertain dimension, formally eP =
(du

1 , du
2 , · · · , du

i , di+1, · · · , dm). Notice that it is straightfor-
ward to determine the dominance relation between eP and
eQ because both of them are exact points. As the dominance
relation is not reflexive, if (Q,P ) qualifies for uncertainty re-

duction, then (P ,Q) does not qualify.
Main Idea. The main idea of uncertainty reduction is to
reduce the upper bound probability for an object P by re-
moving a portion of its uncertainty range in which if P exists
in, it would have a zero probability being a skyline object.
In other words, uncertainty reduction is applied to the domi-
nated object where we: (a) limit its upper bound probability,
and (b) reduce the uncertainty range [dl

1-d
u
1 ] × [dl

2-d
u
2 ] × . . .

× [dl
i-d

u
i ] to a smaller range.

Example. As an example, we apply the uncertainty re-

duction over all the uncertain objects in Figure 2a starting
from V with the lowest certain value. For object V , as the
endpoint of the uncertainty range eV does not dominate any
other endpoint, V does not result in any uncertainly reduc-
tion for any other object. For object R, eR dominates eU ,
eT , and eS, so, the pairs (R,U), (R,T ), and (R,S) qualify
for uncertainty reduction. This results in reducing the un-
certainty range of U to be [2-5] instead of [2-6]. Since the
reduced range is one quarter of the original range, the up-
per bound probability of U is set to 75%. Similarly, the
uncertainty ranges of T and S are reduced to [4-5] and [3-
5] with an upper bound probability of 50% and 66%, re-
spectively. Figure 2b gives the result of all points after the
uncertaintyreduction with their upper probability bounds,
pruning objects S, and T from any further processing for
50% threshold.

3.2 Pairwise Comparison
Affected Objects. Similar to the case of uncertainty reduc-

tion, pairwise comparison is computed in a pairwise fashion.
However, the condition that two objects qualify for pair-
wise comparison is different from that of the uncertainty
reduction where an ordered pair of objects (Q,P ) qualifies
to pairwise comparison only if: (a) the uncertainty ranges
of P and Q overlap, and (b) the certain part of Q either is
equal to or dominates the certain part of P . The certain
part of object P , C(P ), is formulated by removing P ’s un-
certain dimensions, formally, C(P )={di+1, . . . , dn}. Then,
the upper bound probability of object P can be bounded.
As the qualifying condition includes equality, it could be
the case that both ordered pairs (P ,Q) and (Q,P ) qualify
for pairwise comparison. This case takes place if C(P ) =
C(Q).
Main Idea. The main idea of pairwise comparison is that
for a qualified ordered pair of objects (Q,P ), since Q already
dominates or equal to P in the certain dimensions, if Q

would also dominate P in the uncertain dimension, then P

would have no chance to be in the answer set, and it will be
discarded using the uncertainty reduction. This means that
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Figure 2: Bounding Objects Probabilities
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the only chance for P to still be a skyline object is to be
not dominated by Q in the uncertain dimension. Thus, we
can have an upper bound probability for object P to be in
the answer set as the probability that the uncertain range
of P is not dominated by the uncertain range of Q. if the
certain dimensions of Q is equal to those of P , we compute
an upper bound probability of Q.

To compute a tighter upper bound probability for object
P for a qualified pair (Q,P ), we compose uncertain object
QP to be from the start point of object Q, Qs, to the start
point of object P , Ps. let Qdom be the portion of Q that fully
dominates P , i.e., Qdom= QP ∩ Q. The upper bound of P

can be computed that the probability that object Q is in
Qdom multiplied by the upper bound of P . If this computed
upper bound is lower than the user-given threshold, H , we
discard P . Otherwise, we proceed by iterating over all un-
certain dimensions and finding the minimum upper bound
of object P .
Example. Continuing the example shown in Figure 2b.
Object V does not qualify for pairwise comparison with
any other object as its uncertainty range does not over-
lap with others. For object R, the ordered pairs (R,Q),
(R,U), (R,P ), and (R,S) qualify for pairwise comparison.
For (R,Q), the upper bound probability of Q is reduced
to 1- 1

2
* 1

3
* 1

2
=91%. Similarly, U upper bound is reduced to

31%, P upper bound is reduced to 87%, and S upper bound
is reduced to 25%. Figure 2c gives the result of all points
after the pairwisecomparisons with their upper probability
bounds, where object U is discarded.

3.3 Adaptive Bound Tightening
Affected Objects. In contrast to uncertainty reduction

and pairwise comparison that are applied for a pair of ob-
jects, Adaptive bound tightening is applied for a given object
P and a list of objects DLP , termed the dependency list of
P . An object Q belongs to DLP if and only if the pair (Q,P )
qualifies for pairwise comparison. In other words, DLP in-
cludes all objects in the data set that affect the probability
of P being a skyline object. For example, in Figure 2a,
DLP = {R, Q,U}.
Main Idea. We divide the uncertain object P into segments
adaptively to get better accuracy bounds. Initially, we set
the segment to be the whole uncertainty range. To do so

in a simple and efficient way, we choose the segment that is
causing the largest difference between the upper and lower
bounds for uncertain object P . And then we split it into
halves along the dimension that is causing the largest dif-
ference in probability. This will increase the number of seg-
ments by one more segment, it will also tighten the current
probability bounds [Plower −Pupper]. We keep doing so, iter-
atively, till we reach to the stopping condition, (Pupper < H

OR (Plower > H AND Pupper − Plower < δ). The faster we
approach to the stopping condition, the more efficient our
scheme will be. So, bound tightening always selects the seg-
ment to split, Gs, as the one that has the largest weighted
difference in its upper and lower bound probabilities, i.e.,
Gs = MAX∀Gi

((Giupper − Gilower
) ∗ Pr{P ∈ Gi}). By do-

ing so, bound tightening will reach to its stopping conditions
in less iterations. It is important to note that splitting Gs

into two halves Gs1 and Gs2 results in calculating only the
probability Gs1lower

as it is also equal to Gs2upper for each
uncertain dimension, choosing the dimension that reduce the
weighted difference for Gs1 and Gs2. The other bounds are
inherited from Gs where Gs1upper = Gsupper and Gs2lower

=
Gslower

. Finally, Plower and Pupper are updated incremen-
tally to reflect the new probability bounds.
Example. Consider object P in Figure 3, the last column
in the table of Figure 3b gives the difference between the
upper and lower bound probability for each segment of ob-
ject P multiplied with the probability of the segment af-
ter splitting P at 2 then at 3. We divide P at 2. Then,
of all segments, G2 has the largest calculation error (i.e.,
(0.67− 0.0) ∗ 1

2
= 0.335). Thus, G2 is chosen to be split into

two halves G21 and G22. Then, only one probability value
needs to be calculated, G21lower

= G22upper =0.25. Con-
secutively, Plower and Pupper are updated to be 39.8% and
73%, respectively.

4. SKYLINE QUERY PROCESSING FOR
UNCERTAIN DATA

Phase I: Skyline and Dependency Lists Phase I scans
the input data set and applies the uncertainty reduction over
each object Q against existing objects that are candidate to
be skylines, i.e., not yet pruned by our algorithm. We keep
tracks of objects with upper bound less than given threshold,
denoted as ThresholdDominated set. Based on the result
of the uncertainty reduction, if Q’s upper bound probability
becomes less than H , we immediately prune Q, otherwise,
we apply pairwise comparison on Q against each candidate
object P . As pairwise comparison may affect the probability
of both Q and P , we check if the probability of any of them
becomes less than H . If this is the case, we prune such
object. Finally, we compute the dependency list (PDL) for
each object P , and add it to the candidate skyline set.
Example. Table 2 gives the result of applying Phase I to



Table 2: Example for Phase I
Skyline List ThDom

U (U,100%,{}) {}
R (R,100%,{}), (U,50%,{R}) {}
S (R,100%,{}), (U,50%,{R}) {S}
V (V ,100%,{}), (R,100%,{}), (U,50%,{R}) {S}
Q (V ,100%,{}), (R,100%,{}), (Q,91%,{R}) {U,S}
T (V ,100%,{}), (R,100%,{}), (Q,91%,{R}) {U,S}
P (V ,100%,{}), (R,100%,{}), {U,S}

((Q,91%,{R}), (P ,62%,{R, Q})
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Figure 4: Scalability of USky: One & Three uncertain

dimensions

our running example in Figure 2a when H = 50% and the
data is read in the order of U , R, S, V , Q, T , and P .
Phase II: Final Probability Calculation Phase II starts
after the completion of Phase I and scans each object Q in
the candidate skyline set. If the dependency list of Q is
empty, we immediately add Q to the final answer set with a
probability 100%, otherwise, we proceed with computing a
lower and upper bound probability for Q. If the difference
between the upper and lower bound probabilities of Q is
within the accepted tolerance δ, we report Q as an answer
along with its probabilities. If we still did not achieve the
required accuracy, we iteratively apply the bound tightening

method until we conclude that either Q is not an answer (i.e.,
its upper bound probability is less than H), or it is an answer
with an accepted accurate probability calculation within δ.
Example. Continuing on bound tightening for P , we will
need 10 iterations to have Plower = 57% and Pupper = 61%.
Object Q needs 6 iterations to have Qlower = 89.5% and
Qupper = 93.7%.

5. EXPERIMENTAL RESULTS
Figure 4 gives the effect of the various threshold values

(0%, 50%, and 100%) on our proposed algortihm denoted as
USky as dataset sizes increase. Even for the case of H = 0%,
USky performance is three times better without adaptive
bound tightening. When H = 100%, for two uncertain di-
mensions, USky runtime is 1.3 seconds in comparsions to
8 and 2.8 seconds for H= 0% and 50%, respectively, as it
immediately prunes objects that are dependent on other ob-
jects found using pairwise comparison. For 50% threshold,
the performance is close to 100% as the number of points
with thresholds between 50% and 100% are close.

We compare our proposed algorithm USky without adap-
tive bound tightening, we denote this variant as Prob. Fig-
ure 5a gives the effect of increasing the threshold H for our
synthetic. The speed up of USky over Prob reaches up to
28 for a 100% threshold and three uncertain dimensions.
Figure 5b studies the effect of increasing the number of un-
certain dimensions from one to five, while having one certain
dimension, on the total runtime (presented in log scale) for
the USky and Prob algorithms. For all number of uncertain
dimensions, USky has about an order of magnitude better
performance than Prob.
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6. CONCLUSION
We have defined skyline queries over continuous uncertain

data, and proposed a novel, efficient framework to answer
these queries. Query answers are probabilistic, where each
object is associated with a probability value of being in sky-
line objects. Users can specify a probability threshold, that
each object in the answer set must exceed, and a tolerance
that defines the allowed error margin in probability calcu-
lation. We have described our framework in the context of
skyline in which we have proposed three methods to bound
each object probability for being a preferred object, namely,
we have proposed uncertainty reduction, pairwise compari-

son, and bound tightening. Then, we presented a two-phase
framework that encapsulates our three proposed methods
together using a filter-refine approach.
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