
Geoinformatica (2017) 21:175–208
DOI 10.1007/s10707-016-0284-8

Panda∗: A generic and scalable framework for predictive
spatio-temporal queries

Abdeltawab M. Hendawi1 ·Mohamed Ali2 ·
Mohamed F. Mokbel3

Received: 20 January 2016 / Revised: 14 November 2016 /
Accepted 22 November 2016 / Published online: 3 December 2016
© Springer Science+Business Media New York 2016

Abstract Predictive spatio-temporal queries are crucial in many applications. Traffic man-
agement is an example application, where predictive spatial queries are issued to anticipate
jammed areas in advance. Also, location-aware advertising is another example application
that targets customers expected to be in the vicinity of a shopping mall in the near future.
In this paper, we introduce Panda∗, a generic framework for supporting spatial predictive
queries over moving objects in Euclidean spaces. Panda∗ distinguishes itself from previ-
ous work in spatial predictive query processing by the following features: (1) Panda∗ is
generic in terms of supporting commonly-used types of queries, (e.g., predictive range,
KNN, aggregate queries) over stationary points of interests as well as moving objects. (2)
Panda∗ employees a prediction function that provides accurate prediction even under the
absence or the scarcity of the objects’ historical trajectories. (3) Panda∗ is customizable in
the sense that it isolates the prediction calculation from query processing. Hence, it enables

The research of these authors is supported in part by the National Science Foundation under Grants
IIS-0952977 and IIS-1218168

� Mohamed Ali
mhali@u.washington.edu

Abdeltawab M. Hendawi
hendawi@cs.virginia.edu

Mohamed F. Mokbel
mokbel@cs.umn.edu

1 Department of Computer Science, University of Virginia - Charlottesville, 85 Engineer’s Way,
Charlottesville, VA 22904-4740, USA

2 Center for Data Science, Institute of Technology, University of Washington Tacoma,
1900 Commerce Street, Tacoma, WA 98402-3100, USA

3 Department of Computer Science and Engineering, University of Minnesota - Twin Cities,
200 SE Union Street, Minneapolis, MN 55455, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-016-0284-8&domain=pdf
mailto:mhali@u.washington.edu
mailto:hendawi@cs.virginia.edu
mailto:mokbel@cs.umn.edu

176 Geoinformatica (2017) 21:175–208

the injection and integration of user defined prediction functions within its query processing
framework. (4) Panda∗ deals with uncertainties and variabilities in the expected travel time
from source to destination in response to incomplete information and/or dynamic changes
in the underlying Euclidean space. (5) Panda∗ provides a controllable parameter that trades
low latency responses for computational resources. Experimental analysis proves the scala-
bility of Panda∗ in evaluating a massive volume of predictive queries over large numbers of
moving objects.

Keywords Predictive · Spatiotemporal · Query processing · KNN queries ·
Range queries · Panda

1 Introduction

The massive proliferation of GPS devices, along with the wide usage of mobile phones,
and the easy accessability of wireless technologies have led to a number of new-location
based services applications [13, 23, 24]. These applications support queries like “what are
the five nearest restaurants”, or “give me the list of pharmacies within one mile of my
current location”. A considerable amount of research has been introduced to handle different
types of queries on spatial data, such as range queries [6, 8, 34], k-NN queries [6, 27], and
intersection join queries [35, 39].

Another important set of location-based services focuses on predictive queries [14, 15,
18, 21] in which a user asks the same previous queries but for a future time instance rather
than the current time instance. Examples of such services include predictive range queries
in a smart advertising system, e.g., “send e-coupons to all customers that are expected to
show up around a store location in the next 30 minutes” , and predictve k-NN queries in
ride sharing systems, e.g., “find the three vehicles expected to pass by a waiting rider’s loca-
tion in the next 5 minutes”. Predictive queries are crucial to many applications. In traffic
management systems, predictive queries identify the regions that are expected to be con-
gested even before traffic builds up. In weather alarming systems, predictive queries notify
the commuters about severe weather conditions in advance [22]. In service finding applica-
tions, predictive queries find the taxi that is expected to be the nearest to my location within
the next few minutes. In location-based advertising, predictive queries target customers who
are expected to be nearby in the next hour with sales coupons.

Most of the existing work focuses on short-term predictive queries with a single query
type [15]. Short term predictions aims at predicting only the next turn, segment, and/or junc-
tion of the moving object’s trajectory. This short-term prediction is not very useful in many
real world applications that require prediction to be farther in the future, as described in
the application scenarios above. The majority of existing techniques utilize spatio-temporal
index structures to speed up the retrieval of the object’s locations. However, these tech-
niques suffer from a significant update overhead [36]. The frequent movement of an object
in real life generates a stream of location updates and puts these index structures under
performance pressure. Furthermore, the long-term prediction models employed by existing
work are mostly based either (1) on historical data modeling or (2) on a linearity movement
assumption. From practical experience [1, 9, 10], historical data is not always available in
rural areas and/or not available due to the users’ privacy concerns. Moreover, the linearity
movement assumption is not realistic in real world. Moving objects usually have a complex
movement pattern rather than moving in a straight line.

Geoinformatica (2017) 21:175–208 177

In this paper, we extend our previous work, Panda [11, 12]. Panda evaluates predictive
spatial queries in Euclidean space with a focus on (i) handling predictive range queries, (ii)
assuming all objects are moving objects, and (iii) considering a fixed travel time between
any given two points in the space regardless of the time of the day. In this work, we introduce
the extended framework Panda∗. In this extension, (1) We give Panda∗ the ability to process
predictive KNN query and predictive aggregate query in addition to the existing predictive
range query capabilities. (2) We enable Panda∗ to handle predictive queries over a mix of
stationary points of interests, POIs, (e.g., restaurants) and moving data (e.g., vehicles). (3)
We provide Panda∗ with the ability to handle time uncertainty by considering the dynamic
change in the travel time between points in the space. Thus, Panda∗ reacts to changes in
the underlying space based on the time of day. For example, travel time cost between two
locations is cheap in the morning while it is expensive in the afternoon. To achieve that,
Panda∗ introduces the travel time structure (TTS) as a multi dimensional grid structure. The
TTS stores the travel time cost between each pair of locations in the space at various time
slots of the day. (4) We conduct comprehensive experimental evaluation based on real and
synthetic data to examine the performance of Panda∗ under the newly added query types
and under time uncertainty.

In more elaboration, we introduce Panda∗, a system designed to efficiently support a
wide variety of predictive spatio-temporal queries that include predictive range queries, pre-
dictive k-NN queries, and predictive aggregate queries, for stationary and moving objects.
Panda∗ distinguishes itself from previous attempts in predictive query processing [15, 41]
in the following aspects: (1) Panda∗ has ability to evaluate long-term as well as short-term
prediction queries. Hence, it supports prediction up to tens of minutes, (2) Panda∗ scales
up to answer heavy workloads with tens of thousands of queries over a large number of
moving objects in the order of tens of thousands of objects. The scalability of Panda∗ is
attributed to the adoption of a prediction function that filters out objects with no possibility
of appearing in the query result at the a specified time window. Moreover, it prunes out the
object movements that have no effect on the result, (3) Panda∗ does not only answer current
queries, but it also precomputes the results of frequent queries and/or frequently-queried
regions in advance. This result precomputation dramatically reduces the query response
time, (4) Panda∗ is generic in the sense that it does not address a single type of predictive
queries. Instead, it provides a generic infrastructure for a wide variety of predictive queries
over both stationary and moving data, and (5) Panda∗ deals with time uncertainty by mod-
eling the travel time between different locations as a range of time with lower and upper
bounds, e.g., from 10 to 15 minutes. This time range enables Panda∗ to handle dynamic
changes in the underlying space based on the time slot of the day.

The main idea of Panda∗ is to monitor those space areas that are highly accessed using
predictive queries. For such areas, Panda∗ precomputes the likelihood of objects being in
these areas beforehand. Whenever Panda∗ receives a predictive query, it checks if parts of
this predictive query are included in these precomputed space areas according to the overlap
between the query region and the underlying space. If this is the case, Panda∗ retrieves
parts of the query answer from the precomputed areas with a very low response time. For
other parts of the incoming predictive query that are not included in the precomputed areas,
Panda∗ has to dispatch the full prediction module to find out the answer, which will take
more time to compute. Worthy to mention here that Panda∗ does not apply the prediction
module on the whole space, instead, it limits the computation to a clipped space, since some
areas are filtered out if they are not under investigation by any standing query. This filtration
is a basic key of the scalability of Panda∗. Then, the overlap between the incoming query
and the precomputed areas controls how efficient the query would be.

178 Geoinformatica (2017) 21:175–208

The isolation between the precomputed area and the query area presents the main reason
behind the generic nature of Panda∗ as any type of predictive queries (e.g., range, k-NN,
aggregate) can use the same precomputed areas to serve its own purpose. Another main
reason for the isolation between the precomputed areas and queries is to provide a form
of shared execution environment among various queries. If Panda∗ would go for precom-
puting the answer of all incoming queries in separation manner, there would be significant
redundant computations among overlapped query areas.

Panda∗ provides a tunable threshold that provides a trade-off between the predictive
query response time and the overhead of precomputing the answer of selected areas. At one
extreme, we may precompute the query answer for all possible areas, which will provide a
minimal response time, yet, a significant system overhead will be consumed for the precom-
putation and materialization of the answer. On the other extreme, we may not precompute
any answer, which will provide a minimum system overhead, yet, an incoming predictive
query will suffer the most due to the need of computing the query answer from scratch
without any precomputations.

The underlying prediction function used in Panda∗ utilizes a long-term prediction func-
tion, designed to predict the final destination of a single user based on the trajectory [7,
20] of his current trip. Clearly, a direct deployment of such a long-term prediction func-
tion does not satisfy our purpose of predictive queries that are concerned with the moving
object location after some time rather than its final destination. Accordingly, Panda∗ alters
the prediction function to provide a location prediction after a specified future time interval
(e.g., after 20 minutes). This future time interval can represent both a short-term and a long-
term prediction rather than the final destination. Moreover, Panda∗ considers the travel time
between two points variable over time, probably due to the variability and uncertainty in the
traffic patterns over the day. To handle travel time variability and uncertainty, Panda∗ stores
the travel time between any pair of locations in the space as time interval rather than exact
value. The boundaries of the interval represent the minimum and maximum time it takes
from an object to move from one location to another in the space.

To evaluate the performnace of Panda∗, its query processor is implemented and com-
pared against two other baseline algorithms. The experiments are based on two groups of
data, a synthetic data set [5] and a real data set about GPS readings collected by Microsoft
[37, 38]. The experiments results prove that Panda∗ is scalable, efficient, and as accurate
as its underlying prediction function. Panda∗ achieves a workload that is at least four times
bigger than the baseline algorithm without scarifying the response time.

The rest of the papers is organized as follows; Section 2 reviews related work. Section 3
gives an overview of the Panda∗ system architecture, and its prediction function. Section 4
presents the generic framework for predictive query processing in Panda∗ including its data
structures and algorithms. Section 5 describes how Panda∗ can be extended to support com-
mon predicative spatio-temporal queries. Section 6 provides the experimental analysis and
performance evaluation of Panda∗. Finally, the paper is concluded in Section 7.

2 Related work

The work related to predictive query processing can be classified into three broad categories
based on the underlying prediction function into: (1) predictive queries using linearity-based
prediction models, (2) predictive queries using historical-based prediction models, and (3)
predictive queries using other prediction models. In this section, we give an ovefrview of
each category.

Geoinformatica (2017) 21:175–208 179

(I) Predictive queries using linearity-based prediction: [3, 26, 28, 32, 33]. The main
idea of predictive query processing in this category is that their underlying prediction
models are based on a simple assumption that objects move in a linear function in
time. So, the query processor takes into consideration the position of a moving point
at a certain time reference, its direction and the velocity, then compute and store
the future positions, (using a liner function in time), of that object in a TPR-tree
based index. When a predictive query is received the query processor retrieves the
anticipated position in the given time [28]. The work in this category concerns with
the applications of the linearity-based prediction models to answer nearest neighbor
queries [26], k nearest and reverse k nearest neighbor queries [3], or to estimate the
query selectivity [33]. Some of these applications attach the expiry time interval to the
KNN query result [32]. Moreover, skewness in the travel speed of moving objects has
been considered [25] using a combination of principal component analysis (PCA)
and k-means clustering techniques to prune the search space of the nodes in the index
structure.

(II) Predictive queries using historical-based prediction: [4, 7, 15, 18, 19, 29]. The
main idea of this category is that the prediction models mainly rely on objects histori-
cal trajectories. Existing work in this category is either based on mobility model [15],
or based on ordered historical routes [4, 7, 19] for predicting the object next trajec-
tory. The main concern of the mobility model [15] is to answer predictive range query
by focusing on the prediction of the object behavior in junctions. In the ordered his-
torical routes, the stored historical routes are ordered according to the similarity with
the current time and location of the object and the top route is considered the most
possible one [4, 7, 18, 19]. In [29] the historical data is employed to approximately
answer aggregate spatio-temporal queries.

(III) Predictive queries using other predictions: [14, 30, 40, 41]. The main idea of
this category is to use more complicated functions to achieve better prediction accu-
racy. Some of the existing work in this category either exploit a single function
[30, 41], or mix between two or more functions to form a hybrid prediction model
[14, 40]. A Transformed Minkowski Sum [41] is used to answer circular region
range and K-NN queries. Recursive Motion Function (RMF) [30] is used to pre-
dict a curve that best fits the recent locations of a moving object and accordingly
answer range queries. In the hybrid functions category, twomethods [14, 40] are com-
bined to evaluate range and nearest neighbor queries in highly dynamic and uncertain
environments.

Moreover, the related work to predictive query processing can be classified in terms of
type of queries it supports. Most existing algorithms for predictive query processing have
focused only on one kind of predictive queries, or two at most. These algorithms can be
classified as follows:

(I) Predictive Range queries, i.e., [15, 30, 41]. A predictive range query has a query
region R and a future time t , and asks about the objects expected to be inside the R

after time t . For example, a mobility model [15] is used to predict the coming path
of each of the underlying objects and employ the prediction results to evaluate pre-
dictive range queries. Most of existing work considers query region as a rectangle,
whoever the Transformed Minkowski Sum is used to answer circular region range
[41]. This is done by determining whether a time parameterized bounding rectan-
gular, as a moving object, intersects a moving circle that represents range queries.
The initial rectangle of the object and the velocity of each edge in this rectangle are

180 Geoinformatica (2017) 21:175–208

considered to compute the position and the rectangle after a certain duration of time
in the future. The transformed Minkowski sum in this method is obtained by doing
two steps: (i) a coordinate transformation based on the query region an its movement,
then (ii) the Minkowski enlargement in the transformed coordinates system.

(II) Predictive K-Nearest-Neighbor queries, i.e., [3, 16, 26, 41]. A predictive K-
nearest-neighbor query has point location P , a future time t , and asks about the K

objects expected to be closest to P after time t . For example, two algorithms, Range-
Search, KNNSearchBF, [41] are introduced to traverse spatio-temporal index tree
(TPR/TPR∗-tree) to find the nodes that intersect with the query circular region for
Range and KNN queries respectively. Sometimes the expiry time interval is attached
to a kNN query result [31, 32]. Thus, the kNN query answer is presented in the form
of <result, interval>, where the interval indicates the future interval during which
the answer is valid.

(III) Predictive Reverse-Nearest-Neighbor queries, i.e., [3, 17]. Unlike the predictive
KNN query which finds the objects expected to be the nearest to a given query region,
predictive reverse nearest neighbor, RNN, query finds out the objects that expected
to have the query region as their nearest neighbor. This query is useful in service
distribution applications such as ad-hoc networking to assign mobile devices to the
nearest communication service point. For example, the IGERN algorithm [17] is used
to evaluate continuous reverse nearest neighbor queries. We can report that the area
of RNN is relatively unexplored and needs more investigation.

(IV) Predictive Aggregate queries, i.e., [29]. A predictive aggregate query has a query
region R and a future time t , and asks about the number of objectsN predicted to be
inside R after time t . For example, a comprehensive technique [29] that employs an
adaptive multi-dimensional histogram (AMH), a historical synopsis, and a stochastic
method to provide an approximate answer for aggregate spatio-temporal queries for
the future addition to the past, and the present.

3 Panda: system overview

This section define our research problem and provides an overview of the Panda∗ system
by briefing the system architecture which includes the main modules and events, explaining
the long-term prediction function [7, 20] and our adaptation on it to be employed in the
Panda∗ framework.

3.1 Problem statement

Our problem statement can be formalized as; Given a set of moving objects sequences S,
in a space partitioned into a set of grid cells C, a prediction function F̂, a predictive query
defined by a region r , and a time period t , we need to find out the objects predicted to be
inside r after the time t . This version of the problem statement is about a predictive range
query where the query location is expressed as a region. However, this problem and the
proposed solution are easily customizable to include other query types. For example, for
predictive KNN queries, we consider the query region as a point location L rather than
a region and specify a number K to guide the query processor to retrieve the K objects
with highest probabilities to show up around L after t time unites. Our objective here is to
introduce an efficient predictive query processor that reduces the computation time. Note
that the objects’ location updates are expected to be streamed to the system’s input buffer

Geoinformatica (2017) 21:175–208 181

directly. Hence, the data is handled in main memory as it arrives. Consequently, the focus
of Panda∗ is to optimize the CPU time of spatial predictive query processing.

3.2 System architecture

The Panda∗ system consists of three main modules, namely, answer maintenance, statistics
maintenance, and query processing (Fig. 1). Each module is dispatched by an event, namely,
an object movement, a trigger for statistic maintenance, and a query arrival, respectively. As
a shared storage, a list of precomputed answers is maintained, which is frequently updated
offline and used to construct the final query answer for received predictive queries. Below
is a quick overview of each of these three events along with its associated event handler
module. Details of these actions are discussed in Section 3.

Object movement Whenever Panda∗ receives an object movement, it dispatches the
answer maintenance module to check if this movement affects any of the precomputed
answers. If this is the case, the affected precomputed answers are updated accordingly.

Tuning trigger This trigger consists of a tunable threshold and/or a specified timeout
interval. Whenever a change happens to the system threshold or at the end of a timeout,
the system tuning module is fired to prompt Panda∗ that the current set of statistics that
judge on which answers to precompute need to be reset. Consequently, the updated statistics
affect which parts of query answers will be precomputed which in turns control the whole
performance of Panda∗.

Query arrival Once a query is received by Panda∗, the query processor divides the query
area into two parts based on the answer precomputation. The first part is already precom-
puted where its answer is just retrieved from the precomputed storage. The second part is
not precomputed and needs to be evaluated from scratch through the computation of the
prediction function against a candidate set of moving objects.

3.3 Prediction function

The long-term prediction function deployed in Panda∗ is mainly an adaptation of the one
introduced by Microsoft Researchers [7, 20] to predict the final destination of a single
object.

Fig. 1 The Panda∗ system architecture

182 Geoinformatica (2017) 21:175–208

F is applied to any space that is partitioned into a set of grid cells C. It takes two inputs,
namely, a cell Ci ∈ C and a sequence of cells Os = {C1, C2, · · · , Ck} that represents the cur-
rent trip of an object O. Then, F returns the probability that Ci will be the final destination
of O, Eq. 1.

F ← P(Ci |Os) = P(Os |Ci)P (Ci)
∑N

j=1 P(Os |Cj)P (Cj)
(1)

The term P(Os |Ci) in the numerator is the possibility of the sequence Os of the current
traversed cells by the object O given the destination cell Ci . This term can be computed
using the traveling efficiency parameter E, Eq. 2 which measures to what extend objects on
the space follow the shortest path in its movements from sources to destinations.

P(Os |Ci) =
n∏

k=2

⎧
⎪⎪⎨

⎪⎪⎩

E if cell Ck in Os is closer to
Ci than the cell Ck − 1

1 − E otherwise

(2)

This parameter E varies from object to another and it can be obtained by examining the
most recent bunch of trajectories of each object. It is also possible to get one value for the
system as whole. This is done by taking the average of traveling efficiency of all objects
on the space. For example, the analysis performed by John Krumm in [20] found that E is
around 0.68. In our set of experiments, we set one E value for the Panda∗ system. P(Ci),
the second term in the numerator, is the previous probability ofCi to be a destination forOs .
Initially this term is set to 1/n, where n is the number of cells in the grid. The denominator
is a normalization factor to sum up all probabilities for all cells in the grid to one, given the
recent rout of an object.

The way the prediction function works is demonstrated in Fig. 2, where the given space
in which the objects move is partitioned into 6× 6 squared cells numbered from 1 to 36. The
current trajectory of the moving object O1 is drawn as a line started at cell C15 and headed
to cell C18. The sequence of cells representing O1 in its current trip is SO1 = {C15, C16, C22,
C23, C18}. The color of a cell indicates its probability of being a destination to the object
O1 given its sequence SO1 , the darker the cell color, the higher the probability. As the object
moves toward its final trip destination, the prediction function updates its computation. So,

Fig. 2 Destinations probabilities based on object sequence

Geoinformatica (2017) 21:175–208 183

some of the grid cells become more probable destination (e.g. C24), and others become less
probability, (e.g. C31).

As F only predicts the destination of an object, it does not have the sense of time. In
other words, F cannot predict where an object will be after time period t . Since this is a core
requirement in Panda∗, we adapt F to be able to compute the probability that object O will
be passing by the given cell Ci after time t , where t is specified in the predictive query. The
adaptation results in the function F̂ , Eq. 3, which is a normalization of the results from the
original prediction function F using the set of cells Dt that could be a possible destination
of an object O after time t .

F̂ ← P(Ci |Os, t) = P(Ci |Os)
∑

d∈Dt
P (Cd |Os)

(3)

Here, the numerator is the output of the original prediction function F, and the denomina-
tor is the summations of the probabilities of all grid cells in Dt , also computed from F .

4 Panda∗: a predictive spatio-temporal query processing

A salient feature of Panda∗ is that it is a generic framework that supports a wide variety of
predicative spatio-temporal queries. Panda∗’s query processor can support range queries,
aggregate queries, and k-nearest-neighbor queries within the same framework. In addition,
Panda∗’s query processor can support stationary as well as moving data. Finally, Panda∗
is easily extensible to support continuous queires. This generic feature of Panda∗ make
it more appealing to industry and easier to realize in real commercial systems. This is in
contrast to all previous work in predictive spatio-temporal queries that focus on only one
kind of spatio-temporal queries. As described in Fig. 1, Panda∗ reacts to three main events,
namely, query arrival, object movement, and a trigger for statistics maintenance. Each event
prompts Panda∗ to call one of its three main modules to take the appropriate response. This
section discusses the details of each main module. The section first starts by describing
the underlying data structure of Panda∗ (Section 4.1). Then, the generic query processor,
answer maintenance, and system tuning are described in Sections 4.2, 4.3, and 4.4, respec-
tively. Following the spirit of Panda∗, the discussion in this section is made generic without
referring to a particular predictive query type, except when giving examples. The extensi-
bility of Panada∗ to support various predictive query types will be described in next section
(Section 5).

4.1 Data structure

Figure 3 depicts the underlying data structure used by Panda∗. A brief overview of each
data structure is outlined below:

Space grid SG Panda∗ partitions the whole space into N × N grid cells. For each cell
Ci ∈ SG, we maintain: (1) CellID as an identifier, (2) Current Objects as the list of moving
objects located inside Ci , (3) Query List as the list of predictive queries issued on Ci . Each
query Q in this list is presented by the tuple (T ime, Counter , Answer), where T ime is
the future time included in Q, Counter is the number of times that Q is issued to Panda∗,
Answer is the precomputed answer for Q which may have different format based on the
type of Q, e.g., for predictive range query, it carries the list of objects expected to compose
the answer, while in predictive K-NN, it contains the k objects anticipated to satisfy the

184 Geoinformatica (2017) 21:175–208

(a) Grid Index Structure

(b) Travel Time Structure

Fig. 3 Data structures in Panda∗

query conditions. (4) Frequent Cells as the list of cells that one of their precomputed answers
should be updated with the movement of an object in Ci . For example, as provided in Fig. 3,
the cell C3 has a precomputed answer for the future time t = 20 min, while the answer for
t = 30 is not be precomputed, and hence, it should be computed from scratch when a query

Geoinformatica (2017) 21:175–208 185

with the same future time is received. It is important to notice here that N is tuned based
on the application requirements. When N is large, this means the application requires the
prediction to be more precise as the cells size will be smaller, and vice versa. For example,
an advertising application would choose a bigger N to make sure to allocate the user’s future
location around a store area. In a severe weather management application, the N could be
smaller as it will be enough to forecast the tornado , as a moving object, future location at
the level of a city.

Object list OL This is a list of all moving objects in the system. For each object O ∈ OL,
we keep track of an object identifier and the sequence of cells traversed by O in its current
trip. For example, as illustrated in Fig. 3, C2 in its current trip, has passed through the
sequence of cells {C13, C7, C2, C3} that means it started at C13 and it is currently moving
inside C3.

Travel time structure T T S . This is a three-dimensional array of N2 × N2 × T S cells
where each cell T T S[i, j, k] has the travel time interval between space cells Ci and Cj , at
time slot T Sk where Ci and Cj ∈ SG and T S is the time slots of the day. T T S is fully pre-
loaded into Panda∗ and is a read-only data structure. For example, as illustrated in Fig. 3b,
the travel time from C1 to C36 takes from 35 to 45 minutes while it takes 22 to 30 minutes to
travel from C2 and C35 at time slot T S1. According to the underlying set of moving objects,
the value inside a cell in the T T S might be stored as an exact value, e.g., average, or interval
of time, e.g., [min,max]. By visiting this travel time structure, we find out the set of possible
destination cells Dt , mentioned in Section 3.3, to a specific cell C after time t . This is done
by reading the array of time intervals corresponding to the current cell C in the present time
slot T S. Then, we check if the future time t intersects with any of these time intervals, the
cell of this interval will be added to the possible destinations Dt .

4.2 Generic query processing in Panda

The generic query processing of Panda∗ does not only predict the query answer, but it also
prepares partial results of the incoming queries before hand. In general, Panda∗ does not
aim to predict the whole query answer, instead, it predicts the answer for certain areas of
the space. Then, the overlap between the incoming query and the precomputed areas con-
trols how efficient the query would be. If all the query is precomputed, the query will have
best performance in terms of lower latency, however, the Panda∗ system will encounter high
overhead of maintaining the precomputed answer. This isolation between the precomputed
area and the query area presents the main reason behind the generic nature of Panda∗ as
any type of predictive queries (e.g., range and k-nearest-neighbor) can use the same pre-
computed areas to serve its own purpose. Another main reason for the isolation between the
precomputed areas and queries is to provide a form of shared execution environment among
various queries. If Panda∗ would go for precomputing the answer of incoming queries, there
would be significant redundant computations among overlapped query areas.

The Panda∗ query processor utilizes its grid structure G to decide on precomuting the
answer for some specific cells of the G. Upon the arrival of a new predictive spatio-temporal
query Q, with an area of interest R, requesting a prediction about future time t , Panda∗ first
divides Q into a sets of grid cells Cf that overlap with the query region of interest R. For
each cell c ∈ Cf , Panda∗ goes through two main phases, namely, result computation and
statistic maintenance.

186 Geoinformatica (2017) 21:175–208

The result computation phase (Section 4.2.1) is responsible on getting the query result
from cell c either as a precomputed result or by computing the result from scratch. The
statistic maintenance phase (Section 4.2.2) is responsible on maintaining a set of statistics
that help in deciding whether the answer of cell c, for a future time t , should be precomputed
or not.

The precomputation at cell c will significantly help for the next query that asks for pre-
diction on c with the same future time t , yet, precomputation will cause a system overhead
in continuously maintaining the answer at c. Throughout this section, Algorithm 1 gives the
pseudo code of the Panda∗ query processor where the first three lines in the algorithm finds
out the set of cells Cf that overlaps with the query region R, and start the iterations over
these cells.

4.2.1 Phase I: result computation

Phase I, result computation, receives a predictive query Q, either as range, aggregate, or k-
nearest-neighbor, asking about future time t and a cell ci that overlaps with the query region
of interest R. The output of this phase is the partial answer of Q computed from ci . The
following describes the main idea, algorithm, and an example of Phase I.

Main idea The main idea of Phase I is to start by checking if the query answer at the
input cell ci is already computed. If this is the case, then Phase I is immediately concluded
by updating the query result Q by the precomputed answer of ci . If the answer at ci is not
precomputed, then, Phase I will proceed by computing the answer of ci from scratch. Phase I
avoids the trivial way of computing the prediction function of all objects in the system to
find which objects can make it to the query answer at future time t . Instead, Phase I applies
a smart time filter to limit its search to only those objects that can possibly reach to cell ci

within the future time t . Basically, Phase I utilizes the Travel Time Structure (TTS) to find
the set of cells CR that may include objects reachable to ci within time t . Then, we calculate
the prediction function for only those objects that lie within any of the cells in CR . The
result of these prediction functions pile up to build the answer result produced from ci .

Algorithm The pseudo code of Phase I is depicted in Lines 4 to 16 in Algorithm 1. Phase I
starts by checking if the answer of ci at time t is already precomputed in its own Query
List entry in the grid data structure G. If this is the case, we just retrieve the precomputed
answer as the complete cell answer (Line 6 in Algorithm 1), and conclude the phase by
using the cell result to update the final query result (Line 16 in Algorithm 1). Updating the
result is done through the generic function UpdateResults that takes two parameters, the
first is the result to be updated, and the second is the value to be used to update the result.
The operations inside this functions depend on the underlying query type, e.g., aggregate,
range, or k-nearest-neighbor queries. Details of this generic function will be described in
Section 5.1. In case that the answer of cell ci is not precomputed, we start by computing
this answer from scratch (Lines 8 to 14 in Algorithm 1). To do so, we apply a time filter
by retrieving only the set of cells CR that can be reachable to ci within the future time t

by checking the Travel Time Structure (TTS) and find out which cells have the potential to
send objects to ci within time t at the current time slot T Sk of the day. We visit just the slice
for the current time slot of the day in the T T S. Only those objects that lie within any of the
cells of CR may contribute to the final cell answer, and hence the query answer. For each
object O in any of the cell of CR , we utilize our underlying prediction function, described
in Section 3.3, to calculate the predicted value of having O in ci within time t (Line 11

Geoinformatica (2017) 21:175–208 187

in Algorithm 1). We then use this predicted value to update the result of cell ci using the
generic UpdateResults function. Once we are done with computing all the predicted values
of all objects in any of the cell of CR , we again utilize the generic function UpdateResults
to update the final query result by the result coming from cell ci (Line 16 in Algorithm 1).

Algorithm 1 Panda predictive query processor

Input: query region , future time
1: QueryResult null, CellResult null
2: the set of grid cells intersecting with ()
3: for each cell do
4: /* Phase I: Result Computation */
5: if there is an answer in at time then
6: CellResult read answer from
7: else
8: the set of grid cells reachable to in time at the current time slot
9: for each cell do
10: for each object current objects in do
11: ObjectPrediction Compute
12: UpdateResults (CellResult, ObjectPrediction)
13: end for
14: end for
15: end if
16: UpdateResults (QueryResult, CellResult)
17: /* Phase II: Statistics Maintenance */
18: the entry in the query list of at time
19: if is NULL then
20: Insert a new blank entry to the query list of with .Counter=0 and .Answer is Null
21: end if
22: .Counter .Counter + 1
23: if .Counter System threshold AND .Answer is NULL then
24: .Answer CellResult
25: the set of grid cells reachable to in time at the current time slot
26: Add to the list of frequent cells in all cells in
27: end if
28: end for
29: Return QueryResult

Example Figure 4 gives a running example of Phase I in Panda∗ where there are 19
objects, O1 to O19 laid on a 6 × 6 grid structure of 36 cells. Figure 4a indicates the arrival
of a new predictive range query Q30, a shaded rectangle in cell C19, that asks about the set
of objects that will be in the area of Q30 after 30 minutes. Though we are using a range
query as a running example, all ideas here are applied to aggregate and k-nearest-neighbor
queries as well. In Fig. 4b, we find out all the cells that overlap the area of query Q30. For
ease of illustration, we intentionally have Q30 covering only one cell, C19, in which we are
going to carry on for the next steps. If Q30 covers more than one cell, then, the next steps
will be repeated for each single cell covered by Q30. Figure 4b also gives the Query List
structure of C19, where two previous predictive queries came at this cell before; a query that
asks about 30 minutes in future, and it came only one time before (counter = 1) and another
query that asks about 20 minutes in the future and were issued 10 times before. By looking
at this data structure, we find that the answer of the future time t is set to null, i.e., it is not
precomputed. In this case, we need to compute the answer for this cell from scratch. Note
that if this query was asking about the set of objects after 20 minutes, we would just report

188 Geoinformatica (2017) 21:175–208

(a) Affected Cells

(b) Precomputed Parts

(c) Travel Time Filter

(d) Result Formulation

Fig. 4 Phase I example

the answer as {O1,O8} as it is already precomputed. Unfortunately, for the case of t = 30,
we need to proceed for more computations.

Figure 4c starts the process of computing the answer of cell C19. As a first step, we
utilize the Travel Time Structure (TTS) to find out the set of cells that are reachable to C19

Geoinformatica (2017) 21:175–208 189

within 30 minutes. We find that there is only three cells that can contribute to the answer of
C19, namely, C9, C16, C33. This means that objects that are not located in any of these cells
are not going to make any contribution to C19 within 30 minutes. For example, an object
O3 in C25 is likely to be far away from C19 in 30 minutes, (i.e., assuming it keeps moving),
and thus there is no need to consider it in computation at all. The travel time filter plays an
important role in filtering out large number of objects that are not going to contribute to the
query result. Then, we can only focus on the objects located in C9, C16, C33, where there
are only four objects O5, O9, O18, and O19. For each of these four objects, we calculate
the prediction function F̂ to find out the probability that these objects can be in C19 in 30
minutes. With probability calculation, we find out that O19 has a zero probability of being
in C19 in 30 minutes, while the other three objects have a non-zero probability. We finally
report the answer in Fig. 4d as {O5, O9 O18} along with the probabilities of these objects
being in C19 in 30 minutes.

4.2.2 Phase II: statistics maintenance

Phase II, statistics maintenance, does not add anything to the query answer. Instead, Phase II
updates a set of statistics that help in deciding what parts of the space and queries need to be
precomputed. The input to this phase is the cell ci and its answer list, computed in Phase I.
Then, Phase II uses this information to update the statistics maintained by Panda∗.

Main idea The main idea of Phase II is to employ a tunable threshold, 0 ≤ T ≤ ∞,
that provides a trade-off between the predictive query response time and the overhead for
precomputing the answer of selected areas. At one extreme, T is set to 0, which means that
all queries will be precomputed beforehand. Though this will provide a minimal response
time for any incoming query, yet, a significant system overhead will be consumed for the
precomputation and materialization of the answer. On the other extreme, T is set to ∞,
which means that nothing will be precomputed at all and all incoming queries need to be
computed from scratch. This will provide a minimum system overhead, yet, an incoming
predictive query will suffer from high latency. Given a fixed value of T , Panda∗ smartly
decides which parts of the space should be precomputed. To efficiently utilize the tunable
threshold T , Phase II keeps a counter for each kind of predictive query arriving at each
cell. If this counter exceeds the threshold value T , then, this query is considered frequent,
and the answer of this query in cell ci is precomputed. In addition, we add cell ci to the
list of frequent cells in all cells that are reachable to ci within time t . This is mainly to say
that any object movement in any of these reachable cells will affect the result computed
(and maintained) at cell ci . This list of reachable cells to ci within time t can be directly
obtained from the Travel Time Structure (TTS). It is worthy to mention here that there are
two things to consider when visiting the travel time structure. (1) We need to read the slice
of the data related to the current time slot of the day. (2) We do not search for those cells
that are exactly reachable within the specified time slot, rather, their travel time intervals
just need to contain the future time in the query. For example, if the travel time between the
ci and the query cell cq at the current time slot is [8,12] minutes and the query future time
is 10 minutes, this means ci is reachable to cq .

Algorithm The pseudo code of Phase II is depicted in Lines 18 to 27 in Algorithm 1.
Phase II starts by retrieving the entry e from the query list of ci that corresponds to the
querying time t . If there is no such prior entry, i.e., e is NULL, we just add a new blank entry
in the query list of ci for time t , with counter set to zero, and answer set to null (Lines 18

190 Geoinformatica (2017) 21:175–208

to 21 in Algorithm 1). Then, we just increase the counter of e by one to update the number
of times that a query arrives at cell ci with time t . Then, we check the counter of this
incoming query against the system threshold and the value of the current cell Answer. This
check may result in three difference cases as follows: (1) e.counter < T , i.e., the counter
is less than the system threshold T . In this case, Phase II decides that it is not important
to precompute the result of this query, as it is not considered as a frequent query yet. So,
Phase II is just concluded. (2) e.Answer �= NULL. In this case, the query time t is already
considered frequent and the answer is already precomputed. In this case, Phase II will also
just conclude as there is no change in status here. (3) e.counter ≥ T AND e.Answer is
NULL. This case means that the query time t has just become a frequent one, and we need
to start precomputing the result for t at cell ci . In this case, we first add the computed cell
result from Phase I to the the answer of e. Then, we find out the set of cells CR that are
reachable to cell ci within time t . For these cells, we add cell ci to their list of frequent cells.
This is mainly to say that any object movement of any cell cj ∈ CR will affect the result
computed at cell ci (Lines 18 to 23 in Algorithm 1).

Example Figure 5 gives a running example of Phase II continuing the computations of
Phase I on the example of Fig. 4. Figure 5a shows that the counter of the time entry 30
is updated to be 2. Assuming the time threshold T is set to 2. Then, the time t is now
considered frequent. Figure 5b depicts the actions taken by Phase II upon the consideration
that the incoming query with time t becomes frequent. First, the query list of C19 is updated
to be the computed answer from Phase I. Second, the cell C19 is added to the list of frequent
cells for C9, C19, and C33 to indicate that any movement in these three cells may trigger a
change of answer for cell C19.

4.3 Answer maintenance

As has been discussed in the previous section, the efficiency of the Panda∗ generic query
processor relies mainly on how much of the query answer is precomputed. Though we have
discussed how Panda∗ takes advantage of the precomputed answers, we did not discuss
how Panda∗ maintains those precomputed answers, given the underlying dynamic environ-
ment of moving objects. This section discusses the answer maintenance module in Panda∗,
depicted in Fig. 1, which basically triggered with every single object movement.

Main idea The main idea behind the answer maintenancemodule is to check if this object
movement has any effect on any of the precomputed answers. If this is the case, then Panda∗
computes this effect and propagates it to all affected precomputed answers. If Panda∗ fig-
ures out that this object movement has no effect on any of the precomputed answers, then, it
just does nothing for this object movement. As our underlying prediction function F̂ mainly
relies on the sequence of prior visited cells for a moving object, an object that moves within
its grid cell will have no effect on any of the precomputed answers. Basically, movement
within the cell does not change the object predication function, and hence will not have any
effect on any of the precomputed answers. It is important to note that the answer mainte-
nance module does not decide upon which parts of the queries/space to be precomputed,
as this decision is already taken by the statistics collected in the generic query proces-
sor module. Instead, the answer maintenance module just ensures efficient and accurate
maintenance of existing precomputed answers.

Geoinformatica (2017) 21:175–208 191

(a) Statistics Update

(b) Reachable Cells

Fig. 5 Phase II example

Algorithm Algorithm 2 gives the pseudo code of the Panda∗ answer maintenancemodule.
The algorithm takes three input parameters, the moved object O, its old cell Cold before
movement, and its new cell after movementCnew . The first thing we do is to check if the new
cell is the same as the old cell. If this is the case, the algorithm immediately terminates as
this object movement will not have any effect on any of the precomputed cells. On the other
side if the new cell is different form the old one, the algorithm proceeds in two parts. In the
first part (Lines 5 to 11 in Algorithm 2), we first add O to the set of current objects of Cnew .
Then, we retrieve the set of frequent cells of Cnew , i.e., those cells that have precomputed
answers and may be affected by any change of objects in Cnew . For each cell Ci in the
set of frequent cells, we do: (a) retrieve the travel time t from the new cell to Ci from the
Travel Time Structure, (b) compute the predicted value of O being in Ci after t time units,
and (c) update the precomputed result at cell Ci by the predicated value, using the generic
function Update Results. The second part of the algorithm (Lines 12 to 16 in Algorithm 2)
is very similar to the first part, except we are working with Cold instead of Cnew , where

192 Geoinformatica (2017) 21:175–208

we remove O form the set of objects of Cold , we update all the precomputed frequent cells
of Cold . A major difference here is that we update the precomputed result by removing O

and its probability from it. It is important to notice here that we do not need to compute the
object prediction as it is already stored in the precomputed answer at Ci .

Algorithm 2 Answer maintenance

Input: Object
1: if then
2: Return
3: end if
4: Add to the set of current objects of
5: current time slot of the day
6: The set of frequent cells of
7: for each cell do
8: travel time from to from at
9: ObjectPrediction Compute
10: UpdateResults (CellResult, ObjectPrediction)
11: end for
12: Remove from the set of current objects of
13: The set of frequent cells of
14: for each cell do
15: UpdateResults (CellResult,)
16: end for
17: Return

Example Back to our running example in Fig. 5b that illustrates the precomputed answer
for the query Q30 in cell C19. Assume that object O9 moves out from its cell C16 to C17.
So, we add O9 to the list of current objects in C17, and get its list of frequent cells, only
C1 is there. Then, we obtain the time t between C1 and C17 as 40. We then compute F̂ =
P (C1|O9, 40) which gives the probability that O9 will be in C1 after 40 time units. We then
incrementally update the answer at C1 by the value of F̂ . We do the same for C16, the cell
that O9 has just departed. We delete O9 from the list of current objects in C16 as this object
is no longer inside it. Then, we read the list of frequent cells of C16 which returns C19, and
we get the time t between C16 and C19 as 30. At this point, we do not need to compute
F̂ = P (C19|O9, 30) because it is already stored in the query list of C19. All what we do
here is updating the answer in C19 by removing O9 and its probability.

4.4 System tuning

In the previous two sections, we discussed the first two modules in the Panda∗ system, the
query processor and the answer maintenance. As provided, the query processor is responsi-
ble for processing the incoming predictive queries and deciding which parts to precompute
in advance based on the collected statistics and a system threshold T . The answer mainte-
nance concerns with maintaining the answers in those precomputed parts such that it always
fresh and ready for retrieval.

At this point, if we leave Panda∗ to run forever and to precompute a query answer when
its frequency exceeds a threshold T , we will end up to precompute the answer for all queries
in advance. In this situation, a significant computational overhead will be added as every
single object movement will cause updates to all query lists in all grid cells which makes
Panda∗ having the worst possible efficiency. Another problem is that some queries show
up with high frequency rate during a certain time duration (i.e. one hour) then disappear or

Geoinformatica (2017) 21:175–208 193

come rarely for long period (i.e. hours or days). Accordingly, it is meaningless to keep pre-
computing and updating the answer for queries with this behavior for long time. Obviously,
it will be better to stop this precomputation and even forget about those queries and when
they come, just compute their answers. A third reason behind the need for the system tun-
ing module is that it is infeasible to have an accurate, and a detailed workload information
before putting Panda∗ in real execution environment. Consequently, it must own a mecha-
nism to be sensitive to the changes in the workload patterns. For these reasons, this section
introduces the system tuning module that allows Panda∗ to periodically analyze the queries
behavior during a recent timeout (i.e. one hour) to predict the coming queries for the next
timeout, and yet refine its decision about which parts to precompute and which to stop their
precomputing.

Idea The idea of the system tuning module is that it periodically prompts Panda∗ to adapt
its decision toward the precomputed parts by examining the collected statistics about the
received queries during the past timeout (i.e. hour or day). If a query had high frequency rate
, then we predict it will be frequent during the next timeout too. Intuitively, Panda∗ keeps
precomputing its answer and makes it fresh for queries in the coming timeout. On the other
side, if a query was initially precomputed and the collected statistics during the previous
timeout indicate that it became non frequent, we anticipate that it will show up rarely during
the next timeout. Yet, Panda∗ must refines its decision and stops the precomputation for this
query. Actually, we can use more intensive analysis and prediction model here to predict
the coming queries for the next timeout, however, we want to keep it simple to avoid adding
extra overhead which will downgrade the whole system efficiency.

Algorithm 3 System tuning

Input: Threshold
1: for each cell the Grid do
2: for each entry .’Query List’ do
3: if .Counter AND .Answer is NULL then
4: .Answer Compute the predicted answer for after .Time
5: Add to the list of frequent cells in each of its reachable cells
6: else if .Counter AND .Answer NULL then
7: .Answer NULL
8: Remove from the list of frequent cells in each of its reachable cells
9: end if
10: if .Answer is NULL then
11: Delete from .’Query List’
12: else
13: .Counter 0
14: end if
15: end for
16: end for
17: Return;

Algorithm Algorithm 3 gives the pseudo code for the system tuningmodule used to control
the system efficiency by sustaining the used statistics to reflect the recent picture of the
system. The counter and the answer fields are the most important ones that need to be
kept up to date instantly. Thus, they identify which space areas will be precomputed and
which will not be during the next query processing timeout period Tout . The algorithm takes
the recent value of the threshold T as an input. This value is used to control the efficiency
during the coming timeout Tout .The algorithm navigates through the grid data structure G

194 Geoinformatica (2017) 21:175–208

and examines the entries in the query list in each grid cell ci . For each entry e that represent a
query future time value t in the e.time field, we check both the e.counter and the e.answer

fields (Lines 2 to 9 in Algorithm 3). This check has four possible alternatives.

(1) e.counter < T and e.answer is NULL. In this case, the null value in the answer

filed means that the query with time t was not frequent (has no precomputed answer)
during the ended timeout Tout , while the counter value less than the threshold means
that it is predicted not be a frequent query in the next Tout too. Accordingly, it will not
be useful any more to keep the entry for t , yet, this entry e is deleted from the query
list of ci (Lines 10 to 12 in Algorithm 3).

(2) e.counter ≥ T and e.answer �= NULL. In this case, the query with the time t is
already considered frequent and the answer is already precomputed, and it will remain
frequent during the coming timeout Tout . Consequently, no action is required rather
than resetting its counter to zero (Line 13 in Algorithm 3).

(3) e.counter ≥ T and e.answer is NULL. This case means that the query time t has
switched its status to be a frequent one during the next timeout Tout . Instantly, we
precompute the result for t at cell ci and store it in the answer field.Then, we populate
the cell ci to the list of frequent cells in its reachable cells within time t (Lines 3 to 5
in Algorithm 3).

(4) e.counter < T and e.answer �= NULL. This case is the opposite to the previous
which means that the query time t has switched its status to be non frequent during the
next timeout Tout . Yet, we empty its answer field by setting it to NULL, and delete
the cell ci from the list of frequent cells in its reachable cells within time t .

In all cases, the e.counter fields of the remaining frequent queries are set to zero such
that the decision at the end of each timeout Tout is affected only by the number of queries
received during that recent Tout (Line 13 in Algorithm 3).

Example After running Panda∗ for one hour, we had the precomputed answer in the cell
C19 in our example in Fig. 5b. Assuming the used threshold T value is three, then we check
the entries in the query list in the cell C19. The counter value in the first record (where t ime

= 30) is less than 3 and its answer is �= NULL, then we set this precomputed answer to
NULL and remove C19 from the list of frequent cells of of its reachable cells, ({C9, C16, and
C33}), then the counter is set to zero. For the second record (where t ime = 20), the counter

is greater than T and the answer has a non NULL value, therefore, we keep everything as
it is except the counter which will reset to zero too. For the next timeout, the query list of
C19 will not contain the record for t = 30 since it is not frequent.

5 Extensibility of Panda∗

In the previous section, we have discussed the generic framework of Panda∗ as a predictive
spatio-temporal query processor, and we have elaborated its main modules that compose its
core. In this section, we illustrate how Panda∗ can be extended to support a wide variety of
predicative spatio-temporal queries and how it can be harmonized according to the nature
of the underlying data. Basically, this is accomplished through the optimized implementa-
tion of the generic function UpdateResults to serve the needs of the underlying query type,

Geoinformatica (2017) 21:175–208 195

e.g., aggregate, range, or k-nearest-neighbor queries, and the underlying data nature, e.g.,
moving data, or stationary data.

5.1 Query type

In this section we study the extensibility of Panda∗ to support the evaluation of three
main predictive query types, namely range, K-NN, and aggregate query. However, this
extensibility is not limited to these types only because the universal nature of the aforemen-
tioned data structures and algorithms that can be easily tailored to other feasible predictive
spatio-temporal queries.

5.1.1 Range query processing

Idea A predictive range query is defined by two elements, a rectangular query region R

and a future time t , and asks about the objects expected to be inside the determined query
region after the specified future time. Panda∗ starts the range query processing by getting
the grid cells that overlap the query region. Those cells are divided into two groups. The
first one contains the cells that already have precomputed answers that we need to retrieve
them only without further processing, while the second group contains the overlapped cells
that their answers have to be computed from scratch. For each cell ci in the second group,
Panda∗ visits the travel data structure TTS and gets the list of the reachable cells CR to the
cell in hand ci . For each object in a reachable cell, Panda∗ applies the prediction function
and checks if that object is predicted to arrive at ci after the desired future time, if this is the
case, this object with its probability is appended the result of ci . To do that, the UpdateRe-
sult function is implemented to precisely serve the predictive range query processing such
that it is able to build up the result of the cell in hand as well as the final query result by
continue appending the objects identifiers and with their probabilities. Also, the UpdateRe-
sult function is used to form the final result of a range query by merging the objects in the
precomputed cells and those that have just been computed. Yet, the returned answer encom-
passes the list of objects expected to be inside the overlapped cells after the desired time
unites in the future.

Example The illustrated example in the two phases in Section 4.2 is sufficient to explain
the processing of predictive range query.

5.1.2 K-NN query processing

Idea A predictive K-NN query has two parameters, a specified location point and a future
time, and enquires about the K objects expected to be the nearest to that location after the
given time. Initially, Panda∗ locates that point into a corresponding grid cell which will be
checked if having a precomputed answer for theK or more objects expected to appear at this
cell after the determined future time. If this is the case, the precomputed answer is simply
returned without extra computation. Otherwise, in the case that there is no precomputed
answer, Panda∗ computes it in similar way to range query in order to find the satisfactory
K objects. In the case that the precomputed answer or the yet computed answer has objects
less than the desired K , Panda∗ expands the query location by adding the nearest adjacent
cell and recall the original computation steps on this recently added cell. This process is

196 Geoinformatica (2017) 21:175–208

repeated until the query is satisfied. Definitely, Panda∗ has a different interpretation of the
term nearest here, which reflected as the objects with the highest probability to be within
the nearest cell(s) of the query point. This interpretation inherited from the nature of the
underlying prediction function which locates the anticipated location of an object in a cell
size area rather than predicting its exact future point. The UpdateResult function is exactly
implemented as in the range query without difference. The results for both queries are lists
of objects.

Example If we consider a predictive K-NN query with K = 5, t = 20, and location point
= L which is represented by a star in Fig. 6a, Panda∗ will start by locating L in C17, Fig. 6b.
Since C17 has no precomputed answer for t = 20, as shown in the query list in Fig. 6b,
then Panda∗ has to prepare the answer from the ground. Accordingly, we find out the set of
cells reachable to C17 in 20 minutes. By examining the travel time grid, we get {C5, C35}
are within [18,22] minutes, and {C9, C14, C26, C35} are within [15,25] minutes, based on
the current status of the space. Other cells have travel time either completely smaller than
20 minutes or larger than 20 minutes. For example, cells with travel time [25,35] to C17
will not contribute in the query answer as they do not intersect with the query time, 20
minutes. This means those five cells might contribute to the predicted results at C17, Fig. 6c.
It is easily noticeable that C5 and C26 do not have objects moving inside their boundaries,
thus, no need to call the prediction function here. For each object in the other three cells,
{C9, C14, C35}, we need to predict their possible destinations. For C9, Fig. 6d, e, f give the
predicted destinations for objects O5, O18, and O19, respectively. This leads to, objects O5
and O18 are likely to show up at the query cell C17, but O19 will not as C17 is not among
its future destinations. By performing the prediction for objects in C14 and C35, we infer
that both will contribute by objects O4 and O12, Fig. 6g, h, respectively. At this moment,
we are done with the five reachable cells to the query initial region. But what in-hand as
a predicted result is just four objects, {O5, O18, O4, O12} along with their probabilities,
which is less than the desired K . So, this is not sufficient as a final query result. Therefore,
we need expand the initial query region by adding one of its neighbor cells. To do so, we
measure the distance from the query location L, (the star symbol), to the center of the eight
vicinity cells, Fig. 6i. This results in adding C11, the nearest cell, to the query region, Fig. 6j.
Nothing is precomputed for predictive queries in this C11, yet, another round of prediction
is required. The set of reachable cells to C11 includes {C3, C30}, with travel time [20,22]
and [15,21] minutes, respectively, Fig. 6j. As the later has no objects at the present time, we
predict the future destinations of the former cell’s objects. Fortunately,O2 is likely reach the
new query cell C11 in 20 minutes, Fig. 6k. Finally, we have five objects predicted to show
up around the query location L in 20 minutes from the present time. That fulfills the query
requirements and the returned answer will be {O5, O18, O4, O12, O2}. In the case that we
find more than K objects, we sort them based on their computed probabilities and pick up
the highest K ones.

5.1.3 Aggregate query processing

Idea A predictive aggregate query consists of a query region R and a future time t , and it
finds out the number of objects N predicted to be inside that region after the given time.
Clearly, it looks similar to the range query, hence, it follows the same exact steps. However
the format of the final result is different where the aggregate query wants the number of
objects N rather than the objects themselves. Therefore the UpdateResult function is cus-
tomized to sum up the number of objects instead of appending objects to the result list. So

Geoinformatica (2017) 21:175–208 197

(a) KNN Query Location

(b) Initial Query Cell,

(c) Reachable Cells To

(d) Prediction For (e) Prediction For , (f) Prediction For

(g) Prediction For , (h) Prediction For , (i) Expanding Query Cells

(j) Reachable Cells To

(k) Prediction For , (l) Prediction For ,

Fig. 6 Predictive KNN Query Illustrative Example

198 Geoinformatica (2017) 21:175–208

it is employed to compute the the expected number objects to be inside each single cell in
R after time t , and also aggregate those numbers to obtain the final query result.

Example Considering Q30 as an aggregate query, Panda∗ will apply the same steps in
Figs. 4 and 5, and the final result will give the number of objects expected to arrive at the
query region after 30 minutes which will be {3}.

5.2 Data nature

The shared data structure, the isolation between the precomputed areas and the query region,
and the generic query processor frame the infrastructure that allows Panda∗ to support a
wide variety of predictive queries including range queries, k-NN queries , and aggregate
queries. Apparently, each query type can operate the same data structure in a different way
to compute its own answer. As described in the mentioned algorithms, to handle the case of
predictive range or K-NN queries, the precomputed answer in the query list (QL)maintains
a list of objects expected to be inside a query region R after future time t , while in the case
of predictive aggregate queries, the same list is used to carry a number.

In this section, we explain the ability of Panda∗ to act suitably according to the nature
the underlying data whether it represents stationary or moving objects. We provide some
examples to illustrate this flexibility feature.

5.2.1 Stationary data

In this class of data, the points of interest that a user query questions about are static objects
that almost do not have mobility nature. Examples for stationary data include gas stations,
restaurants, theaters, cinemas,...etc. We refer to a stationary object i by Si . Basically, Panda∗
can preserve information about the underlying stationary objects in addition to the moving
objects using its grid data structure where each object is linked to its corresponding cell. The
predictive query in this case is tight to a certain moving object not to any of the stationary
objects. For example, as illustrated in Fig. 7, a moving object O11 sends a range query to
find out the gas stations within half mile of its future location after 40 minutes, of course
without releasing its intension. To process this query, Panda∗ initially finds the current cell,
C28, in which O11 is currently moving. Thus, C28 is added to the current trajectory of O11.
Then it obtains the list of its candidate destination cells after 40 minutes which will include
{C2, C6, C13}. This is achieved by accessing the travel time structure under the column of
C28. After that, it determines the highly anticipated destination in a granularity equivalent
to a grid cell area. That is accomplished by calling our prediction function feeded with the
current trajectory of O11, Fig. 7a. Since C2 is the predicted destination, a half mile query
region is placed starting from its center. Therefore, the set of the stationary objects that
intersect with that region is returned as the query results which will be {S4, S5}, Fig. 7b.

5.2.2 Moving data

This class of data has both the spatial and temporal features, so they dynamically change
their locations. Predictive query on this class of data has two options. The first option, is
to be connected to a specified moving object which imposes Panda∗ to do a preprocessing
step by calling our prediction function F̂ to identify the possible destination cell cd for that
object at the given time t . Accordingly, the query is located at that destination cell cd . Then
it ordains a customized version of the predictive query processor according to the query

Geoinformatica (2017) 21:175–208 199

(a) Candidate destinations of

(b) Query Results

Fig. 7 Query processing on (stationary vs moving) data

type as explained in the previous section. For example a moving object O11 asks about the
moving objects, (i.e., friends with mobile phones, some moving service like police cars),
expected to show up within half mile of its future location after 40 minutes. To process this
query, we find that C2 is the most predicted target cell after 40 minutes based on the recent
trajectory of O11. After that, we dispatch Panda∗ query processor to evaluate a range query
positioned at the center of C2. The expected answer will be {O3, O7}, Fig. 7b.

The second option for predictive query on moving data, is to be connected a static area
or location in the given space, for example a store wants to notify the cars expected to be
within two miles of its location about offers after 3o minutes. In this situation, the query
processor is fired directly without any additional preparation steps. The example illustrated
in Section 4.2 fits in this class of data.

6 Experimental evaluation

In this section, we evaluate the efficiency and the scalability of our proposed system Panda∗
for processing predictive queries. We compare Panda∗ with two other baseline algorithms
namely Precomputed and Instant, introduced for performance comparison.

In the first baseline algorithm, Precomputed, all possible queries results are precomputed
before they are issued in a behavior likes a kind of brute force algorithm. Once a snapshot
query is received, the answer is read and returned to the user without any further com-
putation. It is obvious here that this baseline algorithm will be having the faster response
time, since no computation happens after receiving a query. Just the precomputed result is
accessed and returned directly as a final query answer.

The second baseline algorithm, Instant, stands at the opposite side of the previous one in
terms of precompuation for the query answer. In the Instant algorithm, there is no precom-
puation at all for any query answer. Instead, all results are instantly computed from scratch

200 Geoinformatica (2017) 21:175–208

once the query arrives for processing. Clearly, queries evaluated using this algorithm will
wait the longest time until getting their results ready. However, it will save the computation
overhead required by the Precomputed algorithm for keeping all queries answers up-to-date.

In all experiments, the evaluation and comparison are in terms of, (a) average response
time per query, which means the average CPU time it takes to return the answer to the issued
query since the query is received by the underlying algorithm, (b) average updating cost,
which is the average system overhead measured by the CPU time consumed for updating
the precomputed results according to the objects movements between different cells, and
(c) total processing time, which is equivalent to the sum of the CPU time consumed for
preparing the precomputed parts of a query beforehand and the CPU time to complete and
the rest of computation after the query arrival.

Since Panda∗ and the other two baseline algorithms employ the same prediction func-
tion to compute the probability of an object being in a certain query region after some time
duration, we will not compare the accuracy among them. Worth to remind here that we dis-
cussed the overall idea of our adjusted prediction function F̂ with respect to its underlying
base prediction function F in Section 3. The accuracy of the employed prediction function
is examined and reported here in Section 6.5.

6.1 Experiment setup

In our performance evaluation experiments, we use two data sets.

Synthetic data We use the Network-based Generator of Moving Objects [5] to generate
large sets of synthetic data of moving objects. A real road network map is used for our
experiment setting and for the generator as an input. The road map is extracted from the
shape files of Hennepin County in Minnesota, USA. Then, the shape file are converted
to network files as required by the moving objects generator. The output of the generator
contains different sets of moving objects that move on the given road network map. The
generated objects are assumed to be uniformly distributed over the spatial space.

Real data This is also a real data containing the GPS trajectories for more than 10,000 taxis
within Beijing [37, 38]. In this data, each taxi has an identifier taxi id, and its movements
that are defined by three fields namely, date time, longitude, and latitude.

Both real data sets require some data preprocessing to remove the outliers caused by GPS
reading errors, and to partition these readings into realistic objects trajectories. The space in
which objects move is virtually partitioned into N × N squared grid cells of width relative
to the minimum and the maximum step taken by any of the underlying moving objects.
Our space grid data structure mirrors the space partitions by storing an identifier for each
cell Ci and updatable list of objects moving within that cell Ci . To have the travel time
data structure T T S filled before starting the experiment, the travel time between any pair
of cells, Ci and Cj , is obtained by taking the average minimum and the average maximum
time it takes from the underlying set of objects to move from Ci to Cj at time slot T Sk .

In fact, it might be more practical to store the travel time between various cells as a range
of time rather than an exact value. Therefore, a user can issue predictive queries on objects
anticipated to be inside a query region after a future time specified as an interval. At the
query processing, to deal with this kind of time uncertainty, we use the weighted probability
that varies according to the size of the intersection between the travel time interval from
a cell to the query region and the query future time interval. For example, if a query asks

Geoinformatica (2017) 21:175–208 201

about predicted number of moving objects in Rq after [10, 20] time unites as the future time
interval, and if the cell Ci is far from Rq by a travel time interval [19, 28], then we weigh
the participation of Ci by 20 % of the number of objects predicted to come from it to Rq .

To have the algorithms tested against different workload rather than single queries, a
query workload generator is built to obtain workloads of predictive queries that vary in the
number of queries, the query region size, and the query future time. The number of queries
in the generated workloads starts at 1K queries per batch, and increases by 10K until reaches
100K queries in a batch file. The generated queries regions are squares and their locations
are uniformly distributed over the space. The size of the generated queries vary from 0.01
to 0.06 of the total space size.

All experiments are based on an actual implementation of Panda∗ and the two base-
line algorithms, Instant and Precomputed. All the behaviors of the generated objects, query
workload generator, and query processing algorithms are implemented on a Core(TM) i3
4GB RAM PC running Windows 7 with C++.

As the Panda∗ system deals with moving objects, the objects movements are supposed
to be streamed to the system directly. So, data is handled in the memory as it comes.
Therefore, we focus on the performance from the CPU perspective. For the purpose of the
experiments, normally, the data is stored on files. However, we upload all in the memory
at the warming up phase of the experiments. Then, we start measuring our performance
parameters after we make sure everything is in memory.

In the following sections, we study the effect of threshold value on the performance of
Panda∗. Then we compare the efficiency of Panda∗ to the other two approaches and provide
their evaluation with different query workloads. After that, we explain how Panda∗ can
scale up with large number of objects and with outsized queries.

6.2 Impact of threshold tuning

In the first set of experiments, we study the impact of different threshold T values on the
performance of Panda∗ with different data sets. The minimum value that the T can take
in this experiment is 0 which means any query on cell Ci with time t that appears at least
one time on Ci will be precomputed in advance, and the maximum is set to 10 which
means any query with reappearance rate less than 10 times will not be precomputed at
all. The maximum threshold value is decided based on the number of queries in a work-
load, and the number of different sizes and the number of different future times for the ge-
nerated queries. Tmax ≥ NQueries / (NDistinctSizes * NDistinctT imes), while Tmin is always
zero.

 0

 10

 20

 30

 40

 50

 60

0 2 5 7 10

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Threshold Value

Reponse Time

Update Cost

Processing Time

5K

 0

 10

 20

 30

 40

 50

 60

0 2 5 7 10

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Threshold Value

Reponse Time

Update Cost

Processing Time

10K

 0

 10

 20

 30

 40

 50

 60

0 2 5 7 10

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Threshold Value

Reponse Time

Update Cost

Processing Time

20K(a) (b) (c)

Fig. 8 Effect of Threshold Tuning

202 Geoinformatica (2017) 21:175–208

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Queries (K)

Panda*

Precompute

Instant

Update Cost

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Queries (K)

Panda*

Precompute

Instant

Response Time

 0

 5

 10

 15

 20

 20 30 40 50 60 70 80 90 100

T
o

t
a
l

C

P
U

T

i
m

e

(
s
)

Queries (K)

Panda*

Precompute

Instant

Processing Time(a) (b) (c)

Fig. 9 Efficiency of Panda∗ vs Precompute, Instant

As given in Fig. 8, in all data sets, Panda∗ gives its best response time when T = 0 and
the lowest update cost when T = 10, while it gives its worst response at T = 10 and highest
update cost at T = 0. Between the minimum T and the maximum T , the threshold value
can be tuned to provide the required balance between the time a user has to wait to receive
a query result and the overhead cost used to prepare this answer in advance.

The effect of the threshold value on the overall performance of Panda∗ varies according
to the underlying data set. For example, in the first data set, Fig. 8a, the lowest processing
time required to evaluate a query is achieved when T = 0 and the highest is at T = 10,
and the trend of the curve is to increase when the threshold values increases. The matter
is different in the second and the third data sets, where the lowest processing cost is at T
= 5 and the highest is at T = 10 in the second data set, Fig. 8b, while at T = 5 and T
= 0 Panda∗ achieves its lowest and highest processing time respectively in the third data
set with a decreasing trend of curve, Fig. 8c. To sum up, it is noticeable that the effect of
the threshold depends on the behavior of the moving objects in the underlying data set. So,
when the overall objects movements can trigger the answer maintenancemodule frequently,
the update cost increases. In this case, large threshold values help Panda∗ to achieve better
performance.

6.3 Efficiency evaluation

To evaluate the efficiency of Panda∗, we processed workloads of predictive queries with
varying the number of received queries from 20K to 100K. Figure 9 provides a comparison
between Panda∗ and the other two algorithms w.r.t number of queries in terms of update
cost, Fig. 9a, response time, Fig. 9b, and processing time per query, Fig. 9c, with the average
CPU time as a measure. Panda∗ and Precompute provide the best possible response time

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Queries (K)

Panda*

Precompute

Instant

Update Cost

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Queries (K)

Panda*

Precompute

Instant

Response Time

 0

 5

 10

 15

 20

 20 30 40 50 60 70 80 90 100

T
o

t
a
l

C

P
U

T

i
m

e

(
s
)

Queries (K)

Panda*

Precompute

Instant

Processing Time(a) (b) (c)

Fig. 10 Efficiency of Panda∗ at T = 2

Geoinformatica (2017) 21:175–208 203

 0

 50

 100

 150

 200

 250

5K 10K 15K 20K

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Objects

Panda*

Precompute

Instant

Update Cost

 0

 50

 100

 150

 200

5K 10K 15K 20K

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Objects

Panda*

Precompute

Instant

Response Time

 0

 2

 4

 6

 8

 10

 12

 14

5K 10K 15K 20K

A
V

G

C

P
U

T

i
m

e

(
s
)

Objects

Panda*

Precompute

Instant

Processing Time(a) (b) (c)

Fig. 11 Scalability with Number of Objects

which almost equals to zero waiting, while the Instant gives the worst response time with a
significant difference, Fig. 9b.

As explained earlier and as depicted in Fig. 9a, the Instant requires no update cost as
it does not prepare any answers in advance, while the Precompute does, thus, it costs the
most update time. On the Panda∗ side, it consumes some of the CPU time for precompu-
tation during the early phases of the experiment then decreases to a low update cost when
the number of queries equals 100K. In Fig. 9, the efficiency of Panda∗ is recorded when the
threshold is set to 0, however, it still obtains the best overall performance when T equals
2, Fig. 10. In a nutshell, those figures provide that Panda∗ achieves a dramatic high per-
formance which is up to four orders better than the Precompute algorithm and even much
better when compared to the Instant algorithm.

6.4 Scalability evaluation

We proceed to study the scalability of Panda∗ with large number of moving objects and
large query sizes. In the first set of experiments, Fig. 11, we evaluate the scalability of the
Panda∗ query processing performance when the number of moving objects increases from
1k to 25k. With respect to the query processing time, Fig. 11c, Panda∗ performs the best,
regardless the increasing in the number of objects. In addition to its high performance in
terms of the average query processing time, Panda∗ also gives a response time as low as
the one in the Precompute algorithm which guaranteed to give the lowest query response,
Fig. 11b, while saving a lot of the required update cost consumed by the Precompute algo-
rithm, Fig. 11a. The next set of experiments, Fig. 12, illustrates that Panda∗ can save about
50% of the CPU time required to answer a user query while preserving its response to be
almost equals to the fastest one with a vast dropping in the update cost. The last set of

 0

 20

 40

 60

 80

 100

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Query Size

Precompute

Instant

Panda*

Update Cost

 0

 50

 100

 150

 200

 250

 300

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Query Size

Precompute

Instant

Panda*

Response Time

 0

 5

 10

 15

 20

 25

0.01 0.02 0.03 0.04 0.05 0.06

T
o

t
a
l

C

P
U

T

i
m

e

(
s
)

Query Size

Precompute

Instant

Panda*

Processing Time(a) (b) (c)

Fig. 12 Scalability with Query Size

204 Geoinformatica (2017) 21:175–208

 0

 50

 100

 150

 200

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Query Size

T = 0

T = 2

T = 5

T = 10

 0

 50

 100

 150

 200

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Query Size

T = 0

T = 2

T = 5

T = 10

 0

 50

 100

 150

 200

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G

C

P
U

T

i
m

e

(
m

s
)

Query Size

T = 0

T = 2

T = 5

T = 10

20 Queries 40 Queries 80 Queries(a) (b) (c)

Fig. 13 Effect of Threshold Tuning on Scalability w.r.t Query Size in Different Workloads

experiments, Fig. 13, evaluates the influence of the threshold tweaking on the scalability of
Panda∗ with respect to the query size in three different query workloads. The used work-
loads are 20K queries, 40K queries, and 80K queries. The provided figures suggest the use
of a large threshold value with small sized queries and a small threshold value with the ones
with larger query size.

In one word, we can establish that the main reason behind the capability of Panda∗ to
achieve smooth scalability comes from its ability to adapt according to the nature of the
moving objects behavior and the heaviness of the query workload.

6.5 Accuracy test

To examine the quality of the underline prediction function, we employed a another real
data set of GPS trajectories collected by Microsoft researchers around the area of Seattle,
Washington, USA [2]. The area is divided in 1 KM of squares to form our grid area. Then,
we compute the accuracy based on the probability given by the prediction function for the
prediction of the next cell. As shown in Fig. 14, we vary the percentage of trip completion
on x-axis, and we measure the accuracy of the prediction on y-axis. Rationally, the quality
of the prediction improves while the object moves forward. It is obviously provided that we
can achieve between 70% to 90% for next destination prediction.

Fig. 14 Accuracy of Destination
Prediction

 0

 20

 40

 60

 80

 100

0.1 0.3 0.5 0.7 0.9

A
cc

ur
ac

y

Trip Completion (%)

Panda*

Geoinformatica (2017) 21:175–208 205

7 Conclusion

This paper introduces Panda∗; a system for evaluating predictive spatio-temporal queries.
Panda∗ enables users to request a location-based service using the predicted locations of
moving objects in a future time instance. Panda∗ has three main modules that are tasked with
query processing, system performance tuning, and query answer maintenance. Each module
is triggered by a firing event; a query arrival, a trigger for system tuning, and an object
movement, respectively. The query processing component is responsible for computing the
query results or accessing the precomputed ones from previous query processing cycles.
The task of the answer maintenance component is to update the materialized precomputed
answers according to the effect of an object movement. The third component, system tuning,
is dispatched to periodically adapt the performance of Panda∗ according to the nature of the
given workload.

Panda∗ supports a variety of predictive queries including predictive range queries, pre-
dictive aggregate queries, and predictive k-NN queries, on both stationary and moving
objects. Panda∗ also supports dealing with time uncertainty by modeling the travel time
between different locations in the space as intervals. Panda∗ introduces the Travel Time
Structure (TTS), a time varying multidimensional grid, coupled with a long term predic-
tion function to achieve its prediction goals. Extensive experimental evaluation using large
groups of real and synthetic data proves the efficiency and scalability of Panda∗. Panda∗ has
reduced the processing time by up to 42 % compared to its precomputed baseline algorithm
and by up to 17 % compared to the instant baseline algorithm (at 100K queries).

While this paper addressed time uncertainty, location uncertainty is another interesting
dimension of uncertainty. Location uncertainty comes up due to the noisy acquisition of a
GPS reading and/or due to a privacy preserving layer that dilutes the user’s location from
a point into a region. We expect future research directions to expand Panda∗ along the
location uncertainty direction.

References

1. Ali M, Hendawi A (2015) Spatial Predictive Queries. In: MDM, Pennsylvania, USA
2. Ali M, Krumm J, Teredesai A (2012) ACM SIGSPATIAL GIS Cup 2012. In: ACM SIGSPATIAL GIS,

California, USA, pp 597–600
3. Benetis R, Jensen CS, Karciauskas G, Saltenis S (2006) Nearest and Reverse Nearest Neighbor Queries

for Moving Objects. VLDB J 15(3):229–249
4. Brillingaite A, Jensen CS (2006) Online Route Prediction for Automotive Applications. In: ITS, London,

United Kingdom
5. Brinkhoff T (2002) A framework for generating Network-Based moving objects. GeoInformatica

6(2):153–180
6. Chon HD, Agrawal D, Abbadi AE (2003) Range and kNN Query Processing for Moving Objects in Grid

Model. MONET 8(4):401–412
7. Froehlich J, Krumm J (2008) Route Prediction from Trip Observations. In: Society of Automotive

Engineers (SAE) World Congress, Michigan, USA
8. Gu Y, Yu G, Guo N, Chen Y (2009) Probabilistic Moving Range Query over RFID Spatio-temporal Data

Streams. In: CIKM, Hong Kong, China, pp 1413–1416
9. Hendawi A (2015) Scalable Spatial Predictive Query Processing for Moving Objects. PhD thesis.

University of Minnesota, Twin-Cities
10. Hendawi A (2014) Predictive query processing on moving objects. In: Proceedings of the Data

Engineering Workshops (ICDEW), Illinoi, USA

206 Geoinformatica (2017) 21:175–208

11. Hendawi A, Ali M, Mokbel MF (2015) A Framework for Spatial Predictive Query Processing and
Visualization. In: MDM, Pennsylvania, USA, pp 327–330

12. Hendawi A, Mokbel MF (2012) Panda: A Predictive Spatio-Temporal Query Processor. In: ACM
SIGSPATIAL GIS, California, USA

13. Hu H, Xu J, Lee DL (2005) A Generic Framework for Monitoring Continuous Spatial Queries over
Moving Objects. In: SIGMOD, Maryland, USA, pp 479–490

14. Jeung H, Liu Q, Shen HT, Zhou X (2008) A Hybrid Prediction Model for Moving Objects. In: ICDE,
Cancn, Mxico, pp 70–79

15. Jeung H, Yiu ML, Zhou X, Jensen CS (2010) Path Prediction and Predictive Range Querying in Road
Network Databases. VLDB J 19(4):585–602

16. Jinghua Z, Xue W, Yingshu L (2014) Predictive Nearest Neighbor Queries over Uncertain Spatial-
Temporal Data. In: WASA, Harbin, China, pp 424–4359

17. Kang J, Mokbel MF, Shekhar S, Xia T, Zhang D (2007) Continuous Evaluation of Monochromatic and
Bichromatic Reverse Nearest Neighbors. In: ICDE, Istanbul, Turkey, pp 806–815

18. Karimi HA, Liu X (2003) A Predictive Location Model for Location-Based Services. In: GIS, Louisiana,
USA, pp 126–133

19. Kim S-W, Won J-I, Kim J-D, Shin M, Lee J, Kim H (2007) Path Prediction of Moving Objects on Road
Networks Through Analyzing Past Trajectories. In: KES, Vietri sul Mare, Italy, pp 379–389

20. Krumm J (2006) Real Time Destination Prediction Based on Efficient Routes. In: SAE, Michigan, USA
21. Lee KCK, Leong HV, Zhou J, Si A (2005) An Efficient Algorithm for Predictive Continuous Nearest

Neighbor Query Processing and Result Maintenance. In: MDM, Ayia Napa, Cyprus, pp 178–182
22. Li Y, George S, Apfelbeck C, Hendawi A, Hazel D, Teredesai A, Ali M (2014) Routing Service With

Real World Severe Weather. In: ACM SIGSPATIAL GIS, Texas, USA, pp 585–588
23. Mokbel MF, Xiong X, Aref WG (2004) SINA: Scalable Incremental Processing of Continuous Queries

in Spatio-temporal Databases. In: SIGMOD, Paris, France, pp 443–454
24. Mokbel MF, Xiong X, HammadMA, Aref WG (2004) Continuous Query Processing of Spatio-temporal

Data Streams in PLACE. In: STDBM, Toronto, Canada, pp 57–64
25. Nguyen T, He Z, Zhang R, Ward P (2012) Boosting Moving Object Indexing through Velocity

Partitioning. PVLDB 5(9):860–871
26. Raptopoulou K, Papadopoulos A, Manolopoulos Y (2003) Fast Nearest-Neighbor Query Processing in

Moving-Object databases. GeoInformatica 7(2):113–137
27. Shahabi C, Tang L-A, Xing S (2008) Indexing Land Surface for Efficient kNN Query. In: VLDB,

Aucklan, New Zealand, pp 1020–1031
28. Sistla AP, Wolfson O, Chamberlain S, Dao S, Modeling and QueryingMoving Objects (1997). In: ICDE,

Birmingham U.K, pp 422–432
29. Sun J, Papadias D, Tao D, Liu B (2004) Querying about the Past, the Present, and the Future in Spatio-

Temporal. In: ICDE, MASSACHUSETTS, USA, pp 202–213
30. Tao Y, Faloutsos C, Papadias D, 0002 BL (2004) Prediction and Indexing of Moving Objects with

Unknown Motion Patterns. In: SIGMOD, Paris, France, pp 611–622
31. Tao Y, Papadias D (2002) Time-parameterized Queries in Spatio-temporal Databases. In: SIGMOD,

Wisconsin, USA, pp 334–345
32. Tao Y, Papadias D (2003) Spatial queries in dynamic environments. TODS 28(2):101–139
33. Tao Y, Sun J, Papadias D (2003) Analysis of predictive spatio-temporal queries. TODS 28(4):295–336
34. Wang H, Zimmermann R, Ku W-S (2006) Distributed Continuous Range Query Processing on Moving

Objects. In: DEXA, Krakow, Poland, pp 655–665
35. Ward PG, He Z, Zhang R, Qi J (2014) Real-time Continuous Intersection Joins over Large Sets of

Moving Objects using Graphic Processing Units. VLDB J 23(6):965–985
36. Yiu ML, Tao Y, Mamoulis N (2008) The bdual-tree Indexing Moving Objects by Space Filling Curves

in the Dual Space. VLDB J 17(3):379–400
37. Yuan J, Zheng Y, Xie X, Sun G (2011) Driving with knowledge from the physical world. In: KDD,

California, USA, pp 316–324
38. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y (2010) T-drive: driving directions based on

taxi trajectories. In: GIS, California, USA, pp 99–108
39. Zhan R, Qi J, Lin D, Wang W, Wong RC-W (2012) A Highly Optimized Algorithm for Continuous

Intersection Join Queries over Moving Objects. VLDB J 21(4):561–586
40. Zhang M, Chen S, Jensen CS, Ooi BC, Zhang Z (2009) Effectively Indexing Uncertain Moving Objects

for Predictive Queries. PVLDB 2(1):1198–1209
41. Zhang R, Jagadish HV, Dai BT, Ramamohanarao K (2010) Optimized algorithms for predictive range

and KNN queries on moving objects. Inf Syst 35(8):911–932

Geoinformatica (2017) 21:175–208 207

AbdeltawabM.Hendawi is a Postdoc Research Associate in Computer Science at the University of Virginia.
He completed his MSc and PhD in Computer Science and Engineering from the University of Minnesota,
Twin Cities, 2012 and 2015 respectively. His research interests are centered on spatio-temporal data man-
agement and analysis. His PhD focused on predictive query processing on moving objects. Abdeltawab built
the iRoad system for predictive queries on road networks, the Panda system for predictive queries in the
Euclidean space, and the iTornado framework for commuting during severe weather conditions. His work
has been recognized by the best paper award in ACM SIGSPATIAL MobiGIS 2012, two best poster awards
in U-Spatial Symposium 2013, best demo paper awards in ACM SIGSPATIAL 2014 and IEEE MDM 2015.
Abdeltawab was a co-chair for the ACM SIGSPATIAL IWGS 2014 and 2015, and served in the program
committee of the ACM SIGSPATIAL MobiGIS 2014, and ACM SIGSPATIAL PhD Symposium 2015. Prior
to joining the University of Minnesota, he obtained his B.Sc. and M.Sc. degrees with honors in Computer
Science from Cairo University in Egypt. During his work at Cairo University, he received the best TA award.
He also won the first place in a national competition for research in Computer Science and he was awarded
a PhD fellowship.

Mohamed Ali is an associate professor at the Institute of Technology, University of Washington, Tacoma.
Mohamed’s research interests include the processing, analysis and visualization of data streams with geo-
graphic and spatial information. For the past decade, Mohamed has been building commercial spatiotemporal
data streaming systems to cope with the emerging Big Data requirements. In 2006, Mohamed and his col-
leagues at the database group at Microsoft Research ramped up the Complex Event Detection and Response
(CEDR) project. Then, Mohamed joined the SQL Server group at Microsoft to productize the CEDR project.
CEDR has shipped and brand-named as Microsoft StreamInsight. Since the first public release of StreamIn-
sight, Mohamed has been advocating for real-time spatiotemporal data management everywhere; that is the
use of StreamInsight in monitoring, managing and mining real time geospatial information across a diversity
of verticals. These verticals include but are not limited to: online advertising, behavioral targeting, business
intelligence, computational finance, traffic management, social networking, homeland security, emergency
and crisis management. In 2011, Mohamed started another journey at Microsoft Bing Maps where he became
at the frontline with the Big Data challenge and where he battled various types of spatial search queries. In
2014, Mohamed joined the University of Washington, Tacoma where he leads the geospatial data science
team at the Center for Data Science.

208 Geoinformatica (2017) 21:175–208

Mohamed F. Mokbel (Ph.D., Purdue University, MS, B.Sc., Alexandria University) is an Associate Profes-
sor in the Department of Computer Science and Engineering, University of Minnesota. His research interests
include the interaction of GIS and location-based services with database systems and cloud computing. His
research work has been recognized by five Best Paper Awards and by the NSF CAREER award. Mohamed
was the program co-chair for the ACM SIGSPATIAL GIS conference from 2008 to 2010, IEEE MDM Con-
ference 2011 and 2014, and the General Chair for SSTD 2011. He is an Asscoiate Editor for ACM TODS,
ACM TSAS, VLDB journal, and GeoInformatica. Mohamed is a founding member of ACM SIGSPATIAL,
and an elected Chair of ACM SIGSPATIAL 2014–2017. For more information, please visit: www.cs.umn.
edu/∼mokbel.

www.cs.umn.edu/~mokbel
www.cs.umn.edu/~mokbel

	Panda*: A generic and scalable framework for predictive spatio-temporal queries
	Abstract
	Introduction
	Related work
	Panda: system overview
	Problem statement
	System architecture
	Object movement
	Tuning trigger
	Query arrival

	Prediction function

	Panda*: a predictive spatio-temporal query processing
	Data structure
	Space grid SG
	Object list OL
	Travel time structure TTS

	Generic query processing in Panda
	Phase I: result computation
	Main idea
	Algorithm
	Example

	Phase II: statistics maintenance
	Main idea
	Algorithm
	Example

	Answer maintenance
	Main idea
	Algorithm
	Example

	System tuning
	Idea
	Algorithm
	Example

	Extensibility of Panda*
	Query type
	Range query processing
	Idea
	Example

	K-NN query processing
	Idea
	Example

	Aggregate query processing
	Idea
	Example

	Data nature
	Stationary data
	Moving data

	Experimental evaluation
	Experiment setup
	Synthetic data
	Real data

	Impact of threshold tuning
	Efficiency evaluation
	Scalability evaluation
	Accuracy test

	Conclusion
	References

