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Abstract. This paper presents ST-Hadoop; the first full-fledged open-
source MapReduce framework with a native support for spatio-temporal
data. ST-Hadoop is a comprehensive extension to Hadoop and Spatial-
Hadoop that injects spatio-temporal data awareness inside each of their
layers, mainly, language, indexing, and operations layers. In the language
layer, ST-Hadoop provides built in spatio-temporal data types and oper-
ations. In the indexing layer, ST-Hadoop spatiotemporally loads and
divides data across computation nodes in Hadoop Distributed File Sys-
tem in a way that mimics spatio-temporal index structures, which result
in achieving orders of magnitude better performance than Hadoop and
SpatialHadoop when dealing with spatio-temporal data and queries. In
the operations layer, ST-Hadoop shipped with support for two funda-
mental spatio-temporal queries, namely, spatio-temporal range and join
queries. Extensibility of ST-Hadoop allows others to expand features and
operations easily using similar approach described in the paper. Extensive
experiments conducted on large-scale dataset of size 10 TB that contains
over 1 Billion spatio-temporal records, to show that ST-Hadoop achieves
orders of magnitude better performance than Hadoop and SpaitalHadoop
when dealing with spatio-temporal data and operations. The key idea
behind the performance gained in ST-Hadoop is its ability in indexing
spatio-temporal data within Hadoop Distributed File System.

1 Introduction

The importance of processing spatio-temporal data has gained much interest in
the last few years, especially with the emergence and popularity of applications
that create them in large-scale. For example, Taxi trajectory of New York city
archive over 1.1 Billion trajectories [1], social network data (e.g., Twitter has
over 500 Million new tweets every day) [2], NASA Satellite daily produces 4 TB
of data [3,4], and European X-Ray Free-Electron Laser Facility produce large
collection of spatio-temporal series at a rate of 40 GB per second, that collectively
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Objects = LOAD ‘points’ AS (id:int, Location:POINT, Time:t);
Result = FILTER Objects BY

Overlaps (Location, Rectangle(x1, y1, x2, y2))
AND t < t2 AND t > t1;

(a) Range query in SpatialHadoop

Objects = LOAD ‘points’ AS (id:int, STPoint:(Location,Time));
Result = FILTER Objects BY

Overlaps (STPoint, Rectangle(x1, y1, x2, y2), Interval (t1, t2) );

(b) Range query in ST-Hadoop

Fig. 1. Range query in SpatialHadoop vs. ST-Hadoop

form 50 PB of data yearly [5]. Beside the huge achieved volume of the data,
space and time are two fundamental characteristics that raise the demand for
processing spatio-temporal data.

The current efforts to process big spatio-temporal data on MapReduce environ-
ment either use: (a) General purpose distributed frameworks such as Hadoop [6]
or Spark [7], or (b) Big spatial data systems such as ESRI tools on Hadoop [8],
Parallel-Secondo [9], MD-HBase [10], Hadoop-GIS [11], GeoTrellis [12],
GeoSpark [13], or SpatialHadoop [14]. The former has been acceptable for typi-
cal analysis tasks as they organize data as non-indexed heap files. However, using
these systems as-is will result in sub-performance for spatio-temporal applications
that need indexing [15–17]. The latter reveal their inefficiency for supporting time-
varying of spatial objects because their indexes are mainly geared toward process-
ing spatial queries, e.g., SHAHED system [18] is built on top of SpatialHadoop [14].

Even though existing big spatial systems are efficient for spatial operations,
nonetheless, they suffer when they are processing spatio-temporal queries, e.g.,
find geo-tagged news in California area during the last three months. Adopting
any big spatial systems to execute common types of spatio-temporal queries, e.g.,
range query, will suffer from the following: (1) The spatial index is still ill-suited
to efficiently support time-varying of spatial objects, mainly because the index
are geared toward supporting spatial queries, in which result in scanning through
irrelevant data to the query answer. (2) The system internal is unaware of the
spatio-temporal properties of the objects, especially when they are routinely
achieved in large-scale. Such aspect enforces the spatial index to be reconstructed
from scratch with every batch update to accommodate new data, and thus the
space division of regions in the spatial-index will be jammed, in which require
more processing time for spatio-temporal queries. One possible way to recognize
spatio-temporal data is to add one more dimension to the spatial index. Yet, such
choice is incapable of accommodating new batch update without reconstruction.

This paper introduces ST-Hadoop; the first full-fledged open-source MapRe-
duce framework with a native support for spatio-temporal data, available to
download from [19]. ST-Hadoop is a comprehensive extension to Hadoop and
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SpatialHadoop that injects spatio-temporal data awareness inside each of their
layers, mainly, indexing, operations, and language layers. ST-Hadoop is compat-
ible with SpatialHadoop and Hadoop, where programs are coded as map and
reduce functions. However, running a program that deals with spatio-temporal
data using ST-Hadoop will have orders of magnitude better performance than
Hadoop and SpatialHadoop. Figures 1(a) and (b) show how to express a spatio-
temporal range query in SpatialHadoop and ST-Hadoop, respectively. The query
finds all points within a certain rectangular area represented by two corner points
〈x1, y1〉, 〈x2, y2〉, and a within a time interval 〈t1, t2〉. Running this query on
a dataset of 10 TB and a cluster of 24 nodes takes 200 s on SpatialHadoop
as opposed to only one second on ST-Hadoop. The main reason of the sub-
performance of SpatialHadoop is that it needs to scan all the entries in its spa-
tial index that overlap with the spatial predicate, and then check the temporal
predicate of each entry individually. Meanwhile, ST-Hadoop exploits its built-in
spatio-temporal index to only retrieve the data entries that overlap with both
the spatial and temporal predicates, and hence achieves two orders of magnitude
improvement over SpatialHadoop.

ST-Hadoop is a comprehensive extension of Hadoop that injects spatio-
temporal awareness inside each layers of SpatialHadoop, mainly, language, index-
ing, MapReduce, and operations layers. In the language layer, ST-Hadoop extends
Pigeon language [20] to supports spatio-temporal data types and operations.
The indexing layer, ST-Hadoop spatiotemporally loads and divides data across
computation nodes in the Hadoop distributed file system. In this layer ST-
Hadoop scans a random sample obtained from the whole dataset, bulk loads
its spatio-temporal index in-memory, and then uses the spatio-temporal bound-
aries of its index structure to assign data records with its overlap partitions.
ST-Hadoop sacrifices storage to achieve more efficient performance in support-
ing spatio-temporal operations, by replicating its index into temporal hierarchy
index structure that consists of two-layer indexing of temporal and then spa-
tial. The MapReduce layer introduces two new components of SpatioTemporal-
FileSplitter, and SpatioTemporalRecordReader, that exploit the spatio-temporal
index structures to speed up spatio-temporal operations. Finally, the operations
layer encapsulates the spatio-temporal operations that take advantage of the
ST-Hadoop temporal hierarchy index structure in the indexing layer, such as
spatio-temporal range and join queries.

The key idea behind the performance gain of ST-Hadoop is its ability to load
the data in Hadoop Distributed File System (HDFS) in a way that mimics spatio-
temporal index structures. Hence, incoming spatio-temporal queries can have
minimal data access to retrieve the query answer. ST-Hadoop is shipped with
support for two fundamental spatio-temporal queries, namely, spatio-temporal
range and join queries. However, ST-Hadoop is extensible to support a myriad
of other spatio-temporal operations. We envision that ST-Hadoop will act as a
research vehicle where developers, practitioners, and researchers worldwide, can
either use it directly or enrich the system by contributing their operations and
analysis techniques.
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The rest of this paper is organized as follows: Sect. 2 highlights related work.
Section 3 gives the architecture of ST-Hadoop. Details of the language, spatio-
temporal indexing, and operations are given in Sects. 4, 5 and 6, followed by
extensive experiments conducted in Sect. 7. Section 8 concludes the paper.

2 Related Work

Triggered by the needs to process large-scale spatio-temporal data, there is an
increasing recent interest in using Hadoop to support spatio-temporal operations.
The existing work in this area can be classified and described briefly as following:

On-Top of MapReduce Framework. Existing work in this category has
mainly focused on addressing a specific spatio-temporal operation. The idea
is to develop map and reduce functions for the required operation, which will
be executed on-top of existing Hadoop cluster. Examples of these operations
includes spatio-temporal range query [15–17], spatio-temporal join [21–23]. How-
ever, using Hadoop as-is results in a poor performance for spatio-temporal appli-
cations that need indexing.

Ad-hoc on Big Spatial System. Several big spatial systems in this category
are still ill-suited to perform spatio-temporal operations, mainly because their
indexes are only geared toward processing spatial operations, and their inter-
nals are unaware of the spatio-temporal data properties [8–11,13,14,24–27]. For
example, SHAHED runs spatio-temporal operations as an ad-hoc using Spatial-
Hadoop [14].

Spatio-Temporal System. Existing works in this category has mainly focused
on combining the three spatio-temporal dimensions (i.e., x, y, and time)
into a single-dimensional lexicographic key. For example, GeoMesa [28] and
GeoWave [29] both are built upon Accumulo platform [30] and implemented
a space filling curve to combine the three dimensions of geometry and time. Yet,
these systems do not attempt to enhance the spatial locality of data; instead
they rely on time load balancing inherited by Accumulo. Hence, they will have
a sup-performance for spatio-temporal operations on highly skewed data.

ST-Hadoop is designed as a generic MapReduce system to support spatio-
temporal queries, and assist developers in implementing a wide selection of
spatio-temporal operations. In particular, ST-Hadoop leverages the design of
Hadoop and SpatialHadoop to loads and partitions data records according to
their time and spatial dimension across computations nodes, which allow the
parallelism of processing spatio-temporal queries when accessing its index. In
this paper, we present two case study of operations that utilize the ST-Hadoop
indexing, namely, spatio-temporal range and join queries. ST-Hadoop operations
achieve two or more orders of magnitude better performance, mainly because
ST-Hadoop is sufficiently aware of both temporal and spatial locality of data
records.
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3 ST-Hadoop Architecture

Figure 2 gives the high level architecture of our ST-Hadoop system; as the
first full-fledged open-source MapReduce framework with a built-in support for
spatio-temporal data. ST-Hadoop cluster contains one master node that breaks
a map-reduce job into smaller tasks, carried out by slave nodes. Three types
of users interact with ST-Hadoop: (1) Casual users who access ST-Hadoop
through its spatio-temporal language to process their datasets. (2) Developers,
who have a deeper understanding of the system internals and can implement new
spatio-temporal operations, and (3) Administrators, who can tune up the system
through adjusting system parameters in the configuration files provided with the
ST-Hadoop installation. ST-Hadoop adopts a layered design of four main layers,
namely, language, Indexing, MapReduce, and operations layers, described briefly
below:

Language Layer: This layer extends Pigeon language [20] to supports spatio-
temporal data types (i.e., STPoint, time and interval) and spatio-temporal
operations (e.g., overlap, and join). Details are given in Sect. 4.

Indexing Layer: ST-Hadoop spatiotemporally loads and partitions data across
computation nodes. In this layer ST-Hadoop scans a random sample obtained
from the input dataset, bulk-loads its spatio-temporal index that consists of
two-layer indexing of temporal and then spatial. Finally ST-Hadoop repli-
cates its index into temporal hierarchy index structure to achieve more efficient

Fig. 2. ST-Hadoop system architecture
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performance for processing spatio-temporal queries. Details of the index layer
are given in Sect. 5.

MapReduce Layer: In this layer, new implementations added inside Spatial-
Hadoop MapReduce layer to enables ST-Hadoop to exploits its spatio-temporal
indexes and realizes spatio-temporal predicates. We are not going to discuss this
layer any further, mainly because few changes were made to inject time aware-
ness in this layer. The implementation of MapReduce layer was already discussed
in great details [14].

Operations Layer: This layer encapsulates the implementation of two common
spatio-temporal operations, namely, spatio-temporal range, and spatio-temporal
join queries. More operations can be added to this layer by ST-Hadoop develop-
ers. Details of the operations layer are discussed in Sect. 6.

4 Language Layer

ST-Hadoop does not provide a completely new language. Instead, it extends
Pigeon language [20] by adding spatio-temporal data types, functions, and oper-
ations. Spatio-temporal data types (STPoint, Time and Interval) are used to
define the schema of input files upon their loading process. In particular, ST-
Hadoop adds the following:

Data types. ST-Hadoop extends STPoint, TIME, and INTERVAL. The TIME
instance is used to identify the temporal dimension of the data, while the time
INTERVAL mainly provided to equip the query predicates. The following code
snippet loads NYC taxi trajectories from ‘NYC’ file with a column of type
STPoint.

trajectory = LOAD ‘NYC’ as
(id:int, STPoint(loc:point, time:timestamp));

NYC and trajectory are the paths to the non-indexed heap file and the
destination indexed file, respectively. loc and time are the columns that specify
both spatial and temporal attributes.

Functions and Operations. Pigeon already equipped with several basic spa-
tial predicates. ST-Hadoop changes the overlap function to support spatio-
temporal operations. The other predicates and their possible variation for sup-
porting spatio-temporal data are discussed in great details in [31]. ST-Hadoop
encapsulates the implementation of two commonly used spatio-temporal opera-
tions, i.e., range and Join queries, that take the advantages of the spatio-temporal
index. The following example “retrieves all cars in State Fair area represented
by its minimum boundary rectangle during the time interval of August 25th and
September 6th” from trajectory indexed file.

cars = FILTER trajectory
BY overlap( STPoint,

RECTANGLE(x1,y1,x2,y2),
INTERVAL(08-25-2016, 09-6-2016));
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ST-Hadoop extended the JOIN to take two spatio-temporal indexes as an input.
The processing of the join invokes the corresponding spatio-temporal procedure.
For example, one might need to understand the relationship between the birds
death and the existence of humans around them, which can be described as “find
every pairs from birds and human trajectories that are close to each other within
a distance of 1 mile during the last year”.

human_bird_pairs = JOIN human_trajectory, bird_trajectory
PREDICATE = overlap( RECTANGLE(x1,y1,x2,y2),

INTERVAL(01-01-2016, 12-31-2016),
WITHIN_DISTANCE(1) );

5 Indexing Layer

Input files in Hadoop Distributed File System (HDFS) are organized as a heap
structure, where the input is partitioned into chunks, each of size 64 MB. Given
a file, the first 64 MB is loaded to one partition, then the second 64 MB is loaded
in a second partition, and so on. While that was acceptable for typical Hadoop
applications (e.g., analysis tasks), it will not support spatio-temporal applica-
tions where there is always a need to filter input data with spatial and temporal
predicates. Meanwhile, spatially indexed HDFSs, as in SpatialHadoop [14] and
ScalaGiST [27], are geared towards queries with spatial predicates only. This
means that a temporal query to these systems will need to scan the whole
dataset. Also, a spatio-temporal query with a small temporal predicate may
end up scanning large amounts of data. For example, consider an input file that
includes all social media contents in the whole world for the last five years or so.
A query that asks about contents in the USA in a certain hour may end up in
scanning all the five years contents of USA to find out the answer.

ST-Hadoop HDFS organizes input files as spatio-temporal partitions that
satisfy one main goal of supporting spatio-temporal queries. ST-Hadoop imposes
temporal slicing, where input files are spatiotemporally loaded into intervals
of a specific time granularity, e.g., days, weeks, or months. Each granularity
is represented as a level in ST-Hadoop index. Data records in each level are
spatiotemporally partitioned, such that the boundary of a partition is defined
by a spatial region and time interval.

Figures 3(a) and (b) show the HDFS organization in SpatialHadoop and ST-
Hadoop frameworks, respectively. Rectangular shapes represent boundaries of
the HDFS partitions within their framework, where each partition maintains a
64 MB of nearby objects. The dotted square is an example of a spatio-temporal
range query. For simplicity, let’s consider a one year of spatio-temporal records
loaded to both frameworks. As shown in Fig. 3(a), SpatialHadoop is unaware of
the temporal locality of the data, and thus, all records will be loaded once and
partitioned according to their existence in the space. Meanwhile in Fig. 3(b), ST-
Hadoop loads and partitions data records for each day of the year individually,
such that each partition maintains a 64 MB of objects that are close to each other
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Fig. 3. HDFSs in ST-Hadoop vs. SpatialHadoop

in both space and time. Note that HDFS partitions in both frameworks vary in
their boundaries, mainly because spatial and temporal locality of objects are not
the same over time. Let’s assume the spatio-temporal query in the dotted square
“find objects in a certain spatial region during a specific month” in Figs. 3(a), and
(b). SpatialHadoop needs to access all partitions overlapped with query region,
and hence SpatialHadoop is required to scan one year of records to get the final
answer. In the meantime, ST-Hadoop reports the query answer by accessing few
partitions from its daily level without the need to scan a huge number of records.

5.1 Concept of Hierarchy

ST-Hadoop imposes a replication of data to support spatio-temporal queries with
different granularities. The data replication is reasonable as the storage in ST-
Hadoop cluster is inexpensive, and thus, sacrificing storage to gain more efficient
performance is not a drawback. Updates are not a problem with replication,
mainly because ST-Hadoop extends MapReduce framework that is essentially
designed for batch processing, thereby ST-Hadoop utilizes incremental batch
accommodation for new updates.

The key idea behind the performance gain of ST-Hadoop is its ability to load
the data in Hadoop Distributed File System (HDFS) in a way that mimics spatio-
temporal index structures. To support all spatio-temporal operations including
more sophisticated queries over time, ST-Hadoop replicates spatio-temporal data
into a Temporal Hierarchy Index. Figures 3(b) and (c) depict two levels of days
and months in ST-Hadoop index structure. The same data is replicated on both
levels, but with different spatio-temporal granularities. For example, a spatio-
temporal query asks for objects in one month could be reported from any level
in ST-Hadoop index. However, rather than hitting 30 days’ partitions from the
daily-level, it will be much faster to access less number of partitions by obtaining
the answer from one month in the monthly-level.



92 L. Alarabi et al.

Fig. 4. Indexing in ST-Hadoop

A system parameter can be tuned by ST-Hadoop administrator to choose the
number of levels in the Temporal Hierarchy index. By default, ST-Hadoop set
its index structure to four levels of days, weeks, months and years granularities.
However, ST-Hadoop users can easily change the granularity of any level. For
example, the following code loads taxi trajectory dataset from “NYC” file using
one-hour granularity, Where the Level and Granularity are two parameters
that indicate which level and the desired granularity, respectively.

trajectory = LOAD ‘NYC’ as
(id:int, STPoint(loc:point, time:timestamp))
Level:1 Granularity:1-hour;

5.2 Index Construction

Figure 4 illustrates the indexing construction in ST-Hadoop, which involves two
scanning processes. The first process starts by scanning input files to get a ran-
dom sample, and this is essential because the size of input files is beyond memory
capacity, and thus, ST-Hadoop obtains a set of records to a sample that can fit
in memory. Next, ST-Hadoop processes the sample n times, where n is the
number of levels in ST-Hadoop index structure. The temporal slicing in each
level splits the sample into m number of slice (e.g., slice1.m). ST-Hadoop finds
the spatio-temporal boundaries by applying a spatial indexing on each temporal
slice individually. As a result, outputs from temporal slicing and spatial indexing
collectively represent the spatio-temporal boundaries of ST-Hadoop index struc-
ture. These boundaries will be stored as meta-data on the master node to guide
the next process. The second scanning process physically assigns data records in
the input files with its overlapping spatio-temporal boundaries. Note that each
record in the dataset will be assigned n times, according to the number of levels.
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ST-Hadoop index consists of two-layer indexing of a temporal and spatial.
The conceptual visualization of the index is shown in the right of Fig. 4, where
lines signify how the temporal index divided the sample into a set of disjoint time
intervals, and triangles symbolize the spatial indexing. This two-layer indexing
is replicated in all levels, where in each level the sample is partitioned using
different granularity. ST-Hadoop trade-off storage to achieve more efficient per-
formance through its index replication. In general, the index creation of a single
level in the Temporal Hierarchy goes through four consecutive phases, namely
sampling, temporal slicing, spatial indexing, and physical writing.

5.3 Phase I: Sampling

The objective of this phase is to approximate the spatial distribution of objects
and how that distribution evolves over time, to ensure the quality of index-
ing; and thus, enhance the query performance. This phase is necessary, mainly
because the input files are too large to fit in memory. ST-Hadoop employs a
map-reduce job to efficiently read a sample through scanning all data records.
We fit the sample into an in-memory simple data structure of a length (L), that
is an equal to the number of HDFS blocks, which can be directly calculated
from the equation L = (Z/B), where Z is the total size of input files, and B
is the HDFS block capacity (e.g., 64 MB). The size of the random sample is
set to a default ratio of 1% of input files, with a maximum size that fits in the
memory of the master node. This simple data structure represented as a collec-
tion of elements; each element consist of a time instance and a space sampling
that describe the time interval and the spatial distribution of spatio-temporal
objects, respectively. Once the sample is scanned, we sort the sample elements
in chronological order to their time instance, and thus the sample approximates
the spatio-temporal distribution of input files.

5.4 Phase II: Temporal Slicing

In this phase ST-Hadoop determines the temporal boundaries by slicing the in-
memory sample into multiple time intervals, to efficiently support a fast random
access to a sequence of objects bounded by the same time interval. ST-Hadoop
employs two temporal slicing techniques, where each manipulates the sample
according to specific slicing characteristics: (1) Time-partition, slices the sample
into multiple splits that are uniformly on their time intervals, and (2) Data-
partition where the sample is sliced to the degree that all sub-splits are uniformly
in their data size. The output of this phase finds the temporal boundary of each
split, that collectively cover the whole time domain.

The rational reason behind ST-Hadoop two temporal slicing techniques is
that for some spatio-temporal archive the data spans a long time-interval such
as decades, but their size is moderated compared to other archives that are daily
collect terabytes or petabytes of spatio-temporal records. ST-Hadoop proposed
the two techniques to slice the time dimension of input files based on either
time-partition or data-partition, to improve the indexing quality, and thus gain
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Fig. 5. Data-Slice Fig. 6. Time-Slice

efficient query performance. The time-partition slicing technique serves best in a
situation where data records are uniformly distributed in time. Meanwhile, data-
partition slicing best suited with data that are sparse in their time dimension.

• Data-partition Slicing. The goal of this approach is to slice the sample to the
degree that all sub-splits are equally in their size. Figure 5 depicts the key
concept of this slicing technique, such that a slice1 and slicen are equally
in size, while they differ in their interval coverage. In particular, the temporal
boundary of slice1 spans more time interval than slicen. For example,
consider 128 MB as the size of HDFS block and input files of 1 TB. Typically,
the data will be loaded into 8 thousand blocks. To load these blocks into
ten equally balanced slices, ST-Hadoop first reads a sample, then sort the
sample, and apply Data-partition technique that slices data into multiple
splits. Each split contains around 800 blocks, which hold roughly a 100 GB
of spatio-temporal records. There might be a small variance in size between
slices, which is expectable. Similarly, another level in ST-Hadoop temporal
hierarchy index could loads the 1 TB into 20 equally balanced slices, where
each slice contains around 400 HDFS blocks. ST-Hadoop users are allowed
to specify the granularity of data slicing by tuning α parameter. By default
four ratios of α is set to 1%, 10%, 25%, and 50% that create the four levels
in ST-Hadoop index structure.

• Time-partition Slicing. The ultimate goal of this approach is to slices the input
files into multiple HDFS chunks with a specified interval. Figure 6 shows the
general idea, where ST-Hadoop splits the input files into an interval of one-
month granularity. While the time interval of the slices is fixed, the size of
data within slices might vary. For example, as shown in Fig. 6 Jan slice has
more HDFS blocks than April.

ST-Hadoop users are allowed to specify the granularity of this slicing tech-
nique, which specified the time boundaries of all splits. By default, ST-Hadoop
finer granularity level is set to one-day. Since the granularity of the slicing is
known, then a straightforward solution is to find the minimum and maximum
time instance of the sample, and then based on the intervals between the both
times ST-Hadoop hashes elements in the sample to the desired granularity.
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The number of slices generated by the time-partition technique will highly
depend on the intervals between the minimum and the maximum times obtained
from the sample. By default, ST-Hadoop set its index structure to four levels of
days, weeks, months and years granularities.

5.5 Phase III: Spatial Indexing

This phase ST-Hadoop determines the spatial boundaries of the data records
within each temporal slice. ST-Hadoop spatially index each temporal slice inde-
pendently; such decision handles a case where there is a significant disparity in
the spatial distribution between slices, and also to preserve the spatial locality
of data records. Using the same sample from the previous phase, ST-Hadoop
takes the advantages of applying different types of spatial bulk loading tech-
niques in HDFS that are already implemented in SpatialHadoop such as Grid,
R-tree, Quad-tree, and Kd-tree. The output of this phase is the spatio-temporal
boundaries of each temporal slice. These boundaries stored as a meta-data in a
file on the master node of ST-Hadoop cluster. Each entry in the meta-data rep-
resents a partition, such as <id,MBR, interval, level>. Where id is a unique
identifier number of a partition on the HDFS, MBR is the spatial minimum
boundary rectangle, interval is the time boundary, and the level is the number
that indicates which level in ST-Hadoop temporal hierarchy index.

5.6 Phase IV: Physical Writing

Given the spatio-temporal boundaries that represent all HDFS partitions, we
initiate a map-reduce job that scans through the input files and physically parti-
tions HDFS block, by assign data records to overlapping partitions according to
the spatio-temporal boundaries in the meta-data stored on the master node of
ST-Hadoop cluster. For each record r assigned to a partition p, the map function
writes an intermediate pair 〈p, r〉 Such pairs are then grouped by p and sent to
the reduce function to write the physical partition to the HDFS. Note that for a
record r will be assigned n times, depends on the number of levels in ST-Hadoop
index.

6 Operations Layer

The combination of the spatiotemporally load balancing with the temporal hier-
archy index structure gives the core of ST-Hadoop, that enables the possibility of
efficient and practical realization of spatio-temporal operations, and hence pro-
vides orders of magnitude better performance over Hadoop and SpatialHadoop.
In this section, we only focus on two fundamental spatio-temporal operations,
namely, range (Sect. 6.1) and join queries (Sects. 6.2), as case studies of how to
exploit the spatio-temporal indexing in ST-Hadoop. Other operations can also
be realized following a similar approach.
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6.1 Spatio-Temporal Range Query

A range query is specified by two predicates of a spatial area and a temporal
interval, A and T , respectively. The query finds a set of records R that overlap
with both a region A and a time interval T , such as “finding geotagged news in
California area during the last three months”. ST-Hadoop employs its spatio-
temporal index described in Sect. 5 to provide an efficient algorithm that runs
in three steps, temporal filtering, spatial search, and spatio-temporal refinement,
described below.

In the temporal filtering step, the hierarchy index is examined to select
a subset of partitions that cover the temporal interval T . The main challenge
in this step is that the partitions in each granularity cover the whole time and
space, which means the query can be answered from any level individually or
we can mix and match partitions from different level to cover the query interval
T . Depending on which granularities are used to cover T , there is a tradeoff
between the number of matched partitions and the amount of processing needed
to process each partition. To decide whether a partition P is selected or not, the
algorithm computes its coverage ratio r, which is defined as the ratio of the time
interval of P that overlaps T . A partition is selected only if its coverage ratio
is above a specific threshold M. To balance this tradeoff, ST-Hadoop employs
a top-down approach that starts with the top level and selects partitions that
covers query interval T , If the query interval T is not covered at that granularity,
then the algorithm continues to the next level. If the bottom level is reached,
then all partitions overlap with T will be selected.

In the spatial search step, Once the temporal partitions are selected, the
spatial search step applies the spatial range query against each matched partition
to select records that spatially match the query range A. Keep in mind that each
partition is spatiotemporally indexed which makes queries run very efficiently.
Since these partitions are indexed independently, they can all be processed simul-
taneously across computation nodes in ST-Hadoop, and thus maximizes the
computing utilization of the machines.

Finally in the spatio-temporal refinement step, compares individual
records returned by the spatial search step against the query interval T , to select
the exact matching records. This step is required as some of the selected tem-
poral partitions might partially overlap the query interval T and they need to
be refined to remove records that are outside T . Similarly, there is a chance
that selected partitions might partially overlap with the query area A, and thus
records outside the A need to be excluded from the final answer.

6.2 Spatio-Temporal Join

Given two indexed dataset R and S of spatio-temporal records, and a spatio-
temporal predicate θ. The join operation retrieves all pairs of records 〈r, s〉 that
are similar to each other based on θ. For example, one might need to understand
the relationship between the birds death and the existence of humans around
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Fig. 7. Spatio-temporal join

them, which can be described as “find every pairs from bird and human trajec-
tories that are close to each other within a distance of 1 mile during the last
week”. The join algorithm runs in two steps as shown in Fig. 7, hash and join.

In the hashing step, the map function scans the two input files and hashes
each record to candidate buckets. The buckets are defined by partitioning the
spatio-temporal space using the two-layer indexing of temporal and spatial,
respectively. The granularity of the partitioning controls the tradeoff between
partitioning overhead and load balance, where a more granular-partitioning
increases the replication overhead, but improves the load balance due to the huge
number of partitions, while a less granular-partitioning minimizes the replication
overhead, but can result in a huge imbalance especially with highly skewed data.
The hash function assigns each point in the left dataset, r ∈ R, to all buckets
within an Euclidean distance d and temporal distance t, and assigns each point
in the right dataset, s ∈ S, to the one bucket which encloses the point s. This
ensures that a pair of matching records 〈r, s〉 are assigned to at least one com-
mon bucket. Replication of only one dataset (R) along with the use of single
assignment, ensure that the answer contains no replicas.

In the joining step, each bucket is assigned to one reducer that performs a
traditional in-memory spatio-temporal join of the two assigned sets of records
from R and S. We use the plane-sweep algorithm which can be generalized to
multidimensional space. The set S is not replicated, as each pair is generated by
exactly one reducer, and thus no duplicate avoidance step is necessary.

7 Experiments

This section provides an extensive experimental performance study of ST-
Hadoop compared to SpatialHadoop and Hadoop. We decided to compare with
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this two frameworks and not other spatio-temporal DBMSs for two reasons.
First, as our contributions are all about spatio-temporal data support in Hadoop.
Second, the different architectures of spatio-temporal DBMSs have great influ-
ence on their respective performance, which is out of the scope of this paper.
Interested readers can refer to a previous study [32] which has been established
to compare different large-scale data analysis architectures. In other words, ST-
Hadoop is targeted for Hadoop users who would like to process large-scale spatio-
temporal data but are not satisfied with its performance. The experiments are
designed to show the effect of ST-Hadoop indexing and the overhead imposed
by its new features compared to SpatialHadoop. However, ST-Hadoop achieves
two orders of magnitude improvement over SpatialHadoop and Hadoop.

Experimental Settings. All experiments are conducted on a dedicated inter-
nal cluster of 24 nodes. Each has 64 GB memory, 2 TB storage, and Intel(R)
Xeon(R) CPU 3 GHz of 8 core processor. We use Hadoop 2.7.2 running on Java
1.7 and Ubuntu 14.04.5 LTS. Figure 8(b) summarizes the configuration para-
meters used in our experiments. Default parameters (in parentheses) are used
unless mentioned.

Datasets. To test the performance of ST-Hadoop we use the Twitter archived
dataset [2]. The dataset collected using the public Twitter API for more than
three years, which contains over 1 Billion spatio-temporal records with a total
size of 10 TB. To scale out time in our experiments we divided the dataset
into different time intervals and sizes, respectively as shown in Fig. 8(a). The
default size used is 1 TB which is big enough for our extensive experiments
unless mentioned.

In our experiments, we compare the performance of a ST-Hadoop spatio-
temporal range and join query proposed in Sect. 6 to their spatial-temporal
implementations on-top of SpatialHadoop and Hadoop. For range query, we use
system throughput as the performance metric, which indicates the number of
MapReduce jobs finished per minute. To calculate the throughput, a batch of 20

Twitter Data Size Num-Records Time window
Large 10TB > 1 Billion > 3 years
Average–Large 6.7TB 692 Million 1 years
Medium–Large 3TB 152 Million 9 months
Moderate–Large (1TB) 115 Million 3 months

(a) Datasets
Parameter Values (default)
HDFS block capacity (B) 32, 64, (128), 256 MB
Cluster size (N ) 5, 10, 15, 20, (23)
Selection ratio (ρ) (0.01), 0.02, 0.05, 0.1, 0.2, 0.5, 1.0
Data-pratition slicing ratio(α) 0.01, 0.02, 0.025, 0.05, (0.1), 1
Time-partition Slicing granularity(σ) (days), weeks, months, years

(b) Parameters

Fig. 8. Experimental settings and Dataset
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queries is submitted to the system, and the throughput is calculated by dividing
20 by the total time of all queries. The 20 queries are randomly selected with a
spatial area ratio of 0.001% and a temporal window of 24 h unless stated. This
experimental design ensures that all machines get busy and the cluster stays fully
utilized. For spatio-temporal join, we use the processing time of one query as the
performance metric as one query is usually enough to keep all machines busy.
The experimental results for range and join queries are reported in Sects. 7.1,
and 7.3, respectively. Meanwhile, Sect. 7.2 analyzes ST-Hadoop indexing.

7.1 Spatiotemporal Range Query

In Fig. 9(a), we increase the size of input from 1 TB to 10 TB, while measuring
the job throughput. ST-Hadoop achieves more than two orders of magnitude
higher throughput, due to the temporal load balancing of its spatio-temporal
index. As for SpatialHadoop, it needs to scan more partitions, which explain why
the throughput of SpatialHadoop decreases with the increase of data records in
spatial space. Meanwhile, ST-Hadoop throughput remains stable as it processes
only partition(s) that intersect with both space and time. Note that it is always
the case that Hadoop needs to scan all HDFS blocks, which gives the worst
throughput compared to SpatialHadoop and ST-Hadoop.

Figure 9(b) shows the effect of configuring the HDFS block size on the job
throughput. ST-Hadoop manages to keep its performance within orders of mag-
nitude higher throughput even with different block sizes. Extensive experiments
are shown in Fig. 9(c), analyzed how slicing ratio (α) can affect the performance
of range queries. ST-Hadoop keeps its higher throughput around the default
HDFS block size, as it maintains the load balance of data records in its two-layer
indexing. As expected expanding the block size from its default value will reduce
the performance on SpatialHadoop and ST-Hadoop, mainly because blocks will
carry more data records.

Experiments in Fig. 10 examines the performance of the temporal hierarchy
index in ST-Hadoop using both slicing techniques. We evaluate different gran-
ularities of time-partition slicing (e.g., daily, weekly, and monthly) with various
data-partition slicing ratio. In these two figures, we fix the spatial query range
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Fig. 10. Spatio-temporal range query interval window

and increase the temporal range from 1 day to 31 days, while measuring the total
running time. As shown in the Figs. 10(a) and (b), ST-Hadoop utilizes its tem-
poral hierarchy index to achieve the best performance as it mixes and matches
the partitions from different levels to minimize the running time, as described in
Sect. 6.1. ST-Hadoop provides good performance for both small and large query
intervals as it selects partitions from any level. When the query interval is very
narrow, it uses only the lowest level (e.g., daily level), but as the query inter-
val expand it starts to process the above level. The value of the parameter M
controls when it starts to process the next level. At M = 0, it always selects
the up level, e.g., monthly. If M increases, it starts to match with lower levels
in the hierarchy index to achieve better performance. At the extreme value of
M = 1, the algorithm only matches partitions that are completely contained
in the query interval, e.g., at 18 days it matches two weeks and four days while
at 30 days it matches the whole month. The optimal value in this experiment is
M = 0.4 which means it only selects partitions that are at least 40% covered by
the query temporal interval.

In Fig. 11 we study the effect of the spatio-temporal query range (σ) on the
choice of M. To measure the quality of M, we define an optimal running time
for a query Q as the minimum of all running times for all values of M ∈ [0, 1].
Then, we determine the quality of a specific value of M on a query workload
as the mean squared error (MSE) between the running time at this value of M
and the optimal running time. This means, if a value of M always provides the
optimal value, it will yield a quality measure of zero. As this value increases,
it indicates a poor quality as the running times deviates from the optimal. In
Fig. 11(a), We repeat the experiment with three values of spatial query ranges
σ ∈ {1E − 6, 1E − 4, 0.1}. As shown in the figure, M = 0.4 provides the best
performance for all the experimented spatial ranges. This is expected as M is
only used to select temporal partitions while the spatial range (σ) is used to
perform the spatial query inside each of the selected partitions. Figure 11(b),
shows the quality measures with a workload of 71 queries with time intervals
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Fig. 11. The effect of the spatio-temporal query ranges on the optimal value of M

that range from 1 day to 421 days. This experiment also provides a very similar
result where the optimal value of M is around 0.4.

7.2 Index Construction

Figure 12 gives the total time for building the spatio-temporal index in ST-
Hadoop. This is a one time job done for input files. In general, the figure shows
excellent scalability of the index creation algorithm, where it builds its index
using data-partition slicing for a 1 TB file with more than 115 Million records
in less than 15 min. The data-partition technique turns out to be the fastest as
it contains fewer slices than time-partition. Meanwhile, the time-partition tech-
nique takes more time, mainly because the number of partitions are increased,
and thus increases the time in physical writing phase.

In Fig. 13, we configure the temporal hierarchy indexing in ST-Hadoop to
construct five levels of the two-layer indexing. The temporal indexing uses
Data-partition slicing technique with different slicing ratio α. We evaluate the
indexing time of each level individually. Because the input files are sliced into
splits according to the slicing ratio, which directly effects on the number of par-
titions. In general with stretching the slicing ratio, the indexing time decreases,
mainly because the number of partitions will be much less. However, note that
in some cases the spatial distribution of the slice might produce more partitions
as in shown with 0.25% ratio.

7.3 Spatiotemporal Join

Figure 14 gives the results of the spatio-temporal join experiments, where we
compare our join algorithm for ST-Hadoop with MapReduce implementation of
the spatial hash join algorithm [33]. Typically, in this join algorithm we perform
the following query, “find every pairs that are close within an Euclidean distance
of 1mile and a temporal distance of 2 days”, this join query is executed on both
ST-Hadoop and Hadoop and the response times are compared. The y-axis in the
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figure represents the total processing time, while the x-axis represents the join
query on numbers of days× days in ascending order. With the increase of join-
ing number of days, the performance of ST-Hadoops join increases, because it
needs to join more indexes from the temporal hierarchy. In general, ST-Hadoop
gives the best results as ST-Hadoop index replicates data in several layers, and
thus ST-Hadoop significantly decreases the processing of non-overlapping parti-
tions, as only partitions that overlap with both space and time are considered
in the join algorithm. Meanwhile, the same joining algorithm without using
ST-Hadoop index gives the worst performance for joining spatio-temporal data,
mainly because the algorithm takes into its consideration all data records from
one dataset. However, ST-Hadoop only joins the indexes that are within the
temporal range, which significantly outperforms the join algorithm with double
to triple performance.

8 Conclusion

In this paper, we introduced ST-Hadoop [19] as a novel system that acknowledges
the fact that space and time play a crucial role in query processing. ST-Hadoop
is an extension of a Hadoop framework that injects spatio-temporal awareness
inside SpatialHadoop layers. The key idea behind the performance gain of ST-
Hadoop is its ability to load the data in Hadoop Distributed File System (HDFS)
in a way that mimics spatio-temporal index structures. Hence, incoming spatio-
temporal queries can have minimal data access to retrieve the query answer. ST-
Hadoop is shipped with support for two fundamental spatio-temporal queries,
namely, spatio-temporal range and join queries. However, ST-Hadoop is exten-
sible to support a myriad of other spatio-temporal operations. We envision that
ST-Hadoop will act as a research vehicle where developers, practitioners, and
researchers worldwide, can either use directly or enrich the system by contribut-
ing their operations and analysis techniques.



ST-Hadoop: A MapReduce Framework for Spatio-Temporal Data 103

References

1. NYC Taxi and Limousine Commission (2017). http://www.nyc.gov/html/tlc/
html/about/trip record data.shtml

2. (2017). https://about.twitter.com/company
3. Land Process Distributed Active Archive Center, March 2017. https://lpdaac.usgs.

gov/about
4. Data from NASA’s Missions, Research, and Activities (2017). http://www.nasa.

gov/open/data.html
5. European XFEL: The Data Challenge, September 2012. http://www.xfel.eu/news/

2012/the data challenge
6. Apache. Hadoop. http://hadoop.apache.org/
7. Apache. Spark. http://spark.apache.org/
8. Whitman, R.T., Park, M.B., Ambrose, S.A., Hoel, E.G.: Spatial indexing and

analytics on hadoop. In: SIGSPATIAL (2014)
9. Lu, J., Guting, R.H.: Parallel secondo: boosting database engines with hadoop. In:

ICPADS (2012)
10. Nishimura, S., Das, S., Agrawal, D., El Abbadi, A.: MD-HBase: design and imple-

mentation of an elastic data infrastructure for cloud-scale location services. DAPD
31, 289–319 (2013)

11. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.: Hadoop-GIS:
a high performance spatial data warehousing system over mapreduce. In: VLDB
(2013)

12. Kini, A., Emanuele, R.: Geotrellis: adding geospatial capabilities to spark (2014).
http://spark-summit.org/2014/talk/geotrellis-adding-geospatial-capabilities-to-
spark

13. Yu, J., Wu, J., Sarwat, M.: GeoSpark: a cluster computing framework for processing
large-scale spatial data. In: SIGSPATIAL (2015)

14. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial
data. In: ICDE (2015)

15. Ma, Q., Yang, B., Qian, W., Zhou, A.: Query processing of massive trajectory data
based on MapReduce. In: CLOUDDB (2009)

16. Tan, H., Luo, W., Ni, L.M.: Clost: a hadoop-based storage system for big spatio-
temporal data analytics. In: CIKM (2012)

17. Li, Z., Hu, F., Schnase, J.L., Duffy, D.Q., Lee, T., Bowen, M.K., Yang, C.: A
spatiotemporal indexing approach for efficient processing of big array-based climate
data with mapreduce. Int. J. Geograph. Inf. Sci. IJGIS 31, 17–35 (2017)

18. Eldawy, A., Mokbel, M.F., Alharthi, S., Alzaidy, A., Tarek, K., Ghani, S.: SHAHED:
a MapReduce-based system for querying and visualizing Spatio-temporal satellite
data. In: ICDE (2015)

19. ST-Hadoop website. http://st-hadoop.cs.umn.edu/
20. Eldawy, A., Mokbel, M.F.: Pigeon: a spatial mapreduce language. In: ICDE (2014)
21. Han, W., Kim, J., Lee, B.S., Tao, Y., Rantzau, R., Markl, V.: Cost-based predictive

spatiotemporal join. TKDE 21, 220–233 (2009)
22. Al-Naami, K.M., Seker, S.E., Khan, L.: GISQF: an efficient spatial query processing

system. In: CLOUDCOM (2014)
23. Fries, S., Boden, B., Stepien, G., Seidl, T.: PHiDJ: parallel similarity self-join for

high-dimensional vector data with mapreduce. In: ICDE (2014)
24. Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: a database management

system for applications with complex analytics. Comput. Sci. Eng. 15, 54–62 (2013)

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://about.twitter.com/company
https://lpdaac.usgs.gov/about
https://lpdaac.usgs.gov/about
http://www.nasa.gov/open/data.html
http://www.nasa.gov/open/data.html
http://www.xfel.eu/news/2012/the_data_challenge
http://www.xfel.eu/news/2012/the_data_challenge
http://hadoop.apache.org/
http://spark.apache.org/
http://spark-summit.org/2014/talk/geotrellis-adding-geospatial-capabilities-to-spark
http://spark-summit.org/2014/talk/geotrellis-adding-geospatial-capabilities-to-spark
http://st-hadoop.cs.umn.edu/


104 L. Alarabi et al.

25. Zhang, X., Ai, J., Wang, Z., Lu, J., Meng, X.: An efficient multi-dimensional index
for cloud data management. In: CIKM (2009)

26. Wang, G., Salles, M., Sowell, B., Wang, X., Cao, T., Demers, A., Gehrke, J., White,
W.: Behavioral simulations in MapReduce. PVLDB 3, 952–963 (2010)

27. Lu, P., Chen, G., Ooi, B.C., Vo, H.T., Wu, S.: ScalaGiST: scalable generalized
search trees for MapReduce systems. PVLDB 7, 1797–1808 (2014)

28. Fox, A.D., Eichelberger, C.N., Hughes, J.N., Lyon, S.: Spatio-temporal indexing
in non-relational distributed databases. In: BIGDATA (2013)

29. GeoWave. https://ngageoint.github.io/geowave/
30. Accumulo. https://accumulo.apache.org/
31. Erwig, M., Schneider, M.: Spatio-temporal predicates. In: TKDE (2002)
32. Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker,

M.: A comparison of approaches to large-scale data analysis. In: SIGMOD (2009)
33. Lo, M.L., Ravishankar, C.V.: Spatial hash-joins. In: SIGMODR (1996)

https://ngageoint.github.io/geowave/
https://accumulo.apache.org/

	ST-Hadoop: A MapReduce Framework for Spatio-Temporal Data
	1 Introduction
	2 Related Work
	3 ST-Hadoop Architecture
	4 Language Layer
	5 Indexing Layer
	5.1 Concept of Hierarchy
	5.2 Index Construction
	5.3 Phase I: Sampling
	5.4 Phase II: Temporal Slicing
	5.5 Phase III: Spatial Indexing
	5.6 Phase IV: Physical Writing

	6 Operations Layer
	6.1 Spatio-Temporal Range Query
	6.2 Spatio-Temporal Join

	7 Experiments
	7.1 Spatiotemporal Range Query
	7.2 Index Construction
	7.3 Spatiotemporal Join

	8 Conclusion
	References


