
https://doi.org/10.1007/s10707-020-00411-0

SHAREK*: A Scalable Matching Method for Dynamic
Ride Sharing

Bin Cao1 ·Chenyu Hou1 · Liwei Zhao1 · Louai Alarabi2 · Jing Fan1 ·
Mohamed F. Mokbel3 ·Anas Basalamah4

Received: 27 February 2018 / Revised: 31 March 2020 / Accepted: 24 April 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Due to its significant economic and environmental impact, sharing the ride among a num-
ber of drivers (i.e., car pooling) has recently gained significant interest from industry and
academia. Hence, a number of ride sharing services have appeared along with various
algorithms on how to match a rider request to a driver who can provide the ride shar-
ing service. However, existing techniques have several limitations that affect the quality
of the ride sharing service, and hence hinder its wide applicability. This paper proposes
SHAREK*; a scalable and efficient ride sharing service that overcomes the limitations of
existing approaches. SHAREK* allows riders requesting the ride sharing service to indicate

� Jing Fan
fanjing@zjut.edu.cn

Bin Cao
bincao@zjut.edu.cn

Chenyu Hou
houcy@zjut.edu.cn

Liwei Zhao
otoko zlw@foxmail.com

Louai Alarabi
lmarabi@uqu.edu.sa

Mohamed F. Mokbel
mokbel@cs.umn.edu

Anas Basalamah
ambasalamah@uqu.edu.sa

1 Zhejiang University of Technology, HangZhou, China
2 Department of Computer Science, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
3 Department of Computer Science and Engineering, University of Minnesota,

Minneapolis, MN, USA
4 Computer Engineering Department and KACST GIS Technology Innovation Center, Umm

Al-Qura University, Makkah, Saudi Arabia

Geoinformatica (2020) 24:881–913

Published online: 2 2020June

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-020-00411-0&domain=pdf
mailto: fanjing@zjut.edu.cn
mailto: bincao@zjut.edu.cn
mailto: houcy@zjut.edu.cn
mailto: otoko_zlw@foxmail.com
mailto: lmarabi@uqu.edu.sa
mailto: mokbel@cs.umn.edu
mailto: ambasalamah@uqu.edu.sa

the maximum price they are willing to pay for the service, the maximumwaiting time before
being picked up and the maximum arrival time for arriving the destination. In the mean
time, SHAREK* computes the price of the service based on the distance of the rider trip
and the detour that the driver will make to offer the service. Then, SHAREK* returns a set
of drivers that can make it to the rider within its price and temporal constraints. Since there
could be many of such drivers, SHAREK* internally prunes those drivers that are dominated
by others, i.e., they provide higher price and higher waiting time (or arrival time) than other
drivers. To realize its efficiency and scalability, SHAREK* employs a set of early pruning
techniques that minimize the need for any actual shortest path computations.

Keywords Ride sharing · Dynamic matching · Skyline

1 Introduction

Dynamic ride sharing can be viewed as a form of car pooling system that arranges ad-hoc
shared rides with sufficient convenience and flexibility [11]. Since dynamic ride sharing
can be enabled by smart mobile phones, GPS and wireless networks, it is viewed as an
environmentally and socially sustainable way to solve the world-widely major transporta-
tion problems, such as finite oil supplies, high gas prices, and jam-packed traffic. With the
increasing number of the vehicles, it is widely believed that dynamic ride sharing will gain
more popularity in the coming years.

The significance of the dynamic ride sharing attracts the interests from both industry and
academia [1, 15, 22]. As a result, a number of dynamic ride sharing systems are available
nowadays, e.g., Flinc [12], Lyft [20], Noah [28]. However, the way that current ride sharing
systems match drivers to requesting riders suffer from one or more of the following draw-
backs: (1) The matching models are quite simple and limited. For example, some systems
just select the nearest k drivers to the rider for picking up. In these systems, close by drivers
may have way far destinations than the rider, and hence they are not suitable for ride shar-
ing. Meanwhile, there exists systems that require the rider route is part of the driver route,
where some important drivers that may have only a small detour to suit the rider request will
not be reported. (2) The cost of the ride sharing service is not considered during the match-
ing and it is left to be negotiated between the riders and drivers in a personal way. This is
very problematic as it may be the case that the most convenient drivers to pick up the rider
have higher costs that is beyond what the rider would like to pay. (3) The speedup technique
mainly depends on precomputing the driver routes based on their historical trajectories. This
indeed works to some extent, however, it would fail when the drivers’ trajectories are miss-
ing. Besides, storing those trajectories needs massive storage which adds new cost to the
operators of the ride sharing systems.

In this paper, we present SHAREK*, a new scalable ride sharing system that avoids the
drawbacks of all previous approaches. SHAREK* matches a rider, requesting a ride sharing
service, to a set of drivers who can provide the requested ride sharing service, while taking
into account: (a) the cost of the ride sharing service, and (b) the convenience of the service
for both the driver and the rider. SHAREK* allows drivers willing to offer a ride sharing
service to register themselves indicating their current source and destination locations, e.g.,
a driver is going back from work to home. For example, Fig. 1 shows a typical ride sharing
scenario where black points represent the drivers and white points represent the rider. A
dotted vertical line separates these points into two parts. The points in the left part are
origins of the drivers and the rider while the right part contains their destinations. Moreover,

Geoinformatica (2020) 24:881–913882

d1
d3

d4

d2

r
d9

r

d1dd
d3dd

d4dd

d2dd d9dd

r

d10

d4

d2
d6

d3

d1

d5

Origins Destinations

t=15

d5

d6

d10

d8

d7

d7

d8

d9

Fig. 1 A SHAREK* example

SHAREK* allows riders requesting the ride sharing service to indicate their destinations as
well as to express two main constraints: (1) Cost constraint. The maximum price the rider
is willing to pay for the ride sharing service, and (2) Temporal constraint. The maximum
waiting time that the rider can wait before being picked up by the driver. Then, SHAREK*
employs a cost model that estimates the cost of the ride sharing service for each driver. The
cost model is basically computed based on the distance of the rider route in addition to the
additional distance overhead that the driver will encounter to detour from his original route
to accommodate the rider request. Based on the cost model, SHAREK* can pinpoint those
drivers that can make it to the rider within its cost and temporal constraints. Since there could
be many of such drivers, SHAREK* internally prunes those drivers that are dominated by
others. For example, if two drivers di and dj satisfy both the cost and temporal constraints
of the rider, yet di would result in less cost and less waiting time than dj , we say that di

dominates dj , i.e., dj is not on the skyline set of drivers who satisfy the rider constraints.
Hence, we prune dj and do not report it as a candidate driver. SHAREK* only reports those
drivers that are not dominated by others, i.e., the list of skyline drivers according to cost and
temporal constraints.

One trivial way to realize SHAREK* vision is to calculate the actual cost and waiting
time that each possible driver d would offer to the rider r . Then, run a skyline algorithm over
all of the drivers. Such trivial way is prohibitively expensive as it encounters a large num-
ber of road network shortest path computations. SHAREK* achieves its scalability through
minimizing the need to rely on the expensive shortest path operation. In fact, SHAREK*
can efficiently and accurately satisfy the ride sharing request with only few shortest path
computations by applying filter-and-refine paradigm [33]. To do so, SHAREK* employs
three consecutive phases. In the first phase (Euclidian Temporal Pruning), we take advan-
tage of the rider temporal constraint to prune a set of drivers without computing any road
network shortest path operation. In the second phase (Euclidean Cost Punning), we employ
a conservative Euclidean computations to prune a set of drivers based on the rider cost
constraint, without computing any road network shortest path. In the third phase (Semi-
Euclidean Skyline-aware pruning), we start to compute actual road network shortest paths

Geoinformatica (2020) 24:881–913 883

in a very conservative way. Meanwhile, different from previous works [28, 32], we inject
the skyline computations inside the pruning techniques, which helps in pruning even more
drivers without any shortest path computations. So, instead of considering the skyline com-
putation as an overhead, we actually consider it as a blessing, where we take advantage of
it to even prune more drivers without further computations.

Extensive experimental evaluation show the scalability and efficiency of SHAREK*. It
only takes tens of milliseconds to satisfy the rider request, even if there are 100,000 drivers
around. Experimental analysis also shows the pruning power of each phase in SHAREK*,
and show that we can get the set of candidate drivers satisfying all rider constraints with
very few shortest path computations. In general, the contributions in this paper can be
summarized as follows:

1. We define the ride sharing problem in a way that accommodates the rider convenience
by expressing temporal and cost constraints along with defining a price cost model for
each ride sharing service.

2. We introduce an efficient and scalable algorithm for the ride sharing service that:
(a) takes into account the rider temporal and cost constraints and (b) avoids reporting
unnecessary large number of candidate drivers that may satisfy the rider constraints by
reporting only the skyline set of those drivers in terms of price and waiting time.

3. SHAREK* distinguishes itself from SHAREK [6] in the following points:
(1) SHAREK* supports more temporal constraints from the rider, i.e., the maximum
waiting time and the maximum arrival time. (2) SHAREK* provides an alternative
implementation for the Semi-Euclidean Skyline-aware pruning phase, which is able to
show a better performance when the cost constraint is below a certain value.

4. We provide experimental evidence of the scalability and efficiency of our proposed
algorithm.

The rest of this paper is organized as follows. Section 2 sets the stage for various
concepts used in SHAREK*. Section 3 discusses SHAREK* query processing. Section 4
gives an alternative implementation for SHAREK*. Experimental evaluation is presented in
Section 5. Section 6 highlights related work. Finally, Section 7 concludes the paper.

2 Preliminaries

This section presents a set of preliminaries that are important to set the stage for under-
standing SHAREK* and its vision. In particular, we discuss what we mean in SHAREK*
by drivers and riders, the concept of skyline drivers, the price cost model, the problem
definition, and the underlying data structure.

2.1 Drivers and Riders

Users of SHAREK* are either drivers or riders, as below:

Drivers The set of driver D represents the ride sharing service providers. Drivers are ordi-
nary people who are just commuting in their daily life. At one point, they may indicate
their willingness to offer a ride sharing service within their route. To do so, they call
SHAREK* service to register themselves indicating their origin orig and destination points
dest . After registration, SHAREK* is allowed to track their locations for supporting the
ride sharing service. Once the driver reaches to his destination, the driver is unregistered

Geoinformatica (2020) 24:881–913884

from SHAREK*. Every time the driver is willing to share his route, he has to register again
with SHAREK*. This is done through a simple check-in mobile app. Drivers are to be paid
for their ride sharing service based on the distance of the ride service they will provide and
the detour that they will need to make from their original route.

Riders The set of riders R represents people requesting a ride sharing service. To request
such service, a rider r would call SHAREK* service, through the dedicated mobile app,
and provide four pieces of information: (1) current location orig, which can be obtained
directly from the cell phone, (2) the requested destination dest , (3) the maximum waiting
time (max WaitT ime) that r can afford before being picked up, (4) the maximum arrival
time (max ArrivalT ime) that r is able to spare for arriving his destination, and (5) the
maximum price (max P rice) that r is willing to pay for ride sharing service. Within few
milliseconds, the rider receives a set of drivers from SHAREK* that can offer the requested
ride sharing service within the arrival time and price constraints.

2.2 Skyline Drivers

For a certain ride sharing request from a rider r , there could be more than one driver capable
of satisfying r requested within its waiting time, arrival time and price constraints. It is
challenging then which of these capable drivers to return to the rider. Should we decide
to return only the driver with least waiting and arrival time, we may end up in returning
an expensive driver, though it is still within the rider cost constraints. Similarly, the driver
with cheapest price may end up on the highest waiting and arrival time. In the mean time,
returning all possible candidate drivers satisfying the rider constraints may not be practical
and result in redundant information.

Hence, SHAREK* opts to use the logic of the maximal vector set problem [18] (also
known as the skyline query in database context [5]) to return only the set of the three dimen-
sioanl skyline drivers in terms of waiting time, arrival time and price. A driver di belongs to
the set of skyline drivers if there is no other driver dj that has less waiting time, arrival time
as well as price than that of di simultaneously. Meanwhile, if dj has smaller values in wait-
ing time, arrival time and price than di , we say that dj dominates di , and hence di should
be pruned as it will never make it to the set of skyline drivers.

orig(r)

orig(d)

dest(r)

dest(d)

Pickup

Rider Trip

Return

Driver Trip
Fig. 2 The illustration for different costs

Geoinformatica (2020) 24:881–913 885

2.3 Price Cost Model

The main distinguishing point of SHAREK* is its price cost model that is taken into con-
sideration when matching drivers with riders. Figure 2 gives an illustration example for the
price cost model of SHAREK*. In this figure, the origin and destinations of driver d and
rider r are plotted by black and white circles, respectively. The dotted line represents the
original driver d trip from his origin to his destination. The solid line represents the detour
that the driver d will encounter to provide a ride sharing service to the rider r . Basically, d
has to travel from his origin location orig(d) to the rider origin location orig(r). Then, d

has to go through the rider trip till dest (r) to drop off r . Finally, d will need to go to his
destination dest (d).

Given the example in Fig. 2, the price for the ride sharing service offered from driver d

to rider r , Price(d, r), has two components: (1) The cost of the rider trip from its origin
to destination, RiderT rip(r). This is intuitive as at least the rider needs to pay the cost of
its own route. Notice that this part is independent from the driver d , i.e., any driver d will
be offering ride sharing service to r will include this cost in its price. (2) The cost of the
detour that the driver d will encounter to pickup and drop off r , then to return to his own
destination. This part of the price cost will play a major role in matching drivers to riders,
as drivers with less detour will be favored over drivers with longer detours. Formally, the
price can be represented by the following equation:

Price(d, r) = RiderT rip(r) + Detour(d, r)

Detour(d, r) can be calculated as the difference between the new route of the driver d

(the solid line in Fig. 2) and its original route (the dotted line in Fig. 2). This can be formally
stated as:

Detour(d, r) = P ickup(d, r) + RiderT rip(r)

+Return(d, r) − DriverT rip(d)

From the above two equations, we get the equation used in SHAREK* to calculate the
cost of any ride sharing service from driver d to rider r , as

Price(d, r) = P ickup(d, r) + 2 ∗ RiderT rip(r)

+Return(d, r) − DriverT rip(d) (1)

It is important to note here that the price cost of any trip between two end points is pro-
portional to the shortest path road network distance between the two end points. For example
P ickup(d, r) is proportional to the shortest path network distance between orig(d) and
orig(r).

2.4 Problem Definition

Based on the understanding of the roles of Drivers and Riders, along with the price cost
model, SHAREK* defines its ride sharing service as follows:

Definition 1 Given a a set of drivers D, where each driver d ∈ D has a current origin
location orig(d) and a destination dest (d), and a ride sharing request from a rider r , located
at orig(r) to go to dest (r), within a maximum waiting time rmax WaitT ime, a maximum

Geoinformatica (2020) 24:881–913886

arrival time rmax ArrivalT ime and a maximum price rmax P rice, SHAREK* finds a set of
drivers D′ ⊂ D, where ∀d ∈ D′, the following hold:

1. P ickup(d, r) < rmax WaitT ime,
2. P ickup(d, r) + RiderT rip(r) < rmax ArrivalT ime,
3. Price(d, r) < rmax P rice,
4. d is in the set of skyline drivers based on P ickup(d, r) and Price(d, r).

It is noted that in the first condition we compare P ickup(d, r), which is a a shortest
path distance with rmax WaitT ime, which is a time unit. However, this is still accurate as we
consider that the shortest path distance between point A and point B is proportional to the
time taken to travel from A to B and also to the price to be paid for the trip from A to B.
Conversions between distance, time, and price can be done by just multiplying in a factor.
Hence, in this paper, we compare distance, time, and price units to each other.

Based on the above conversions, the left side of the second condition, i.e.,
P ickup(d, r)+RiderT rip(r), can be regarded as the arrival time for the rider r when d is
assigned to give a ride to him. Since the RiderT rip(r) is fixed for all the drivers, the arrival
time is determined by the value of P ickup(d, r), i.e., the waiting time for r to be picked
up by d . As a result, we can combine the first two conditions of Definition 1 to following
formula:

P ickup(d, r) < min(rmax WaitT ime,

rmax ArrivalT ime − RiderT rip(r)) (2)

Hence, there is no need to compute skyline drivers from the perspectives of waiting time,
arrival time and price, instead, the skyline drivers in our problem can be only defined by two
dimensions, namely P ickup(d, r) and Price(d, r). This reduction on skyline dimension
is important since it can be utilized to enhance the matching speed as we will see later in
SHAREK* query processing.

3 Dynamic Matching in SHAREK*

A naive way to support the ride sharing matching as defined in SHAREK* is to first compute
the shortest path between the rider and every single registered driver as well as the shortest
path for the driver to return to his original destination after giving the requested ride to
the rider. For those drivers that can satisfy both the pickup time and cost constraints, run a
two-dimensional skyline algorithm over pickup time and cost to get those drivers that are
not dominated by any other drivers. Though the solution looks simple, it has a prohibitive
cost of computing large numbers of shortest paths, which is not suitable, given the online
environment of ride sharing requests.

SHAREK* avoids such prohibitive cost by deploying a set of early pruning techniques
with the goal of minimizing the need for shortest path computations. In fact, we will see
that we can efficiently and accurately satisfy the ride sharing request with only few shortest
path computations. SHAREK* is composed of three consecutive phases, namely, Euclidian
Temporal Pruning, Euclidean Cost Punning, and Semi-Euclidean Skyline-aware Pruning.
The three phases are described in details in the rest of this section. For illustration, we
use the example shown in Fig. 1 throughout the whole section. We assume that maximum

Geoinformatica (2020) 24:881–913 887

waiting time, maximum arrival time and maximum price rider constrains are 15, 30 and 30,
respectively.

3.1 Data Structure

Driver Table SHAREK* maintains one big table, Driver Table, that includes an entry for
each currently registered driver with SHAREK*. Once a driver d indicates his willing-
ness to provide a ride sharing service, d is registered with SHAREK* and a new entry for
d is added to the Driver Table with the following information: A driver entry d has four
attribute: (1) ID: A unique driver identifier set by SHAREK*, (2) CurrentLocation: The
current location of d , either set explicitly by d or extracted from her mobile device. With
the registration, d allows SHAREK* to track his location, and hence this attribute is contin-
uously changing with the movement of d , (3) Destination: The destination location for the
driver. Once d reaches to its destination, it is automatically unregistered from SHAREK*
and its entry is deleted from the Driver Table, and (4) DriverTrip: The shortest path cost
between CurrentLocation andDestination. As the CurrentLocation is continually changing,
the value of the DriverTrip changes accordingly. We use an efficient incremental shortest
path algorithm [30] for updating the value of DriverTrip.

Grid Index The Driver Table is indexed by a simple gird index [24] on the CurrentLocation
field. We opt for using the grid index due to its simplicity and low update overhead. As
CurrentLocation is a continuously changing fields, it is important to ensure that it does not
cause much overhead to the index structure, and hence the grid index is a suitable one.

3.2 Phase I: Euclidean Temporal Pruning

The input of this phase is the set of all registered drivers in the system, stored in the Driver
Table and the grid index of them. The output is a set of candidate drivers that can pick up
the rider r within its maximum waiting time and arrival time, based on Euclidean distance
computations. The Euclidean distance between any two points is equal or less than the actual
shortest path road network distance between the same two points. Meanwhile, computing
the Euclidean distance has a trivial cost compared to the actual shortest path computations.
Hence, Euclidean distance can act as a cheap conservative proxy for the actual road network
distance.

Main idea The main idea of this phase includes two consecutive steps. In the first step, we
identify the real temporal constraint for the rider r based on his requirements of maximum
waiting time and maximum arrival time. According to the second condition of Definition 1,
we know that the maximum arrival time consists of waiting time and the time spent for the
rider trip. Thus, besides the maximum waiting time that explicitly input by the rider, we can
also get another possible maximum waiting time constraint implied by the maximum arrival
time that the rider required, i.e., subtracting RiderT rip(r) from rmax ArrivalT ime. Then,
we compare these two values and use the shorter one as the real maximum waiting time
constraint. This is because the longer maximum waiting time value will cause the conflict
between the two requirements of the rider.

The second step of this phase is to exploit the grid index data structure by a circular range
query QR centered at the rider location with a radius equivalent to the Euclidean distance

Geoinformatica (2020) 24:881–913888

corresponding to the real maximum waiting time constraint of the rider r derived in the
first step. Any driver d that does not satisfy the query QR is immediately pruned from our
consideration, with no further computations, as d will never be able to pick up r within its
time constraint. The set of drivers that satisfy the range query QR may still include a set of
false positives, i.e., a driver d in QR may still not be able to get to rider r , using the road
network distance.

Example Figure 1 gives the temporal pruning result for our running example. Assume that
the shortest path cost for the rider trip RiderT rip(r) is 12. Then, the maximum waiting
time induced by the maximum arrival time is rmax ArrivalT ime − 12 = 18, which is larger
than the maximum waiting time required by the rider, i.e., 15. Hence, the real maximum
waiting time constraint of r is finalized to 15, and a range query is submitted for retrieving
drivers that are within Euclidean distance of the maximum waiting time rmax WaitT ime =
15. As a result, nine drivers (i.e., d1, d2, ..., d9) are selected, and these drives’ trips are shown
in Fig. 3.

3.3 Phase II: Euclidean Cost Pruning

The input to this phase is the set of candidate drivers produced from Phase I, while the output
is a subset of the input drivers that are still candidate to be reported in the final answer.

ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d1 13.4

d2 10

d3 9.6

d4 8.9

d5 9.5

d6 14.8

d7 11.5

d8 12.3

d9 10.7

Fig. 3 Matching tbale

Geoinformatica (2020) 24:881–913 889

Main idea The main idea of this phase is to adopt a conservative estimation of the total
ride sharing cost (Equation 1), by substituting the road network cost with its corresponding
Euclidean cost. Hence, we get the following equation:

EuclideanP rice(d, r) =
EuclideanP ickup(d, r) + 2 ∗ RiderT rip(r) +
EuclideanReturn(d, r) − DriverT rip(d) (3)

Comparing (1) and (3), as EuclideanP ickup(d, r) < P ickup(d, r) and
EuclideanReturn(d, r) < Return(d, r), then EuclideanP rice(d, r) must be less
than Price(d, r). Hence, if a certain driver cannot satisfy the price constraints, using
EuclideanP rice(d, r), then there is no need to calculate any shortest path cost for d , as it
will never be able to make it using its road network cost Price(d, r), which is higher than
its Euclidean cost.

Algorith Algorithm 1 gives the pseudo code for the first two phases. First, we obtain the
rider r information, i.e., its location, temporal constraints and the shortest path from orig(r)

to dest (r). Then, we combine different temporal constraints to a single one (denoted by
rmax T ime) based on the (2) (line 5-6), i.e., the maximum waiting time that actually play the
role of restricting the driver from picking up the rider. Next, we issue a range query QR

that exploits the grid index g index over the Driver Table to return the set of drivers that can
reach to the rider within the temporal constraint using Euclidean distance. The output of
the range query is used to populate a newly created table, termed Matching Table (Fig. 3),
that includes one entry for each driver returned from Phase I. Each driver entry includes the
driver id, road network and Euclidean cost for both the pickup and return trip for that driver,
and the road network distance of the driver trip. Since the driver trip cost is already known
from the driver entry in the Driver Table, it is just copied here upon the table initialization.
Then, we compute the actual road network cost of the rider trip, which is the shortest path

Geoinformatica (2020) 24:881–913890

between its origin and destination. Since we only have one rider, this is a one time cost of
shortest path query. Then, we scan over all the drivers in theMatching Table. For each driver
d , we calculate the Euclidean distance for picking up the rider (EucledianP ickup(d, r))
and returning from the rider destination (EucledianReturn(d, r)), and store them in the
Matching Table. Then, we check if the total cost of driver d (3) is still within the rider cost
constraint rmax P rice. If not, we exclude d , and remove it from theMatching Table, without
doing any shortest path computation for d .

Example Figure 4 gives the Matching Table after we compute the Euclidean Pickup and
Euclidean Return costs for each of the nine drivers d1 to d9 that are produced from Phase I,
using the actual temporal constraint rmax T ime = 15. Assume that the shortest path cost for
RiderT rip(r) = 12, then we calculate (3) for each of the nine drivers. We find that the
total cost for driver d9 is actually more than 30, which is the maximum price set by the rider
r . Hence, we decide to remove driver d9 from the matching table without any shortest path
computation, as we are sure that d9 will never make it to the final result as its road network
distance will exceed its Euclidean distance. The rest of drivers d1 to d8 are still candidates
as their total cost (using Euclidean distance) is less than 30, hence they still have a chance
to make it.

3.4 Phase III: Semi-Euclidean Skyline-aware Pruning

The input to this phase is the set of candidate drivers, produced from Phase II, and stored in
theMatching Table. The output is the final answer returned to the rider r that includes a set
of drivers who not only satisfy the temporal and cost constraints of r , but also represent a set
of the skyline result, in terms of time and price, of those drivers that satisfy the temporal and
cost constraints. One direct approach to realize this phase is to just calculate all the shortest
path (i.e, road network distance) for P ickup and Return for each driver in the Matching
Table. Then, calculate the actual total cost for each driver in the Matching Table. Finally,
run a traditional skyline algorithm over total cost and pickup time to get the final answer.
Unfortunately, such approach is prohibitively expensive, as it needs to calculate two road
network distances (P ickup and Return) for each driver in the Matching Table, followed
by an expensive skyline operation.

Pickup +2*12+Return DriverTrip<30

rmax_Time = 15, rmax_Price = 30, RiderTrip= 12

EuclideanPickup +2*12 +
EuclideanReturn DriverTrip > 30
EuclideanPickup +
EuclideanReturn

Pickup +2*12+Return DriverTrip<30

rmax_Timerr = 15, rmax_Pricerr = 30, RiderTrip= 12 ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d1 6.1 13.2 13.4

d2 6.0 4.2 10

d3 6.1 9.5 9.6

d4 4.5 6.6 8.9

d5 6.5 6.5 9.5

d6 7.4 8.3 14.8

d7 9.3 6.8 11.5

d8 8.7 5.4 12.3

d9 11.3 9.4 10.7

Fig. 4 Cost pruning with rmax P rice

Geoinformatica (2020) 24:881–913 891

In SHAREK*, we avoid such expensive computations by employing two techniques:
(1) We avoid the computations of all pickup and return shortest paths for each driver through
early pruning techniques where some drivers can be completely pruned without calculating
their shortest paths, and (2) We inject the skyline computations inside the pruning tech-
niques, which helps in pruning even more drivers without any shortest path computations.
This achieves a significant improvement as instead of considering the skyline computation
as an overhead to be added to our two main constraints (time and cost), we actually con-
sider the skyline operation as a blessing, where we take advantage of it to even prune more
drivers without further computations.

Main idea There are actually four main ideas in this phase. First, we use a less conservative
Semi-Euclidean equation for computing the total cost than (3). In particular, we use the
following equation:

SemiEuclideanCost (d, r) =
P ickup(d, r) + 2 ∗ RiderT rip(r) +

EuclideanReturn(d, r) − DriverT rip(d) (4)

Comparing (4) and (3), here we use the actual road network for the pickup cost, while
we are still conservative as we still use the Euclidean distance for the return trip. The second
idea of this phase is that we retrieve drivers one by one based on their road network pickup
distance. This means that if the road network distance of some driver di is not satisfying
the temporal constraints, then there is no need to continue getting more drivers. The third
idea is that we inject the skyline computations in this phase by always setting a maximum
cost MAX as the maximum acceptable cost for any driver to be included in the skyline
result. MAX is initialized by rmax P rice, and is then tightened with every added driver to
the final result. The fourth idea is that we sort the Matching Table based on the value of
(EuclideanReturn(d, r)−DriverT rip(d)), which will significantly help in early pruning
a set of drivers as will be seen below.

Based on these ideas, we employ an incremental road network nearest-neighbor (INN)
algorithm [25] that retrieves the drivers one by one based on their actual road network
distance P ickup(d, r) from the rider r . For each driver d , retrieved from the INN query,
with an exact road network distance P ickup(d, r) (computed as part of the INN), we will
have one of the following four cases:

Case 1 Driver d cannot make it on time to pick up the rider, and hence does not satisfy the
temporal constraint of rider r , i.e., P ickup(d, r) > rmax T ime. In this case, we terminate
our algorithm and report the current answer, if any, as the final answer. We do so without
the need to calculate the actual road network distance of the return trip nor to calculate any
road network distance for the set of drivers that we did not visit yet. The idea is that since
driver d cannot arrive punctually, and as we are visiting drivers through an INN algorithm,
intuitively all other drivers are further than driver d , and hence none of themwill be qualified
. Hence there is no need to check any of them.

Case 2 Driver d can satisfy the rider’s temporal constraint, i.e., P ickup(d, r) ≤ rmax T ime.
Yet, its semi-Euclidean conservative cost (4) is more than the MAX value. This means that
we have visited some driver di before with an actual total cost (computed per Equation 1)
that is less than the total cost of d . Since di is visited before d , then di is closer to r than
d . Hence, di dominates d as its closer to r than d and also it will provide less cost than d .

Geoinformatica (2020) 24:881–913892

In this case, we take the following two actions: (1) We consider driver d as not qualified
to be in the query answer, even though we did not calculate its actual road network return
trip. It is important to note that driver d may still satisfy the cost constraint of the rider, yet,
it does not belong to the set of skyline drivers as it is dominated by a prior driver di . This
is the case where we take advantage of the skyline constraint to early prune drivers without
further computation. (2) We prune out all the drivers in the sorted Matching Table that are
below driver d , i.e., have larger value for (EuclideanReturn(d,r) - DriverTrip(d)) than that
of driver d , without the need to calculate any road network cost for them. The rational here
is that these drivers will have larger values than driver d in P ickup as they are not reported
yet using the INN algorithm. Since they will have larger P ickup cost and also larger value
of (EuclideanReturn(d,r) - DriverTrip(d)). Thus, we can safely prune these drivers as they
will never make it to the final skyline answer.

Case 3 Driver d can satisfy the rider’s temporal constraint, i.e., P ickup(d, r) ≤ rmax T ime,
and its semi-Euclidean conservative cost (4) is less than the MAX value. Yet, its actual total
cost (Equation 1) is more than MAX. Notice that in this case, we had to, for the first time,
calculate the actual road network distance of Return(d, r). In this case, we just conclude
that driver d cannot make it to the final answer, either because driver d does not satisfy the
rider cost constraint or because it will never make it to the skyline answer because of the
tightened MAX value. It is important to note here that we cannot prune more drivers from
the Matching Table as we are using the actual road network distance while the Matching
Table is sorted based on an Euclidean distance computations.

Case 4 None of the above, which means that d can satisfy the rider’s temporal maximum
waiting time constraint, its semi-Euclidean conservative cost (4) is less than theMAX value,
and its computed actual total cost (1) is less than MAX. In this case, we: (a) add driver d to
the final query answer as we conclude that d is a qualified driver who belong to the set of
skyline drivers that can pick rider r within its time and cost constraints, and (b) tighten the
value of MAX to be the total cost of d . Such tightening is important as it indicates that for
any other driver di to be reported in the final answer, di has to have less cost than that of d

to be a skyline. Notice that di will definitely have higher P ickup cost than that of d as we
are retrieving drivers using an INN algorithm. So, to be in a skyline, driver d ′ must have a
ride sharing cost that is less than that current driver d being iterated.

EuclideanPickup +2*12 +
EuclideanReturn DriverTrip > 30

ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d8 8.7 5.4 12.3

d6 7.4 8.3 14.8

d2 6.0 4.2 10

d7 9.3 6.8 11.5

d5 6.5 6.5 9.5

d4 4.5 6.6 8.9

d1 6.1 13.2 13.4

d3 6.1 9.5 9.6

EuclideanPickup +2*12 +
EuclideanReturn DriverTripEuclideanReturn DriverTrip

EuclideanPickup +
EuclideanReturn

Pickup +2*12+Return DriverTrip<30

rmax_Time = 15, rmax_Price = 30, RiderTrip= 12

Pickup +2*12+Return DriverTrip<30

rmax_Timerr = 15, rmax_Pricerr = 30, RiderTrip= 12

Fig. 5 Matching Table sorting based on (EuclideanReturn(d, r) − DriverT rip(d))

Geoinformatica (2020) 24:881–913 893

Algorithm Algorithm 2 gives the pseudo code for Phase III. We first sort the Match-
ing Table based on the value of (EuclideanReturn − DriverT rip), computed for each
driver. Then, we initialize a MAX value to the maximum price of the rider, i.e., rmax P rice.
Next, we iterate over the sorted Matching Table. For each iteration, we execute the nearest-
neighbor query to retrieve the driver d with the lowest road network cost of P ickup. If d

cannot satisfy the rider temporal constraint, we conclude by reporting the current set of sky-
line drivers. Otherwise, we calculate the semi-Euclidean cost of d (4). If it is more than the
current value of MAX, we shrink the Matching Table by removing d along with all drivers
below d . On the other side, if the semi-Euclidean cost of d is less than MAX, we have to
calculate the actual road network cost for the return trip of d (line 11). Then, we calculate
the actual total cost of d (line 12). If such cost is still more than MAX, we just remove d

only from the Matching Table, otherwise, we add d to the final result, and update the value
of MAX accordingly.

Example We continue our running example, where rider r , with road network distance trip
12, needs to be picked up within the constrains rmax T ime = 15 and rmax P rice = 30.
Figure 5 gives the Matching Table sorted based on (EuclideanReturn − DriverT rip)

Geoinformatica (2020) 24:881–913894

EuclideanPickup +2*12 +
EuclideanReturn DriverTrip > 30

ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d8 8.7 5.4 12.3
d6 7.4 8.3 14.8
d2 7 6.0 4.2 10
d7 9.3 6.8 11.5
d5 6.5 6.5 9.5
d4 4.5 6.6 8.9

EuclideanPickup +2*12 +
EuclideanReturn DriverTripEuclideanReturn DriverTrip

Pickup +2*12 +
EuclideanReturn DriverTrip > 30

EuclideanPickup +
EuclideanReturn

Pickup +
EuclideanReturn

ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d8 8.7 5.4 12.3
d6 7.4 8.3 14.8
d2 6.0 4.2 10
d7 9.3 6.8 11.5
d5 6.5 6.5 9.5
d4 4.5 6.6 8.9
d1 6.5 6.1 13.2 13.4
d3 6.1 9.5 9.6

Pickup +2*12+Return DriverTrip<30

rmax_Time = 15, rmax_Price = 30, RiderTrip= 12

Pickup +2*12+Return DriverTrip<30

rmax_Timerr = 15, rmax_Pricerr = 30, RiderTrip= 12

Fig. 6 Filtering based on Equation 3

in an ascending order. Then, Semi-Euclidean Distance Pruning will iterate over drivers by
querying incremental nearest neighbor. Figure 6 gives the procedure for filtering based on
the estimation described in Eq. 4. First, INN query retrieves the nearest driver d1. We find
that the cost of d1 is more than the rider constraint (6.5 + 2 ∗ 12 + 13.2 − 13.4 > 30),
hence driver d1 is removed from Matching Table. In addition, based on the conclusion of
Matching Table sorting, driver d3 is also filtered out without any shortest path computation.

Figure 6 also gives the next iteration, where we can see that after filtering out d1 and
d3 (shown in grey area of the lower table), the Matching Table is shrunk to be the table
in the top right corner. Then, we continue to search the nearest driver in this shrunk table,
d2 is chosen, where its P ickup cost is not only within the real maximum waiting time
(rmax T ime = 15), but also it has a possible ride sharing cost less than rmax P rice = 30.
So, we calculate the shortest path cost of Return for d2. As shown in Fig. 7, we use the

EuclideanPickup +2*12 +
EuclideanReturn DriverTrip > 30

EuclideanPickup +2*12 +
EuclideanReturn DriverTripEuclideanReturn DriverTrip

Pickup +2*12 +
EuclideanReturn DriverTrip > 30

EuclideanPickup +
EuclideanReturn

Pickup +
EuclideanReturn

Pickup +2*12+Return DriverTrip <30+2*12+Return

Pickup +2*12+Return DriverTrip<30

rmax_Time = 15, rmax_Price = 30, RiderTrip= 12

Pickup +2*12+Return DriverTrip<30

rmax_Timerr = 15, rmax_Pricerr = 30, RiderTrip= 12 ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d8 8.7 5.4 12.3

d6 7.4 8.3 14.8

d2 7 6.0 8.3 4.2 10

d7 9.3 6.8 11.5

d5 6.5 6.5 9.5

d4 4.5 6.6 8.9

Fig. 7 Filtering based on Cost Constraint

Geoinformatica (2020) 24:881–913 895

ride sharing cost constraint (1) shown in the left bottom of the figure to test d2. Fortunately,
d2 can meet the demand of the rider’s maximum price, i.e., d2 provides a price of 29.3
(9.1+ 2 ∗ 12+ 7.6− 10), which is less than 30. As a result, d2, denoted by the bold font in
right table, is retained in the Matching Table, and since d2 passes the last evaluation of cost
constraint (1), driver d2 becomes a qualified one.

Figure 8 describes the skyline processing case. The driver d2 is the first found qualified
driver with ride sharing cost 29.3, which is less than current MAX (30), and the time for
picking up is 7 which must be the least waiting time among all the drivers according to the
INN algorithm we are using. Since the next found skyline driver must cause more waiting
time for the rider, then the ride sharing cost of this prospective driver must be less than 29.3.
Thus, to find this driver in the next iteration, we update the maximum price/ride sharing cost
rmax P rice to 29.3 as shown in the top left part of the figure. Based on this new value, we
filter out driver d5 when evaluating (1) (8.2+2∗12+8−9.5 > 29.3). Similarly, drivers d4,
d8, d6, and d7 are pruned through using (4) or (1) in following iterations. Eventually, only
one driver d2 out of 10 is returned to the rider r .

3.5 Materialization in SHAREK*

As introduced in Algorithm 2, SHAREK* adopts both the incremental nearest neighbor
(INN) query (line 5) and the shortest path query (line 11) to obtain the road network dis-
tance between the rider and the driver when it is needed. To further speed up the dynamic
matching, the technique of materialization [7] for retrieving the road network distance is
also implemented in SHAREK*. Specifically, there exists two types of materialization:

1. Materialization in the INN query. Whenever the INN query is issued, the nodes and
edges of the road network that have been visited will be recorded as the expansion start-
ing point for the next INN query. Hence, SHAREK* won’t need to search the nearest
driver from scratch on the road network graph, which can greatly accelerate the INN
query performance.

2. Materialization in the shortest path query. SHAREK* uses the shortest path query for
computing the road network distance between the destinations of the rider and the
driver. The shortest path algorithm, e.g., Dijkstra algorithm, may retrieve the network
distance for another driver’s destination before obtaining the shortest path for the given

Pickup +2*12+Return DriverTrip<29.3
rmax_Time = 15, rmax_Price = 29.3, RiderTrip= 12

EuclideanPickup +2*12 +
EuclideanReturn DriverTrip > 29.3

Pickup +2*12 +
EuclideanReturn DriverTrip > 29.3

EuclideanPickup +
EuclideanReturn

Pickup +
EuclideanReturn

ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d2 7 6.0 8.3 4.2 10
Pickup +2*12+Return DriverTrip<29.3
rmax_Timerr = 15, rmax_Pricerr = 29.3, RiderTrip= 12

Pickup +2*12 +Return DriverTrip<29.3

ID Pickup Euclidean
Pickup

Return Euclidean
Return

Driver
Trip

d8 9 8.7 10.2 5.4 12.3
d6 11.1 7.4 9.7 8.3 14.8
d2 7 6.0 8.3 4.2 10
d7 12 9.3 6.8 11.5
d5 8.2 6.5 8 6.5 9.5
d4 8.7 4.5 7.5 6.6 8.9

+Return

Fig. 8 Skyline processing

Geoinformatica (2020) 24:881–913896

driver. In this case, SHAREK* would record all the found network distances for corre-
sponding drivers, i.e., set the values of Return field in theMatching Table, which then
can be directly used for testing the price cost constraint (1) without issuing the short-
est path query. Moreover, the visited nodes and edges of the road network, like the first
materialization in INN query, are also marked for continuing the future shortest path
search.

4 Dual-sides Pruning

In previous implementation of Phase 3 in SHAREK, i.e., Semi-Euclidean Skyline-aware
Pruning Phase, the actual road network distance for Return trip had to be computed once
the driver satisfies the rider’s temporal constraint and its semi-Euclidean cost is less than
the tightened price cost (MAX). It is important to note here that only one driver could
be filtered out each time when the final ride sharing cost offered by this driver is greater
than the MAX value, which leads to inefficiency when a large number of drivers’ Return

trip and final cost need to be checked. Hence, in this section, we present an alternative
implementation for Phase 3. Unlike previous implementation where the pruning technique
started from the P ickup side, we propose a new pruning strategy from both P ickup and
Return sides in this new version, which may provide more capability for pruning the search
space than previous strategy.

Main idea The new implementation distinguishes itself from its predecessor in following
two main aspects. First, to filter out those drivers who are not able to provide ride sharing
costs within the rider’s cost constraint, we adopt a new Semi-Euclidean equation:

SemiEuclideanCost (d, r) =
EuclideanP ickup(d, r) + 2 ∗ RiderT rip(r) +

Return(d, r) − DriverT rip(d) (5)

Comparing (5) and (4), here we use the Euclidean distance for the pickup trip while road
network distance for the return trip, which is the opposite of Eq. 4 but is still conservative
as only return trip is in the form of road network distance. Second, to prune as many drivers
as possible, we separate the semi-Euclidean cost evaluation from the skyline-aware pruning
procedure.

Specifically, we firstly remove those drivers whose semi-Euclidean cost (5) can not make
it to satisfy the rider’s maximum price constraint by incrementally retrieving the driver
that has the shortest road network distance of return trip, i.e., Return(d, r). It is impor-
tant to note here that we are possible to prune more than one drivers whenever the return
trip Return(d, r) is evaluated, given that Matching Table had been sorted by the values of
(EuclideanP ickup(d, r)−DriverT rip(d)). After this step, theMatching Table is shrank
and to early prune a set of drivers for following skyline-aware pruning procedure, we turn
to the second sorting onMatching Table based on (Return(d, r)−DriverT rip(d)). Then,
we iteratively get drivers from the P ickup(d, r) side by using INN algorithm on road net-
work. The most distinguishable point in this procedure is that during each evaluation against
the P ickup(d, r), i.e., using (1), more than one driver could be possibly removed from the
Matching Table which potentially reduces the effort for calculating road network distance.
As a result, compared with the previous Semi-Euclidean Skyline-aware Pruning strategy
mentioned in Section 3.4, the new matching design from dual sides of P ickup and Return

Geoinformatica (2020) 24:881–913 897

is more effective in terms of pruning out those drivers who are not able to give rides to the
rider.

Algorithm Algorithm 3 gives the pseudo code for Dual-sides Pruning which is an alterna-
tive implementation for Semi-Euclidean Skyline-aware Pruning, i.e., Phase III. In the begin-
ning, we sort theMatching Table by values of (EuclideanP ickup(d, r)−DriverT rip(d))

in an ascending order. Then we iterate the sortedMatching Table. In each iteration, we issue
an INN query from the rider’s destination dest (r) to get the driver that has the shortest return
trip. Next we check the retrieved driver d by his semi-Euclidean cost (5). If it is greater than
the rmax P rice, driver d and the drivers that below d in Matching Table will be removed.

After this semi-Euclidean cost pruning step, we move on to the skyline-aware pruning
step by sorting theMatching Table by values of (Return(d, r) − DriverT rip(d)) and ini-
tializing a variable MAX with the rider’s maximum price rmax P rice. Then, similar to the
Matching Table iteration described in the Algorithm 2, we also use an INN algorithm to
retrieve the nearest driver d that can pick up the rider. If the distance P ickup(d, r) is greater

Geoinformatica (2020) 24:881–913898

EuclideanPickup + 2*12 +
EuclideanReturn - DriverTrip >30

EuclideanReturn + 2*12 +
EuclideanPickup - DriverTrip

rmax_Time= 15, rmax_Price = 30, RiderTrip = 12
Pickup + 2*12 + Return - DriverTrip < 30

ID Pickup Euclidean
Pickup Return Euclidean

Return
Driver
Trip

d6 7.4 8.3 14.8
d1 6.1 13.2 13.4
d4 4.5 6.6 8.9
d2 6.0 4.2 10
d8 8.7 5.4 12.3
d3 6.1 9.5 9.6
d5 6.5 6.5 9.5
d7 9.3 6.8 11.5

Fig. 9 Matching Table sorting based on (EuclideanP ickup(d, r) − DriverT rip(d))

than the rmax T ime, we terminate the program by returning the current skyline drivers. Oth-
erwise, we calculate the final ride sharing cost offered by the driver d (1). If it is more than
the current value of MAX, the Matching Table will be shrank again by removing d along
with all drivers below d . Otherwise, d will be considered as a qualified driver and moved to
the final skyline result, and MAX is also updated to the value of d’s ride sharing cost.

Example For the purpose of comparison, we use the same example from Phase III in
Section 3.4. The rider’s road network distance, time and cost constraints remain the same,
i.e., RiderT rip = 12, rmax T ime = 15 and rmax P rice = 30. Figure 9 shows the sorted
Matching Table in an ascending order of (EuclideanP ickup(d, r) − DriverT rip(d)).
Then an INN query will be executed to retrieve the drivers one by one according to their
actual road network distance Return(d, r).

Figure 10 gives the procedure for semi-Euclidean cost pruning based on Eq. 5. First, we
get driver d4 with a Return value of 7.5 and his Semi-Euclidean cost is less than the rider
constraint (4.5 + 2 ∗ 12 + 7.5 − 8.9 = 27.1 < 30), hence, d4 is retained in Matching

rmax_Time= 15, rmax_Price = 30, RiderTrip = 12
Pickup + 2*12 + Return - DriverTrip < 30

EuclideanPickup + 2*12 +
EuclideanReturn - DriverTrip > 30

EuclideanReturn + 2*12 +
EuclideanPickup - DriverTrip

Return + 2*12 +
EuclideanPickup - DriverTrip > 30

ID Pickup Euclidean
Pickup Return Euclidean

Return
Driver
Trip

d6 7.4 9.7 8.3 14.8
d1 6.1 15 13.2 13.4
d4 4.5 7.5 6.6 8.9
d2 6.0 8.3 4.2 10
d8 8.7 10.2 5.4 12.3
d3 6.1 9.5 9.6
d5 6.5 8.0 6.5 9.5
d7 9.3 7.8 6.8 11.5

ID Pickup Euclidean
Pickup Return Euclidean

Return
Driver
Trip

d6 7.4 9.7 8.3 14.8
d4 4.5 7.5 6.6 8.9
d2 6.0 8.3 4.2 10
d5 6.5 8.0 6.5 9.5
d7 9.3 7.8 6.8 11.5

Fig. 10 Semi-Euclidean cost pruning based on Eq. 5

Geoinformatica (2020) 24:881–913 899

Table. Then, similarly, d7, d5, d2, d6 are found with Return 7.3, 8.0, 8.3, 9.7 and Semi-
Euclidean cost 29.6, 29, 28.3, 27.1 which are all able to satisfy the rider cost constraint and
therefore they are all reserved inMatching Table. Next, driver d8 is retrieved with the Semi-
Euclidean cost 30.6 (8.7 + 24 + 10.2 − 12.3) which is more than the rider cost constraint
30. As a result, d8 denoted in grey area will be removed fromMatching Table. Additionally,
considering Matching Table is sorted, d3 can be also filtered out without any shortest path
computation. In this way, totally three drivers d1, d3, d8 denoted in the grey area of lower
table are removed, and theMatching Table is shrunk to be the table in the top right corner.

Figure 11 gives the procedure for skyline-aware processing step in Algorithm 3. First
of all, drivers in Matching Table shown in the bottom left part of of the figure are sorted
based on the value of Return − DriverT rip. d2 is the first driver retrieved by employing
INN algorithm on P ickup trip, and his actual total cost satisfies the rider’s cost constraint
(7 + 2 ∗ 12 + 8.3 − 10 = 29.3 < 30). Then, d2 will be moved to final result set. In the
meantime, as shown in the top left part of Fig. 11, the maximum price rmax P rice is updated
to 29.3 because the next found driver must be a skyline driver in terms of the time and the
cost. Next, d5 is found with the cost 30.7 (8.2 + 2 ∗ 12 + 8 − 9.5) which is greater than
the tightened cost 29.3, hence d5 is removed. Note that, the driver that below d5, i.e., d4 is
also removed without any shortest path calculation at P ickup side. Similarly, by computing
only one P ickup roadnetwork distance, d6 and d7 in grey area of the middle right table are
pruned out, and finally, only d2 is reported to the rider.

Contrast Now we compare Algorithm 2 with Algorithm 3 in terms of the pruning effec-
tiveness. In our example, as shown in Figs. 8 and 11, both two algorithms got the same
final answer, i.e., d2. However, Algorithm 3, i.e., Dual-sides Pruning strategy for SHAREK
Phase 3, cost less amount of computation for shortest path than that of Algorithm 2. Specif-
ically, in Algorithm 3, we have totally computed 10 shortest paths where 7 Return trips
for d4, d7, d5, d2, d6, d8, and d1, 3 P ickup trips for d2, d5 and d6. Meanwhile, to get the
final answer of d2, Algorithm 2 requires 12 shortest path calculations, i.e., 7 P ickup trips
for d1, d2, d5, d4, d8, d6, and d7, 5 Return trips for d2, d5, d4, d8, and d6. As a result, the

EuclideanPickup +
2*12 + Return - DriverTrip > 29.3

Pickup +
2*12 + Return - DriverTrip < 29.3

ID Pickup Euclidean
Pickup Return Euclidean

Return
Driver

Trip
d6 7.4 9.7 8.3 14.8
d7 9.3 7.8 6.8 11.5
d2 7 6.0 8.3 4.2 10
d5 8.2 6.5 8.0 6.5 9.5
d4 4.5 7.5 6.6 8.9

rmax_Time= 15, rmax_Price = 29.3, RiderTrip =
12
Pickup + 2*12 + Return - DriverTrip < 30

EuclideanPickup + 2*12 +
EuclideanReturn - DriverTrip > 29.3

EuclideanReturn + 2*12 +
EuclideanPickup - DriverTrip

Return + 2*12 +
EuclideanPickup - DriverTrip > 29.3

ID Pickup Euclidean
Pickup Return Euclidean

Return
Driver

Trip
d6 11.1 7.4 9.7 8.3 14.8
d7 9.3 7.8 6.8 11.5
d2 7 6.0 8.3 4.2 10

ID Pickup Euclidean
Pickup Return Euclidean

Return
Driver
Trip

d2 7 6.0 8.3 4.2 10

Fig. 11 Skyline-aware pruning based on Eq. 1

Geoinformatica (2020) 24:881–913900

Dual-sides Pruning strategy in Algorithm 3 can provide a better pruning effect as well as
the query performance. The experiments later also prove this observation.

5 Experimental Evaluation

This section provides experimental evaluation of SHAREK* based on an actual system
implementation. We first compare the overall performance of SHAREK* (Section 5.1), then
we investigate the performance of each phase in SHAREK* (Section 5.2). All Experiments
in this section are based on a mixture of real and synthetic data sets. The real part comes
from the road network of Los Angles, CA, USA, containing 530,977 edges and 193,948
nodes. The synthetic data set are the drivers and riders on the road network, which are gen-
erated according to Brinkhoff road network generator [27]. In our experiment, we consider
1,000 rider requests, where we report the average performance for all these requests. We
assume the average speed for each driver is 60 km per hour, the ride sharing cost is one dol-
lar per KM. Drivers are indexed by a grid index where the side length of each grid cell is
0.01 degree of longitude by 0.01 degree of latitude, which corresponds to a road network
distance of 1KM around. The incremental nearest neighbor (INN) algorithm is implemented
based on the main idea of incremental network expansion (INE) [25]. All experiments are
evaluated on a server machine with Intel(R) Xeon(R) CPU E5-2603 v2@1.8 GHz processor
and 32 GB RAM with Ubuntu Linux 14.04.

5.1 Overall Performance

This section studies the average response time of SHAREK*. Our previous study on
SHAREK [6] had shown that an exhaustive search by computing the shortest path cost for all
drivers is the most inefficient method and is impractical for dynamic ride sharing scenario.
Hence, we ignore this pure shortest path computation method as the competitor. Moreover,
considering that the maximum waiting time and maximum arrival time of the rider can be
converted to each other, we use the maximum waiting time as the only temporal constraint
for the rest of our experiment.

In Fig. 12, we compare SHAREK*with its predecessor SHAREK from the perspective of
whether skyline processing is embeded: (1) SHAREK*-DP is a variant of SHAREK*, where
we use the dual-sides pruning strategy mentioned in Section 4 to implement the Phase III of
SHAREK*, i.e., Semi-Euclidean Cost Pruning phase. (2) Each competitor appended with
-NoSkyline represents its corresponding variant where we use all the pruning techniques we
have, except skyline pruning. We vary the maximum waiting time from 5 to 60 minutes,
while fixing the driver number to 100,000 and the maximum price to 5 dollars. In order to
avoid skewness towards large values of long matching time, all experiments in Fig. 12 are
plotted with a logarithmic scale of base 10.

As we can see from the figure, both SHAREK* and SHAREK*-DP clearly outperform
SHAREK by more than 2 orders of magnitude in terms of the average response time. Such
significant performance gain can be ascribed to the materialization on INN and shortest
path search. In addition, combining with the results shown in Table 1, we find that three
SHAREKs (SHAREK, SHAREK* and SHAREK*-DP) generally require less response time
than their corresponding variants where no skyline processing is embeded, i.e., SHAREK-
NoSkyline, SHAREK*-NoSkyline and SHAREK*-DP-NoSkyline. This shows that the
skyline functionality to the user constraints does not result in any extra overhead. Instead,

Geoinformatica (2020) 24:881–913 901

1

2

3

4

5

Maximum Waiting Time (minutes)

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
:l
g

(
m

s
)

5 10 15 20 25 30 35 40 45 50 55 60

SHAREK SHAREK−NoSkyline

SHAREK* SHAREK*−NoSkyline

SHAREK*−DP SHAREK*−DP−NoSkyline

Fig. 12 Overall performance comparison for SHAREK* and its predecessor

SHAREKs take advantage of the skyline functionality to increase the performance as well
as reporting more meaningful answer, i.e., less number of drivers.

Furthermore, as described in Table 1, it is interesting to see that SHAREK*-DP performs
worse than SHAREK* when maximum waiting time is within 10 minutes and maximum
price rmax P rice is set to 15 dollars. The performance of SHAREK*-DP is getting better and
better as the maximum waiting time increases. This shows that the dual-sides pruning strat-
egy of SHAREK*-DP needs some extra effort (mainly caused by the sorting) for filtering
out some drivers and this overhead exists when the maximum waiting time is small. How-
ever, when the waiting time increases many drivers could be possibly answered, and the time
which might be spent on pruned drivers offset the pruning overhead within SHAREK*-DP.

In Fig. 13, based on the main idea of dynamic matching in SHAREK*, we compare
SHAREK* and SHAREK*-DPwith the following two variants: (1) ETP+SP, i.e., Euclidean
Temporal Pruning plus shortest path, where only the first phase of SHAREK* is utilized,
followed by computing the shortest path for the rest of drivers to get the final result,

Table 1 Skyline vs No Skyline (against 100,000 drivers; time measurement: milliseconds)

rmax WaitT ime 5 mins 10 mins 15 mins 20 mins

SHAREK* (rmax P rice = 5) 81.264 88.632 99.099 108.887

SHAREK*-NoSkyline (rmax P rice = 5) 81.084 88.403 99.490 109.179

SHAREK*-DP (rmax P rice = 5) 77.010 83.387 90.965 98.031

SHAREK*-DP-NoSkyline (rmax P rice = 5) 77.471 84.035 98.891 106.574

SHAREK* (rmax P rice = 15) 105.640 116.026 127.128 142.283

SHAREK*-NoSkyline (rmax P rice = 15) 103.531 116.236 127.990 143.596

SHAREK*-DP (rmax P rice = 15) 108.552 116.449 127.074 140.451

SHAREK*-DP-NoSkyline (rmax P rice = 15) 108.106 119.284 130.871 145.046

Geoinformatica (2020) 24:881–913902

Fig. 13 Comparison study for SHAREK*

(2) ETP+ECP+SP, i.e., SHAREK* with Euclidean Temporal and Cost Pruning, which is
basically the first two phases of SHAREK*, followed by shortest path computations of all
candidate drivers out of Phase II.

In Fig. 13a, we vary the number of drivers from 20,000 to 100,000, while fixing the
rider waiting time constraints to 15 minutes and the maximum price to 15 dollars. Since
the ETP+ECP+SP method can prune more drivers with the help of Euclidean cost prun-
ing technique, it can get final result faster than ETP+SP. However, both ETP+SP and
ETP+ECP+SPmethods have unacceptable performance as two orders of magnitude slower
than SHAREK* and SHAREK*-DP. This is also due to the need of computing large number
of shortest path operations, as the Euclidean-based pruning phases are not enough to ensure
an acceptable performance.

In Fig. 13b, we vary the maximum waiting time from 5 to 40 minutes, while fixing
the number of drivers to 100,000 and the maximum price to 15 dollars. Performance com-
parison among the four techniques follow the same trends as that of Fig. 13a. Compared
with ETP+SP, the performance of all other three methods show a slight upward trend,
which is not sensitive to the increase in the waiting time. This is because the maximum
price here results in more pruning than the waiting time. In the meantime, SHAREK* and
SHAREK*-DP share almost the same performance which is up to 100 ms faster than that
of ETP+ECP+SP. This shows the pruning capability of SHAREK* and SHAREK*-DP.
Moreover, the performance for SHAREK* and SHAREK*-DP goes worse with the increase
of the waiting time constraint. This is because the larger the maximum waiting time, the less
drivers can be pruned. Hence, more overhead is imposed on the third phase of SHAREK*
and SHAREK*-DP.

In Fig. 13c and d, we vary the maximum price from 5 to 40 dollars, while fixing the num-
ber of drivers to 100,000 and the waiting time to 15 minutes (t=15) and 25 minutes (t=25)

Geoinformatica (2020) 24:881–913 903

Fig. 14 Response time under different driver number

respectively. Generally, the difference in performance among various algorithms remains
the same as in Fig. 13a and b. However, ETP+SP shows a stable performance that is not
affected by the increase in the price. This is because the the Euclidean temporal pruning
phase does not utilize any price based evaluation for filtering drivers. Hence, no matter how
much we increase the price, we will still end up with the same number of drivers pruned
by the maximum waiting time, and hence the performance is stable. The other three meth-
ods all show an increasing trend as the price goes up. Note that, it is interesting to find
in both figures that SHAREK*-DP consumes less response time than that of SHAREK*
when the price is within 15 dollars. This is because when the price is within 15 dollars, the
size of the Matching Table after first semi-Euclidean pruning of SHAREK*-DP is relatively
small. As a result, sorting is lightweight and the sorted Matching Table is helpful to prune
many drivers in the second semi-Euclidean pruning. But as the price goes up, the size of the
Matching Table becomes bigger and bigger, which results in the second sorting consume
much time. Therefore, there is a tradeoff between dual-sides pruning and semi-Euclidean
pruning.

5.2 Inside SHAREK

This section studies the internals of SHAREK* and its alternative implementation
SHAREK*-DP in terms of the performance and pruning power of each phase separately.

Fig. 15 Response time under different maximum waiting time

Geoinformatica (2020) 24:881–913904

Fig. 16 Response time under different maximum price

SHAREK*-DP Phase 3-1 and SHAREK*-DP Phase 3-2 denote the first and second step of
Phase III within SHAREK*-DP respectively.

5.2.1 Response Time for Each Phase

Figures 14, 15 and 16 give the breakout of response time for the three phases of SHAREK*
and SHAREK*-DP, when increasing number of drivers, maximum waiting time, and maxi-
mum price. The maximum waiting time, maximum price, and number of drivers is set to 15
minutes, 15 dollars and 100,000 drivers. It is clear to see from these figures that Phase III
of both SHAREK* and SHAREK*-DP consumes the largest portion of the total response
time. This is because the third phase is the only one that needs to make actual shortest path
computations in addition to the skyline pruning. Furthermore, the first step of Phase III of
SHAREK*-DP cost more time than the second step, this is because many drivers would be
visited for computing the shortest path to perform the semi-Euclidean pruning. Meanwhile,
less number of drivers, maximum waiting time and shrinking maximum price constraints
all work together to guarantee the efficiency of the second step.

In Fig. 14, it is clear that each phase of both SHAREK* and SHAREK*-DP will cost
more time as the driver number increases. However, the time consumed for Euclidean prun-
ing is quite small and we can hardly distinguish between the time consumed in Phases I
and II compared to Phase III when the driver number is small, i.e., 20,000. This is expected
as the first two phases do not encounter any shortest path computations. Figure 15 also

Fig. 17 Average Ratio of Pruned Drivers under different driver number

Geoinformatica (2020) 24:881–913 905

Fig. 18 Average Ratio of Pruned Drivers under different maximum waiting time

shows an upward trend for each phase, the increase of maximum waiting time can finally
cause significant influences on the response time of both SHAREK* and SHAREK*-DP.
However, it is interesting see from Fig. 16 that the time consumption of Phase I and II in
both methods are stable no matter how much price we increase. The main reason behind this
is that as long as the temporal constraint is fixed, the number of driver for evaluation is also
fixed for Phase I and II, and the computation for each evaluation is more or less the same.

5.2.2 Pruning Ratio for Each Phase

Figures 17, 18 and 19 give the pruning capability of each phase separately. The settings of
the experiments are the same as of Figs. 14, 15 and 16. Phase I clearly has the most pruning
capability with more than 93.8% in Figs. 17 and 19, more than 81.3% in Fig. 18. In Fig. 17,
the pruning ratio for each phase does not change much as the driver number goes up, this
is because the distribution of different driver set is similar. Though the driver number is
increased, more drivers would be pruned out and more drivers could be retained as well.

In Fig. 18, we find that the pruning ratio for Phase II and III is growing while Phase I is
decreasing as the maximum waiting time goes up. This is due to the reason that more drivers
could satisfy the Euclidean temporal constraint when we increase the waiting time. Hence,
the pruning ratio for Phase I shows a downward trend. In the meantime, more drivers are
left for Phase II and III for further pruning and their pruning ratio will increase. In Fig. 19,
Phase I has a stable pruning ratio trend which is not affected by the increasing price. The

Fig. 19 Average Ratio of Pruned Drivers under different maximum price

Geoinformatica (2020) 24:881–913906

reason for this is as same as that of Fig. 16. Different from the case shown in Fig. 18, due
to the increasing price which allow more drivers could pass the evaluation agains Euclidean
cost constraint, the pruning ratio for Phase II of both methods shows a decreasing trend.
Note that, the pruning ratio of SHAREK*-DP Phase 3-1 also decreases, this is because more
and more drivers could satisfy the semi-Euclidean cost constraint when we increase the
price.

The final answer is usually less than 4 drivers at the end. The pruning capability goes in
reverse with the time consumed for each phase. For example, although Phase III is the most
time consuming one, it has, by far, almost the least pruning ratio.

The question that may arise here is: Does it worth to run this phase, even though it does
not have high pruning ratio. The answer is definitely yes, it still worth running this phase.
For example, consider the case of Figs. 15 and 18, where we have 100,000 drivers, and the
final skyline set of drivers returned to the rider is around 4. If we were to apply only the first
two phases of SHAREK*, we would prune 97.92% of the drivers in 10 milliseconds. This
means that we will end up returning 2,076 unnecessary drivers to the riders in addition to
the four that should form the final answer. Instead, should we go ahead with the relatively
expensive Phase III, we would return to the rider only the four drivers that form the final
answer in 75 milliseconds. With respect to the rider, having four drivers in 75 millisecond
is way much better than having 2,080 drivers in 10 milliseconds for three reasons: (1) The
rider is likely to be using his cell phone when requesting SHAREK service. Hence, it is of
essence to limit the size of the answer to only the right short answer to fit the device small
screen. It does worth paying extra 65 milliseconds for this. (2) With 2,076 drivers in hand,
it is easy for the rider to make a wrong decision selecting drivers that are more expensive
with more waiting time than others. Again, it worth waiting milliseconds to get the right
answer and avoid making wrong decisions. (3) When making the request over a web service,
either through a cell phone, tablet or even a desktop, the networking cost of downloading
the information of 2,076 more drivers may exceed the time we spent in pruning them in
Phase III. In fact, the networking cost may dominate the computation cost here. So, spending
65 more milliseconds in computation may end up in saving a lot from the networking cost.

Overall, Figs. 14 to 19 show the need and value for having the three phases working
together in achieving the scalability, efficiency, and accuracy of SHAREK*.

6 RelatedWork

Dynamic ride sharing matching has been an active research area in recent years. Current
dynamic ride sharing matching can be classified into four categories: grouping people with
similar trip, matching based on historical data, dial-a-ride problem, and finding optimum
routes.

The first category is to group multiple ride sharing requests together to achieve the sav-
ing goal. Gyozo et al. proposed a trip grouping algorithm [14] to find the ”close by” rider
requests based on some heuristics, for example, grouping requests upon expiration time that
the trip request must be accommodated. To group the trips where the origin and destina-
tion locations of the drivers and riders are close to each other, a fast detour computation
method for the driver was proposed [13]. Both methods do not provide waiting time and
cost constraints as SHAREK* does, and limited themselves to the similar trips or other
heuristics.

The second category of methods perform matching based on historical data, e.g., T-
Share [22, 23] and Noah [28]. To find the candidate taxis, T-Share leverages enormous

Geoinformatica (2020) 24:881–913 907

historical taxi trajectories to predict the future locations of the driver and the query pro-
cessing is conducted based on this prediction. Thus, the accuracy of its querying results
can not be guaranteed in real scenarios. In the mean time, Noah uses a caching scheme
to avoid repeated calculation of the same pairs of shortest path and implements a kinetic
tree structure that can schedule dynamic requests and adjust routes on-the-fly [16]. Based
on this work, San et.al., proposed a series of algorithms to tackle the ride sharing prob-
lem by considering the current road conditions [29]. Unlike the pruning techniques of the
SHAREK* proposed in our paper, the efficiency of both T-Share and Noah are based on
the pre-known of the trips. However, it is too expensive to store every possible shortest path
route between any two nodes of the road network in advance. Comparing with using his-
torical data, SHAREK* only uses real time location information of drivers and riders to get
the accurate and the best matching for the rider’s request, which has less limitations.

The third category is called dial-a-ride problem which refers to the matching between
one driver and multiple riders who specify their ride requests, i.e., the time constraints for
being picked up and dropped off, between origins and destinations. The main objective
of the dial-a-ride problem is to plan a set of m minimum cost driver routes capable of
accommodating as many riders as possible, under a set of constraints [10], i.e., travel sales
man problem [17], or planing schedules for vehicles with time constraint on each pickup and
delivery [3, 9]. Asghari et al. [2] introduce a distributed auction-based framework for taxis
where drivers bid on the riders requests, satisfying both the ridern and drivernn constrains.
The dial-a-ride problem has been studied in various transport scenarios such as paratransit
for handicapped and elderly individuals [4]. There are two aspects that can distinguish our
problem from dial-a-ride problem. (1) Contradict to dial-a-ride, each query processing in
our problem aims to match multiple drivers against one rider, and (2) The objectives are
different as our problem is to find a set of skyline drivers that satisfy the rider time and cost
constraints, whereas the dial-a-problem is to plan a set of driver routes.

The last category of ride sharing matching aims to find the optimum routes for drivers
and riders. Actually, there exist three types: (1) slugging [26], where the pick-up and drop-
off points are pre-assigned by the driver while the rider is required to walk to the meeting
point for being picked up and go back to the destination from the drop-off point. It is proved
that the computational time complexity of the slugging problem is NP-complete [21]. The
matching model of SHAREK* does not belong to this type since no pre-assigned points for
pick-up or drop-off are needed. (2) MCR, i.e., mutually beneficial confluent routing [31],
where both drivers and riders go from their respective sources to destinations, and they
can mutually benefit from traveling together on the confluences of their routes. paper[8]
designs an online ride sharing system where passengers have temporal constraints, i.e. ear-
liest departure time and latest arrival time, drivers have distance tolerance. The system will
find the qualified drivers if they can send to the passenger his destination on time and can
tolerate the detour. SHAREK* is different from this work since no ride sharing cost model
is considered in MCR. (3) optimal multi-meeting-point route (OMMPR) query [19], which
aims at finding the best route between a source node and a destination node for a given
road network such that the weighted average cost between the driver’s cost and the total
cost of the riders is minimized. The temporal constraints of the maximum waiting time and
arrival time are not involved in OMMPR and its solutions, whereas SHAREK* does. Hence,
SHAREK* can be distinguished from the matching schemes of this category.

Moreover, there are some spatial search works related to our problem. (1) Online trichro-
matic pickup and delivery scheduling(OTPD) [32], which aims to find a schedule crowd
workers that maximize the trichromatic (worker-item-task) matching utility based on the

Geoinformatica (2020) 24:881–913908

demands of item pickup and delivery. The most significant difference between OTPD prob-
lem and our problem is that the workers of OTPD only accept tasks within a radius of r

while we select all qualified drivers as long as they can satisfy riders constrains. (2) Clue-
based route search (CRS) [15], which finds the optimal route according to the user-defined
clues. A clue is defined as a triple tuple (w, d, e) where w is a query keyword of POI, d is
a user defined distance, and e is a confidence factor. A typical application is to find a travel
route according to user demands. However, our problem is different from this work since
riders don’t have a query keyword and distance constrains. (3) Competitive spatial-temporal
searching, which helps mobile agents search for stationary resources on a road network. In
this case, the mobile agents are simply assigned to the closest resource, whereas we con-
sider three constrains of riders (the maximum waiting time, the maximum arrival time and
the maximum price) when we select drivers. Therefore, these methods can’t be applied to
our problem neither.

Last but not least, none of the above algorithms in different categories provide the skyline
results and take skyline computation as a blessing for efficiency issue, which is also an
important character that distinguishes SHAREK* from them.

7 Conclusion

This paper proposes SHAREK*, a scalable and efficient ride sharing system. Drivers who
are willing to provide a ride sharing service register themselves with SHAREK* indicating
their current locations and destinations. Meanwhile, a rider requesting a ride sharing service
would call SHAREK* indicating the rider current location, destination, a maximum price
the rider is willing to pay for the service, and a maximum waiting time the rider is will-
ing to wait before being picked up or a maximum arrival time the rider wants to spare for
arriving his destination. Then, SHAREK* employs a carefully designed price cost model to
find those drivers that can provide the requested ride within the time and price constraints.
Among the set of drivers that can provide such service, SHAREK* reports only the skyline
set, i.e., maximal vector, of these drivers according to price and waiting time. SHAREK*
employs three consecutive phases, namely, Euclidian Temporal Pruning, Euclidean Cost
Punning, and Semi-Euclidean Skyline-aware pruning, with the explicit goal to prune as
much as drivers as possible without the need to calculate actual road network shortest path
operations. Extensive experimental evaluation shows that it only takes an average of hun-
dreds of milliseconds from SHAREK* to respond to a ride sharing request with 100,000
drivers around.

Acknowledgment This research was partially supported by following foundations: Zhejiang Provincial
Natural Science Foundation of China (LY19F020030).

References

1. Agatz N, Erera A, Savelsbergh M, Wang X (2012) Optimization for dynamic ride-sharing: A review
European Journal of Operational Research

2. Asghari M., Deng D., Shahabi C., Demiryurek U., Li Y. (2016) Price-aware real-time ride-sharing at
scale: an auction-based approach. In: SIGSPATIAL GIS, p 3

3. Attanasio A, Cordeau JF, Ghiani G, Laporte G (2004) Parallel tabu search heuristics for the dynamic
multi-vehicle dial-a-ride problem. Parallel Comput 30(3):377–387

Geoinformatica (2020) 24:881–913 909

4. Beaudry A, Laporte G, Melo T, Nickel S (2009) Dynamic transportation of patients in hospitals OR
Spectrum

5. Börzsönyi S., Kossmann D (2001) Stocker, k.: The Skyline Operator. In: ICDE, pp 421-430. Heidelberg,
Germany

6. Cao B, Alarabi L, Mokbel MF, Basalamah A (2015) Sharek: a scalable dynamic ride sharing system. In:
MDM

7. Chan EP, Lim H (2007) Optimization and evaluation of shortest path queries. VLDB J. 16(3):343–369
8. Cici B, Markopoulou A, Laoutaris N (2015) Designing an on-line ride-sharing system. In: SIGSPATIAL.

ACM, p 60
9. Colorni A, Righini G (2001) Modeling and optimizing dynamic dial-a-ride problems. Int Trans Oper

Res 8(2):155–166
10. Cordeau JF, Laporte G (2007) The dial-a-ride problem: models and algorithms. Ann Oper Res

153(1):29–46
11. What do we mean by dynamic ridesharing. http://dynamicridesharing.org/index.php
12. Carpooling-the flinc carpooling service: flinc. https://flinc.org/
13. Geisberger R, Luxen D, Neubauer S, Volker SP, Sanders P, Volker L (2010) Fast detour computation

for ride sharing. In: ATMOS, vol 14, pp 88-99. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany

14. Gidofalvi G, Aps G, Risch T, Pedersen TB, Zeitler E (2008) Highly scalable trip grouping for large scale
collective transportation systems. In: EDBT, pp 678–689

15. Hu Q, Ming L, Tong C, Zheng B (2019) An effective partitioning approach for competitive spatial-
temporal searching (gis cup). In: SIGSPATIAL GIS, pp 620–623

16. Huang Y, Jin R, Bastani F, Wang XS (2015) Large scale real-time ridesharing with service guarantee on
road networks. In: PVLDB, pp 2017–2028

17. Kalantari B, Hill AV, Arora SR (1985) An algorithm for the traveling salesman problem with pickup and
delivery customers. Eur J Oper Res 22(3):377–386

18. Kung HT, Luccio F (1975) On finding the maxima of a set of vectors. J. ACM 22(4):469–476
19. Li RH, Qin L, Yu JX, Mao R (2016) Optimal multi-meeting-point route search. TKDE 28(3):770–784
20. Lyft On-demand ridesharing. http://www.lyft.me
21. Ma S, Wolfson O (2013) Analysis and evaluation of the slugging form of ridesharing. In: SIGSPATIAL,

pp 64–73
22. Ma S, Zheng Y, Wolfson O (2013) T-share: a large-scale dynamic taxi ridesharing service. In: ICDE,

pp 410–421
23. Ma S, Zheng Y, Wolfson O (2015) Real-time city-scale taxi ridesharing. TKDE 27(7):1782–1795
24. Nievergelt J, Hinterberger H, Sevcik K (1984) The grid file: an adaptable, symmetric multikey file

structure. TODS 9(1):38–71
25. Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network databases. In:

VLDB, pp 802–813
26. Slugging. http://en.wikipedia.org/wiki/Slugging
27. Thomas Brinkhoff. Network-based generator of moving objects. http://iapg.jade-hs.de/personen/

brinkhoff/generator/
28. Tian C, Huang Y, Liu Z, Bastani F, Jin R (2013) Noah: a dynamic ridesharing system. In: SIGMOD,

pp 985–988
29. Yeung S, Miller E, Madria S (2016) A flexible real-time ridesharing system considering current road

conditions. In: MDM, vol 1. IEEE, pp 186–191
30. Zhang LG, Fang JY, Shen PW (2007) An improved dijkstra algorithm based on pairing heap [j]. J. Image

Graphics 5
31. Zhang X, Asano Y, Yoshikawa M (2016) Mutually beneficial confluent routing. TKDE 28(10):2681–

2696
32. Zheng B, Huang C, Jensen CS, Chen L, Hung NQV, Liu G, Li G, Zheng K (2020) Online trichromatic

pickup and delivery scheduling in spatial crowdsourcing ICDE
33. Zheng B, Su H, Hua W, Zheng K, Zhou X, Li G (2017) Efficient clue-based route search on road

networks. TKDE 29(9):1846–1859

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Geoinformatica (2020) 24:881–913910

http://dynamicridesharing.org/index.php
https://flinc.org/
http://www.lyft.me
http://en.wikipedia.org/wiki/Slugging
http://iapg.jade-hs.de/personen/brinkhoff/generator/
http://iapg.jade-hs.de/personen/brinkhoff/generator/

Bin Cao received his Ph.D. degree in computer science from Zhe-
jiang University, China in 2013. He then worked as a research
associate in Hongkong University of Science and Technology and
Noahs Ark Lab, Huawei. He joined Zhe- jiang University of Tech-
nology, Hangzhou, China in 2014, and is now an Associate Professor
in the College of Computer Science. His research interests include
spatio-temporal database and data mining.

Chenyu Hou received his BS in software en- gineering in Zhejiang
University of Technology, Hangzhou, China, in 2016. He is now a
postgraduate student of the Zhejiang University of Technology. His
research interests are spatial database and data mining.

Liwei Zhao received the MS in computer technology from Zhejiang
University of Technology in 2017. Currently, he is a Java Devel-
opment Engineer at Wind Information and Technology, Inc. His
research interest is spatial database.

Geoinformatica (2020) 24:881–913 911

Louai Alarabi received the B.S. from Umm Al-Qura University,
Saudi Arabia in computer science, M.S. and Ph.D. degrees in com-
puter science from the University of Minnesota - Twin Cities,
MN, USA in 2014 and 2018, respectively. Alarabi is currently an
Assistant Professor in the department of computer science at Umm
Al-Qura University, Saudi Arabia. His research interests include
database systems, spatial data management, big data management,
large-scale data analytics, indexing, and main-memory management.
His research is published in prestigious research venues, including
ACM SIGMOD, ACM SIGSPATIAL, IEEE ICDE, IEEE MDM, and
VLDB Journal. His research recognized by the first place and a
gold medal award in student research competition at ACM SIGSPA-
TIAL/GIS 2018, among the best paper award at SSTD 2017, Finalist
of student research competition at ACM SIGMOD 2017, and best
demonstration award at U-Spatial Symposium 2014.

Jing Fan received her B.S., M.S. and Ph.D. degree in Computer Sci-
ence from Zhejiang Uni- versity, China in 1990, 1993 and 2003. She
is now aProfessor of School of Computer Science and Technology at
Zhejiang University of Technology, China. She is a Director of China
Computer Federation (CCF), and Chairman of Chapter Hangzhou
of CCF. Her current research interest includes middleware, virtual
reality and visualization.

Mohamed F. Mokbel (Ph.D., Purdue University, MS, B.Sc., Alexan-
dria University) is a Professor in the Department of Computer Science
and Engineering, University of Minnesota. His research interests
include the interaction of GIS and location-based services with
database systems and cloud computing. His research work has been
recognized by the VLDB 10- Years Best Paper Award, five Best Paper
Awards, and by the NSF CAREER award. Mohamed has held prior
visiting positions at Microsoft Research and Hong Kong Polytechnic
U., and is a co-founder of the GIS Technology Innovation center in
Saudi Arabia. Mohamed is/was the program co-chair for ACM SIG-
MOD 2018, ACM SIGSPATIAL GIS from 2008 to 2010, and IEEE
MDM 2011 and 2014. He is Editor-in-Chief for Springer Distributed
and Parallel Databases journal, and Associate Editor for ACMBooks,
ACM TODS, ACM TSAS, VLDB journal, and GeoInformatica.
Mohamed is an elected Chair of ACM SIGSPATIAL 2014-2017.

Geoinformatica (2020) 24:881–913912

Anas Basalamah is an Associate Professor at the Computer Engi-
neering Department of Umm Al Qura University. He is a cofounder
and director of the Wadi Makkah Technology Innovation Center at
Umm Al-Qura University. He did his MSc and PhD Degrees at
Waseda University, Tokyo in 2006, 2009 respectively. He worked
as a Post Doctoral Researcher at the University of Tokyo and the
University of Minnestoa in 2010, 2011 respectively. He cofounded
Averos and Hazen.ai. His areas of interest include; Embedded Net-
worked Sensing, Smart Cities, Ubiquitous Computing, Participatory
and Urban Sensing.

Geoinformatica (2020) 24:881–913 913

	SHAREK*: A Scalable Matching Method for Dynamic Ride Sharing
	Abstract
	Introduction
	Preliminaries
	Drivers and Riders
	Drivers
	Riders

	Skyline Drivers
	Price Cost Model
	Problem Definition

	Dynamic Matching in SHAREK*
	Data Structure
	Driver Table
	Grid Index

	Phase I: Euclidean Temporal Pruning
	Main idea
	Example

	Phase II: Euclidean Cost Pruning
	Main idea
	Algorith
	Example

	Phase III: Semi-Euclidean Skyline-aware Pruning
	Main idea
	Case 1
	Case 2
	Case 3
	Case 4
	Algorithm
	Example

	Materialization in SHAREK*

	Dual-sides Pruning
	Main idea
	Algorithm
	Example
	Contrast

	Experimental Evaluation
	Overall Performance
	Inside SHAREK
	Response Time for Each Phase
	Pruning Ratio for Each Phase

	Related Work
	Conclusion
	References

