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ABSTRACT

This paper presents tfRandasystem for efficient support of a wide
variety ofpredictivespatio-temporal queries that are widely used in
several applications including traffic management, lacabased
advertising, and ride sharing. Unlike previous attemptsupport-

ing predictive queriesRandatargets long-term query prediction as
it relies on adapting a well-designed long-term predicfiamction

to: (a) scale up to large number of moving objects, and (b} sup
port large number of predictive queries. As a means of sitityab
Pandasmartly precomputes parts of the most frequent incoming
predictive queries, which significantly reduces the quesponse
time. Pandaemploys a tunable threshold that achieves a trade-
off between query response time and the maintenance cost-of p
comptued answers. Experimental results, based on largesdts,
show thatPandais scalable, efficient, and as accurate as its under-
lying prediction function.

1. INTRODUCTION
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ride sharing, e.g., find those riders who are likely to shaeirt
route with me.

In this paper, we present tlRandasystem, designed to provide
efficient support fopredictivespatio-temporal querie®andapro-
vides the necessary infrastructure to support a wide yaoigpre-
dictivequeries that include predictive spatio-temporal ranggreg
gate, andc-nearest-neighbor queries as wellkcastinuousqueries.
Pandadistinguishes itself from all previous attempts for prazes
ing predictive queries [10, 27] in the following: (Pandatargets
long-termpredication in the order of tens of minutes, while exist-
ing attempts mainly target short-term prediction in terrhsmly
minutes and seconds, (Pandasmartly precomputes parts of the
frequent incoming queries, which significantly reducesdbery
response time, and (Bandais generic in the sense that it does not
only address a certain type of predictive queries, as dongréy
vious work, instead, it provides a generic infrastructuned wide
variety of predictive queries.

The main idea oPandais to monitor those space areas that are
highly accessed using predictive queries. For such afssla

The emergence of wireless communication networks and cell precomputes the prediction of objects being in these arefases

phone technologies with embedded global positioning syste
(GPS) have resulted in a wide deployment of location-based s
vices [8, 15]. Common examples of such services includeerang
queries [7, 25], e.g., “find all gas stations within three awibf
my currentlocation” andK -nearest-neighbok(NN) queries, e.g.,
“find the two nearest restaurants to ewrrentlocation”. However,
such common examples focus on therentlocations of moving
objects. Another valuable set of location-based serviocesses on
predictivequeries [9, 10], in which the same previous queries are
asked, yet, for &uturetime instance, e.g., “find all gas stations that
will be within three miles of myfuture location after 30 minutes”.
Predictivequeries are extremely beneficial in a wide variety of ap-
plications that include traffic management, e.g., predicigested
areas before it takes place, location-based advertisigg,predict
the customers who are expected to be nearby in the next halrr, a
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hand. Whenever a predictive query is receivedPanda it checks

if parts of this predictive query are included in those prapated
space areas. If this is the cag@andaretrieves parts of its answer
from the precomputed areas with a very low response time. For
other parts of the incoming predictive query that are noluited

in the precomputed areaBandahas to dispatch the full predic-
tion module to find out the answer, which will take more time to
compute. It is important to note here tHeandadoes not aim to
predict the whole query answer, insteRdndapredicts the answer
for certain areas of the space. Then, the overlap betweeimthe
coming query and the precomputed areas controls how effitien
query would be. This isolation between the precomputed anda
the query area presents the main reason behind the gentrie na
of Pandaas any type of predictive queries (e.g., range ANdN)

can use the same precomputed areas to serve its own purpese. A
other main reason for the isolation between the precomparesak
and queries is to provide a form shared executioenvironment
among various queries. Fandawould go for precomputing the
answer of incoming queries, there would be significant rddan
computations among overlapped query areas.

Pandaprovides a tunable threshold that provides a trade-off be-
tween the predictive query response time and the overheprkeof
computing the answer of selected areas. At one extreme, we ma
precompute the query answer for all possible areas, whiltjpra:
vide a minimal response time, yet, a significant system @ath
will be consumed for the precomputation and materializatitthe
answer. On the other extreme, we may not precompute any gnswe
which will provide a minimum system overhead, yet, an inaggni



predictive query will suffer the most due to the need of cotimgu
the query answer from scratch without any precomputatidie
underlying prediction function deployed Bandamainly relies on
along-termprediction function, designed by John Krumm [6, 13]
to predict the finatlestination of a singlaser based on his/her cur-
rent trajectory. Unfortunately, a direct deployment of lslang-
term prediction function does not scale up for large numbers of
moving objects nor it serves our purpose for predictive iggehat
are concerned with the moving object location in a futureetim
rather than its final destinatiorPandaadapts such well-designed
prediction function to: (a) scale up with the large numbeusérs
through a specially designed data structure shared ambrmpel
ing objects, and (b) provide the prediction for a future guéane
(e.g., after 30 minutes) rather than only the predictiortfierfinal
destination.

The rest of this paper is organized as follows. Section 2-high
lights related work. Section 3 gives an overview of Rendasys-
tem. The generic framework fdtandas query processor is given
in Section 4, while its extensibility to a wide variety of pietive
queries is presented in Section 5. Section 6 provides expeatal
evaluation ofPanda Finally, Section 7 concludes the paper.

2. RELATED WORK

In terms of supported predictive queries, existing aldoni
for predictive query processing have focused only on onel kin
of predictive queries, e.grange querieq10, 20, 27],k-nearest-
neighbor querie$l, 16, 27],reverse-nearest-neighbor querigs,
continuous-nearest-neighbor queridsl], aggregate queriefl9],
or predictive joinwith estimating the expected query selectivity [4,
5, 24, 23]. Some of this work attaches the expiry time intetva
a kNN query result [21, 22]. Thus, theNN query answer is pre-
sented in the form of result interval>, where the interval indicates
the future interval during which the answer is valid.

In terms of the underlying prediction function, existingya
rithms for predictive query processing can be classified ihtee
categories:

(1) Linearity-based predictionwhere the underlying prediction
function is based on a simple assumption that objects mowe in
linear function in time along the input velocity and directi So,
query processing techniques in this category, e.g., [118622,
23], take into consideration the position of a moving poihaa
certain time reference, its direction, and the velocity ¢éonpute
and store the future positions of that object in a TPR-trasel in-
dex [17]. When a predictive query is received, the query @ssor
retrieves the anticipated position in the given time [18heTwork
in this category is concerned with the applications of thedrity-
based prediction models to answer nearest neighbor qUésgs
and reverse nearest neighbor queries [1], and to estimatgutry
selectivity [23]. Some of these applications attach thargxpme
interval to thekNN query result [22].

(2) Historical-based predictionwhere the predication function
uses object historical trajectories to predict the objextt trajec-
tory. Then, query processing techniques in this categogy, B,
6, 10, 11, 12, 19] are applied to trajectory of location p@irEx-
isting work in this category is based on either mobility middé],
or ordered historical routes [2, 6, 12]. The mobility mod&0]
is used to capture the different possible turning pattedifégrent
roads junctions, and the travel speed for each segment iro#ue
network for each single object in the system. Then, the mizdel
used to predict the future trajectory of each object, ancdan
that they can answer predictive range queries. The maineconc
of that model is to put more focus on the prediction of the obje
behavior in junctions based on historical data of objecpetto-
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Figure 1: The Panda System Architecture

ries. In the ordered historical routes, the stored pastdtajies are
ordered according to the similarity with the current timel éoca-
tion of the object and the top route is considered the mostibles
one [2, 6, 12]. Some of the existing work in this category is em
ployed for predicting the current object trajectory in neuclidian
space [11] such as road-level granularity. For example edir
tive Location Model (PLM) [11] is proposed to predict locats
in location-based services. The model considers the stéant ps
the object current location while the end point could be afthe
possible exit points. PLM computes the shortest path ti@jgc
between the current location and each of the exit points) the
trajectory with the highest probability is considered thedicted
path.

(3) Other prediction functionswhere more complicated predic-
tion functions are employed to realize better predictioouaacy.
Query processing techniques in this category, e.g., [928027],
are adjusted based on the outcome of the prediction fundEiist-
ing work in this category either exploits a single functi@®]27],
or mixes between two or more functions to form a hybrid preoiic
model [9, 26]. As an example for a single function, a Transied
Minkowski Sum [27] is used to answer circular region rangd an
K-NN queries, while Recursive Motion Function (RMF) [20] is
used to predict a curve that best fits the recent locationsoh\a
ing object and accordingly answer range queries. In theithybr
functions category, two methods [9, 26] are combined touatal
predictive range and nearest neighbor queries in highlyacya
and uncertain environments. Unfortunately, all the emgtbpre-
diction functions can support only short-term predictiotdarms of
seconds or minutes.

Pandadistinguishes itself from all the above work in the follow-
ing: (1) Pandais a generic framework that is not only applicable to
one kind of predictive queries. Instead, a wide variety efdictive
queries, e.g., range and nearest-neighbor queries carpperted
within one framework, (2Pandarelies on a long-term prediction
function applicable to tens of minutes, and Bndais a scalable
framework that supports large number of predictive snapahd
continuous queries.

3. SYSTEM OVERVIEW

This section gives an overview of tiRandasystem outlining the
system architecture and underlying prediction function.

3.1 System Architecture

Figure 1 gives the system architecture of th@nda system,
which includes three main modules, namejyery processingoe-
riodic statistics maintenang@andanswer maintenancéeach mod-
ule is dispatched by an event, namejyery arrival, periodic statis-
tics maintenance triggerandobject movementespectively. As a
shared storage, a list of precomputed answers is maintairgch



is frequently updated offline and used to construct the finaky
answer for received predictive queries. Below is a briefaesv of
the actions taken blpandafor each event. Details of these actions
are discussed in Section 4.

Query arrival. Once a query is received IBanda the query pro-
cessor divides the query area into two parts. The first pattéady
precomputed where this part of the answer is just retrievenh f
the precomputed storage. The second part is not precompoted
needs to be evaluated from scratch through the computatithre o
prediction function against a candidate set of moving dbjec
Object movement.WheneveiPandareceives an object movement,
it dispatches the answer maintenance module to check ifrtbie-
ment affects any of the precomputed answers. If this is the,dhe
affected precomputed answers are updated accordingly.
Periodic statistics maintenance trigger. System statistics that
decide on which parts of the space to precompute for potentia
incoming frequent queries need to be updated periodicaliggu
the statistics maintenance module. The module basicalist the
statistics to ensure the accuracy and recency of colleta¢idtis.

3.2 Prediction Function

The long-term prediction function deployed Bandais mainly
an adaptation of the one introduced by John Krumm [6, 13]ée pr
dict the final destination of a single objedt= P(C;|S,). F'is
applied to any space that is partitioned into a set of gritbcelF
takes two inputs, namely, a c€ll; € C and a sequence of celf
={C1, Cy, - - -, Cy} that represents the current trip of an objéxt
Then, F returns the probability thaf; will be the final destination
of O.

As F only predicts the destination of an object, it does not have
the sense of time. In other wordB, cannot predict where an ob-
ject will be after time period. Since this is a core requirement in
Panda we adaptF to be able to compute the probability that object
O will be passing by the given cell; after timet, wheret is spec-
ified in the predictive query. The adaptation results in tivecfion
F which is a normalization of the results from the originalgice
tion function F' using the set of cell®; that could be a possible
destination of an objec after timet.

P(CiS.)
ZdEDt P(Cd|SO)

Here, the numerator is the output of the original predicfiorc-
tion F, and the denominator is the summations of the probabilities
of all grid cells in D;, also computed fronF. D is the set of
possible destination cells of objeCtafter timet, computed based
on the travel time distance. It is important to mention hégg the
recomputation of this prediction function is triggeredyowhen an
objectO changes its location from cell to another rather than from
point to another point within the same cell.

Pandaalso has another adaptationBfto scale it up to support
large numbers of moving objects A9s mainly designed to support
single object prediction. The scaling up is mainly suppbtig the
underlying data structure, discussed in the next sectibighngives
an infrastructure to share by large numbers of moving object

F= @)

4. PANDA: A PREDICTIVE SPATIO-
TEMPORAL QUERY PROCESSING

A salient feature ofPandais that it is a generic framework
that supports a wide variety of predicative spatio-tempguaries.

objects. Finally,Pandais easily extensible to support continuous
queries. This generic feature Bandamakes it more appealing to
industry and easier to realize in real commercial systerhs i in
contrast to all previous work in predictive spatio-tempayaeries
that focus on only one kind of spatio-temporal queries. As de
scribed in Figure 1Pandareacts to three main events, namely,
query arrival object movementand aperiodic statistics mainte-
nance trigger Each event promptBandato call one of its three
main modules to take the appropriate response. The seatsbn fi
starts by describing the underlying data structuréafida (Sec-
tion 4.1). Then, the reaction ¢fandato the events query arrival,
object movement, and periodic statistics maintenancegerigre
described in Section 4.2, 4.3, and 4.4, respectively. ®itlg the
spirit of Panda the discussion in this section is made generic with-
out referring to a particular predictive query type, exagpen giv-
ing examples. The extensibility (fanadato support various pre-
dictive query types will be described in next section (Seth).

4.1 Data Structure

Figure 2 depicts the underlying data structure use®dnyda A
brief overview of each data structure is outlined below:
Object List OL. This is a list of all moving objects in the system.
For each objecO € OL, we keep track of an object identifier and
the sequence of cells traversed®yn its current trip. For example,
as illustrated in Figure 2)- in its current trip, has passed through
the sequence of cellsfi3, C7, C2, C3}. This means thaO» has
started atC;3 and it is currently moving insid€’'s.
Space Grid SG. Pandapartitions the whole space int¥ x N
equal-size grid cells. For each cé€ll, € SG, we maintain four
pieces of information as: (gelllD as the cell identifier, (2Cur-
rent Objectsas the list of moving objects currently located inside
C;, presented as pointers to the Object IG5L, (3) Query Listas
the list of predictive queries recently issued@n Each query) in
this list is presented by the triplditne Counter Answej, where
Timeis the future time included id), Counteris the number of
times thatQ) is recently issueddAnsweris the precomputed answer
for @ which may have different format based on the typ&ofind
(4) Frequent Cellsas the list of cells that one of their precomputed
answers should be updated with the movement of an obje&€t.in
Travel Time Grid TT'G. This is a two-dimensional array df>
x N? cells where each cel'T'G([i, j] has the average travel time
between space cells; andC;, whereC; andC; € SG. TTG is
fully pre-loaded intdPandaand is a read-only data structure.

4.2 Query Processing in Panda

Pandareceives a predictive spatio-temporal query, e.g., range
or nearest-neighbor query, that asks about the query areftesr
a future timet. The main idea behind efficiency and scalability
in Pandais thatPandaprecomputes partial results of the frequent
incoming queries beforehand. In genef@dndadoes not aim to
precompute the whole query answer, instead, it precomphbees
answer for certain areas of the space. Then, the overlagbatthe
incoming query and the precomputed areas controls how effici
the query would be. If all the query is precomputed, the quetly
have best performance in terms of lower latency, howeRanda
will encounter high overhead of maintaining the precomgws-
swer. This isolation between the precomputed area and they qu
area presents the main reason behind the generic natBemdéas
any type of predictive queries (e.g., range @ndearest-neighbor)
can use the same precomputed areas to serve its own purpose. A

Pandas query processor can support range queries, aggregateother main reason for the isolation between the precompareas

queries, andk-nearest-neighbor queries within the same frame-
work. In addition,Pandacan support stationary as well as moving

and queries is to provide a form shared executioenvironment
among various queries. Fandawould go for precomputing the



Object List (OL)

Object ID Sequence
- O3 Cis, Cio, G5
N 0, Ci3, G, G, G5
Cell Structure
CellID |Current Objects Query List Frequent Cells
Cs L ] Cy7, Gy, ..
Space Grid ($G) i Query List (QL)
o | 2 (;'302 4 5 6 % Time Counter | Answer
! s 30 1 null
7897101112
20 10 143
13 1411516 |17 | 18
O 9
19120 266 (23,% 23| Travel Time Grid (TTG)
283 26 %237 28,1 29 | 30 36|50 (45]|35| .| 8] O
31 32 [ 33 | 34 3&2 36 354214026 | 0] 8
3 8| 5| 0] ...[|26]35
2 | 5] 0f 5| ..|40 (45
1 0| 5 8| ..|42(50
1 2 3 ..35 36

Figure 2: Data Structures in Panda

answer of incoming queries, there would be significant rddan
computations among overlapped query areas.

Upon the arrival of a new predictive spatio-temporal quéry
with an area of interes®, requesting a prediction about future time
t, Pandafirst divides( into a sets of grid cell§’; that overlap with
the query region of interes®. For each celt € Cy, Pandagoes
through two main phases, hamelgsult computatiorandstatistic
maintenance The result computation phase (Section 4.2.1) is re-
sponsible on getting the query result from esdlither as a precom-
puted result or by computing the result from scratch. $tadistic
maintenancehase (Section 4.2.2) is responsible on maintaining a
set of statistics that help in deciding whether the answeretfc,
for a future timet, should be precomputed or not. The precompu-
tation at cellc will significantly help for the next query that asks
for prediction onc with the same future time, yet, precomputa-
tion will cause a system overhead in continuously maintarihe
answer at. Throughout this section, Algorithm 1 gives the pseudo
code of thePandaquery processor where the first three lines in the
algorithm find out the set of cell§'y that overlaps with the query
region R, and start the iterations over these cells.

4.2.1 Phase I: Result Computation.

Phase | receives: (a) a predictive quéryeither as range, aggre-
gate, ork-nearest-neighbor, asking about future titnend (b) a
cell ¢; that overlaps with the query area of interést The output
of Phase | is the partial answer @ computed frony;.

Main idea. The main idea of Phase | is to start by checking if the
query answer at the input cel] is already computed. If this is the
case, then Phase | is immediately concluded by updatinguéeyq
result@ by the precomputed answerqf If the answer at; is not
precomputed, then, Phase | will proceed by computing thevains
of ¢; from scratch. Phase | avoids the trivial way of computing the
prediction function of all objects in the system to find whatjects
can make it to the query answer at future timdnstead, Phase |
applies a smartime filterto limit its search to only those objects

Algorithm 1 PandaPredictive Query Processor

Input: RegionR, timet, Threshold7”

1: QueryResult— null, CellResuli— null

2: Oy « the set of grid cells intersecting witti]

3: for each celk; € Cf do

/* Phase I:Result Computation */

if there is an answer iny at timet then
CellResuli— read answer from;

else
Cr <+ the set of grid cells reachable ¢pin timet
for each celk; € Cr do

for each objecO € current objects ir; do
ObjectPredictior— ComputeF' = P(c;|0, t)
UpdateResults (CellResult, ObjectPrediction)
end for

end for

end if

UpdateResults (QueryResult, CellResult)

/* Phase Il Statistics Maintenance */

e < the entry in the query list of; at timet

if eis NULL then
e + Insert a new blank entryto the query list ok; with
e.Counter=0 ana@.Answer is Null

NRPRPR RPRRPRR PR
CORXNIOUAWNE ORXINDTH

21: endif

22: e.Counter— e.Counter + 1

23: if e.Counter> 7 AND e.Answer is NULLthen

24: e.Answer<« CellResult

25: Cr <+ the set of grid cells reachable ¢pin time ¢
26: Addc; to the list of frequent cells in all cells i6'r
27. endif

28: end for

29: Return QueryResult

that can possibly reach to cell within the future timet. Basically,
Phase | utilizes th&ravel Time Grid (TTGglata structure to find the
set of cellsC'r that may include objects reachablectavithin time
t. Then, we calculate the prediction function for only thobgots
that lie within any of the cells i'z. The result of these prediction
functions pile up to build the answer result produced figm
Algorithm. The pseudo code of Phase | is depicted in Lines 4
to 16 in Algorithm 1. Phase | starts by checking if the answier o
¢; at timet is already precomputed in its owuery Listentry in
the grid data structur8G. If this is the case, we just retrieve the
precomputed answer as the complete cell answer (Line 6 in-Alg
rithm 1), and conclude the phase by using the cell result tatg
the final query result (Line 16 in Algorithm 1). Updating thesult
is done through the generic functidipdateResultshat takes two
parameters, the first is the result to be updated, and thedeso
the value to be used to update the result. As will be detail&kic-
tion 5, the operations inside this functions depend on thletying
query type, e.g., aggregate, rangekarearest-neighbor queries. In
case that the answer of cellis not precomputed, we start by com-
puting this answer from scratch (Lines 8 to 14 in algorithmTg
do so, we apply éime filterby retrieving only the set of cell€'r
that are reachable tg within the future timet by checking the
Travel Time Grid (TTG)Only those objects that lie within any of
the cells inCr may contribute to the final cell answer, and hence
the query answer. For each objéztn any of the cells oz, we
utilize our underlying prediction function (Section 3.2)dalculate
the predicted value of havin@ in ¢; within time¢ (Line 11 in Al-
gorithm 1). We then use this predicted value to update thdtres
cell ¢; using the generit/pdateResultfunction. Once we are done
with computing all the predicted values of all objects in afiyhe
cells of Cr, we again utilize the generic functidopdateResults
to update the final query result by the result coming from cell
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Figure 3: Phase | Example.

(Line 16 in Algorithm 1).

Example. Figure 3 gives a running example of Phase | where 19
objects,0; to O19 are laid on a 6x 6 grid structure. Figure 3(a)
indicates the arrival of a new predictive range qu@sy, a shaded
rectangle in cellC19, that asks about the set of objects that will be
in the area ofy)3o after 30 minutes. Though we are using a range
query as a running example, all idea here are applied to gate
andk-nearest-neighbor queries. First, we find out all the chlg t
overlap the area of quetys,. For ease of illustration, we intention-
ally have@s0 covering only one cellC9, in which we are going
to carry on for the next steps. 30 covers more than one cell,
then, the next steps will be repeated for each single cedreal/by
Q30. Figure 3(b) gives thQuery Liststructure ofC:9, where two
previous predictive queries came at this cell before; aygthet
asks about 30 minutes in future, and it came only one timerbefo
(counter= 1) and another query that asks about 20 minutes in the
future and were issued 10 times before. By looking at thia dat
structure, we find that the answer of the future titie set tonull,

i.e., it is not precomputed. In this case, we need to comphée t
answer for this cell from scratch. Note that if this query \saking
about the set of objects after 20 minutes, we would just tejper
answer a§ 01, Os} as it is already precomputed. Unfortunately,
for the case of = 30, we need to proceed for more computations.

Figure 3(c) starts the process of computing the answer of cel
Cho. As a first step, we utilize th&ravel Time Grid (TTGHata
structure to find out the set of cells that are reachabi& towithin
30 minutes. We find that there are only three cells that can con
tribute to the answer of'19, namely,Cy, C16, Css. This means
that objects that are not located in any of these cells argaiay
to make any contribution t6¢";19 within 30 minutes, which filters
out large number of moving objects that. Then, we can onlydoc
on the objects located iy, C16, Cs3, Where there are only four
objectsOs, Oy, O1s, andO19. For each of these four objects, we
calculate the prediction functiof' to find out the probability that
these objects can be @9 in 30 minutes. With probability calcu-
lation, we find out tha19 has a zero probability of being ifi1o
in 30 minutes, while the other three objects have a non-zexiogp
bility. We finally report the answer in Figure 3(d) &8s, Og O15}
along with their probabilities of being @19 in 30 minutes (Prob-
abilities are not shown in the figure as it is an illustratixamaple).

4.2.2 Phase |l; Statistics Maintenance

Phase Il does not add anything to the query answer. Instead, i
updates a set of statistics that help in deciding what pdrtheo
space and queries need to be precomputed. The input to e ph

is a celle; and its answer list, computed in Phase I. Then, Phase I
uses this information to update the statistics maintaineddmnda

Main idea. The main idea of Phase Il is to employ a tunable
threshold0 < 7 < oo, that provides a trade-off between the pre-
dictive query response time and the overhead for precomgptlie
answer of selected areas. At one extremeis set to 0, which
means that all queries will be precomputed beforehand. gtou
this will provide a minimal response time for any incomingeqy
a significant system overhead will be consumed for the precem
tation and materialization of the answer. On the other extx &
is set tooo, which means that nothing will be precomputed, and
all incoming queries need to be computed from scratch. THis w
provide a minimum system overhead, yet, an incoming priedict
query will suffer from high latency. To efficiently utilizdné tun-
able threshold/", Phase Il utilizes theounterinformation in the
Query Listdata structure of celt; (described in Section 4.1). If
this counterexceeds the threshold val(g then, this query is con-
sidered frequent, and the answer of this query in el precom-
puted, i.e., stored in th@uery Listdata structure. In addition, we
add celle; to the list of frequent cells in all cells that are reachable
to ¢; within time ¢. This is mainly to say that any object movement
in any of these reachable cells will affect the result coraguyand
maintained) at celt;. Such list of reachable cells can be directly
obtained from th&@ravel Time Grid (TTGJata structure.

Algorithm. The pseudo code of Phase Il is depicted in Lines 18
to 27 in Algorithm 1. Phase Il starts by retrieving the entfyom
the Query Listof ¢; that corresponds to the querying time If
there is no such prior entry, i.ee,is NULL, we just add a new
blank entry in theQuery Listof ¢; for time ¢, with counterset to
zero andanswerset to null (Lines 18 to 21 in algorithm 1). Then,
we just increase theounterof e by one to update the number of
times that this query is issued at cell with time ¢t. Then, we
check thecounteragainst the system threshold T and the value of
the current cellAnswer This check may result in three different
cases as follows: (18.counter< 7T, i.e., thecounteris less than
the system threshold@™. In this case, Phase Il decides that it is
not important to precompute the result of this query, as ids
considered as a frequent query yet. So, Phase Il is just uded!
(2) e.Answer#£ NULL. In this case, the query timeis already
considered frequent and the answer is already precomplutéus
case, Phase Il will also just conclude as there is no changfatins
here. (3)e.counter> 7 AND e.Answeis NULL. This case means
that the query time has just become a frequent one, and we need
to start precomputing the result forat cell ¢;. In this case, we
first add the computed cell result from Phase | to the answer of
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Figure 4: Phase Il Example.

Then, we find out the set of cellsSi that are reachable to cel)
within time¢. For these cells, we add cellto their list of frequent
cells. This is mainly to say that any object movement of arlyGe
€ Cr will affect the result computed at cell (Lines 18 to 23 in
algorithm 1).

Example. Figure 4 gives a running example of Phase Il contin-
uing the computations of Phase | in Figure 3. Figure 4(a) show
that thecounterof the time entry 30 is updated to be 2. Assuming
the time threshold is set to 2. Then, the timkis now considered
frequent. Figure 4(b) depicts the actions taken by Phageolh the
consideration thaf)so becomes frequent. First, tiiguery Listof

Algorithm 2 Answer Maintenance

Input: ObjectO, Cell Cp4,,Cell Crew
1. if Cp1qg =Chew then
2. Return
3: end if
4: Add O to the set oturrent objectf Crew
5. C < The set offrequent cellof Che.
6
7
8
9

: foreachcell C; € C do
t « travel time fromCe., to C; from TTG[new, i]
ObjectPredictior— ComputeF’ = P(Chew|O, t)
UpdateResults (CellResult, ObjectPrediction)

. end for

: RemoveD from the set oturrent objectof Cyi4

: C < The set offrequent cellof C, 4

: foreachcell C; € C do

UpdateResults (CellResultD)

: end for

. Return

collected in the generic query processor module. Instdechri-
swer maintenancmodule just ensures efficient and accurate main-
tenance of existing precomputed answers.

Algorithm. Algorithm 2 gives the pseudo code of tRanda
answer maintenancmodule. The algorithm takes three input pa-
rameters, the moved obje€, its old cell C,,;4 before movement,
and its new cell after movement,..,. The first thing we do is to
check if the new cell is the same as the old cell. If this is thse¢
the algorithm immediately terminates as this object movema|
not have any effect on any of the precomputed cells. On theroth
side, if the new cell is different from the old one, the alg¢fum pro-
ceeds in two parts. In the first part (Lines 4 to 10 in AlgoritBjn
we first addO to the set of current objects 6f,..,. Then, we re-
trieve the set ofrequent cellof Cy,.., i.€., those cells that have
precomputed answers and may be affected by any change of ob-
jects inChe. For each cell; in the set offrequent cellswe do:

Cho is updated to hold the computed answer from Phase |. Second,(a) retrieve the travel timefrom the new cell ta”; from theTravel

the cellCyy is added to the list of frequent cells f6ty, C16, and

Time Griddata structure, (b) compute the predicted valu®dfe-

(3 to indicate that any movement in these three cells may trigge ing in C; aftert time units, and (c) update the precomputed result at

a change of answer for ceflo.

4.3 Object Movement in Panda

As has been discussed in the previous section, the efficigincy
the Pandageneric query processor relies mainly on how much o

the query answer is precomputed. Though we have discussed ho
Pandatakes advantage of the precomputed answers, we did not
discuss howPandamaintains those precomputed answers, given

the underlying dynamic environment of moving objects. Tas-
tion discusses thanswer maintenanceodule inPanda depicted
in Figure 1, which is basically triggered with every singlgext
movement in any celt; in the space grid'G.

Main idea. The main idea behind thenswer maintenanamod-
ule is to check if this object movement has any effect on any o
the precomputed answers. If this is the case, fPeamacomputes
this effect and propagates it to all affected precomputexivars.

If Pandafigures out that this object movement has no effect on any

of the precomputed answers, then, it does nothing for thiscob
movement. As the underlying prediction functibhmainly relies
on the sequence of prior visited cells for a moving objecplaject
movement within the cell does not change the object preaditat
function, and hence will not have any effect on any of the pnec
puted answers. It is important to note that #mswer maintenance
module does not decide upon which parts of the queries/dpace
be precomputed, as this decision is already taken by thistatat

cell C; by the predicated value, using the generic functippuate
Results The second part of the algorithm (Lines 11 to 15 in Algo-
rithm 2) is very similar to the first part, except that we arekimng
with C,;q instead ofCe.,, Wwhere we remove from the set of

f objects ofC,,4, and update all the precomputed frequent cells of

C.1q accordingly. It is important to notice here that we do notchee
to compute the object prediction in the second part as itréesady
calculated before and stored in the precomputed answéy. at
Example. Back to our running example in Figure 4(b) that il-
lustrates the precomputed answer for the qu@gy in cell Cio.
Assume that objeaDy moves out from its celis to C17. In this
case, we addy to the list ofcurrent objectsn C,7, and get its
list of frequent cellswhich only includes”;. Then, we obtain the

f timet betweernC; andC1~7 as 40. We then compuﬂé = P(C4]|O9,

40), which gives the probability tha®s will be in C; after 40 time
units. We then incrementally update the answef'aby the value
of £'. We do the same fof'1g, the cell thatO, has just departed.
We first deleteOy from the list of current objectsn Ci6. Then,
we read the list ofrequent cellof Cy6 which returns Onl)CﬁgA.
At this point, we do not need to compute the prediction fuorch’
as it should be already stored in theery listof C19. S0, we just
update the answer ét;9 by removingOy and its probability.

4.4 Periodic Statistics Maintenance
As has been seen earlier, theery processingnodule (Sec-



Algorithm 3 Periodic Statistics Maintenance

Input: System Threshola@”

1: for each cellC; € the Space GridG do
for each entry € C;.QueryList do
if e.Counter> T then
e.Counter— 0
else
RemoveC; from the list of frequent cells in each of its
reachable cells withie.Time
Deletee from C;.QueryList
end if
end for
: end for
. Return;

2
3
4
5
6
7.
8
9
10
11

tion 4.2) mainly relies on simple maintained statisticsnedy, the
counterin the Query Listdata structure, to decide on which parts
of the space to precompute for which future query time. How-
ever, thecounterinformation just keeps increasing while frequent
queries may no longer be frequent any more, yet, as thekstlh
their countervalue intact, their answers may still be unnecessarily
precomputed, causing extra system overhead. Itis the jttepe-
riodic statistics maintenanceodule, discussed in this section, to
ensure that current statistics information is accurateugthted.

Main Idea. The main idea behind this module is to run peri-
odically each units to sweep over current statistics and update it.
For a query to be considered frequent, it has to appear at [gast
times in the last time period whereT is the system threshold, de-
scribed in Section 4.2. In the mean time, a frequent qdgrwho
failed to appear at leat times in the last time periotis demoted
to be infrequent.

Algorithm. Algorithm 3 gives the pseudo code for theriodic
statistics maintenanceodule. The algorithm sweeps over all grid
cells in the grid data structu®G. For each cel;, the algorithm
goes through every single enryn C;.QueryList For each entry,
we compare itgounteragainst the system threshold which will
result in one of these two cases: €ounter> 7. In this case,

e represents a frequent query, and thus we just reset itseotmt

0 to restart its statistics with the next time period(2) e.Counter

< T, inwhiche represents a query that failed to appear more than
T times in the last time period In this case, we removefrom

the listC;.QueryListwhile doing a clean up by removing the entry
for C; from the list of frequent cells in each of its reachable cells
within e.Time

5. EXTENSIBILITY OF PANDA

This section discusses the extensibilityR#ndaframework to
support various kinds of predictive spatio-temporal qgeilong
with continuous queries.

5.1 Extensibility in Predictive Queries

Algorithms 1 and 2, that give thBandaframework for query
processing and the maintenance of precomputed answepgcres
tively, were described in terms of a generic function, tearig-
dateResults(Result,LisBalled twice in each algorithm. THdp-
dateResultfunction takes two inputs, a (partial) query result and
a list of objects along with their prediction functions, ait&lob-
jective is to update the given query result by the given Ifsbln
jects. The specific implementation of thépdateResultgeneric
function depends on the underlying type predictive queslo® is
a brief description of the functionality of tHdpdateResultéunc-
tion for predictive spatio-temporal range, aggregate,/andarest-
neighbor queries.

Range Queries. A predictive range query has a query regiBn
and a future time, and asks about the objects expected to be in-
side theR after timet. In this case, th&JpdateResults(Result,List)
implementation is very simple as it just adds the set of dbjet

in List, along with the values of their prediction functions to the
current result. The running example of Figure 3 was desdribe
terms of range queries.

Aggregate Queries.A predictive aggregate query has a query re-
gion R and a future time, and asks about the number of objects
N predicted to be insid& after timet. In this case, th&JpdateRe-
sults(Result,Listfimplementation just adds the number of objects
in List to the current value oResult In Figure 3, ifQ3o is an
aggregate query, its answer will be stored as 3.
K-Nearest-Neighbor Queries.A predictive K-nearest-neighbor
query has point locatio®, a future timet, and asks about th&
objects expected to be closestoafter timet. To fit the Panda
framework, the pointP is translated to an areR, which basi-
cally includes the grid cell that contairi3. Then, theUpdateRe-
sults(Result,Listyimplementation basically add the objectsLiist

to the currenResult If Resultends up to have more thdid ob-
jects, then, only the closektobjects toP are kept aResult while

all other objects are removed froResult If the final query result
ends up to have less thdf objects, the query is issued again with
larger R that includes the cell that contai#sand all its neighbor
cells. Similarly, if the final query result hds objects, yet, a circle
C centered af with radiusd (the distance fronP to its furthest
Kth object) overlaps with any grid cell that is not coveredihywe
will issue the query again with largdt that includes all the cells
covered by circle”. In Figure 3, consider th&so is a K-nearest-
neighbor query with location poir?, located inC19 and depicted
by a star in Figure 3(a), witlik = 5 andt = 30. In this casePanda
will form a range query that includes céll,y. This gives an an-
swer with only three objects, which is less thian Then, the query

is issued again with an ardathat covers the cell€3, C14, Cho,
C20, Ca5, andCa6, which will return more than five objects as an
answer. Only the closest five will be selected.

5.2 Extensibility to Continuous Queries

Unlike snapshot predictive spatio-temporal queries thatis
sued once, and are terminated immediately once a query aiswe
returned to the user, continuous predictive spatio-teaimpreries
stay active in the server for long intervals, e.g., hoursaysgwhere
updates in the query answer are continuously sent to the Eger
amples of continuous predictive spatio-temporal quenetude:
“Continuously, monitor all moving objects within five mile$ my
location”, “Alert me if any moving object is expected to betlvif
one mile of my area in the next 30 minutes", or “Send E-coupons
to my closest three customers, 10 minutes before they beoome
closest ones".

Unlike previous techniques for predictive spatio-tempora
queries, it is a silent feature iBandathat it lends itself to con-
tinuous query execution. Once a continuous query is issaed t
Panda it is immediately registered as a frequent one, regardless
of the number of times it is issued. To this end, the answehef t
continuous query is always precomputed and stored irQihery
List data structure of the cells overlapping the query regione Th
only additional component here is to push the precomputed@n
to the user upon any change. As continuous queries couldige ra
aggregate, ok-nearest-neighbor queries, they follow the same re-
quirements of each query type as described in the previatiose
Once a continuous query is terminated, we return to the norma
processing mode where we take care of¢benterof each query
to determine the query parts to precompute.
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6. EXPERIMENTS

In this section, we evaluate the efficiency and the scatglwfi
our proposed systefandafor processing predictive queries. We
start by explaining the environment of the conducted expents
in Section 6.1. Then, we study the impact of threshold tuming
the performance of the main modulesRaindain Section 6.2. Sec-
tion 6.3 provides the effect of different timeouts @anda effi-
ciency. The behavior dPandawith different query workloads is
given in Section 6.4. Finally, we examine the scalabilityPahda
with respect to outsized queries and large number of obje&sc-
tions 6.5 and 6.6, respectively.

6.1 Experiment Setup

In our performance evaluation experiments, we use the N&two
based Generator of Moving Objects [3] to generate large afets
synthetic data of moving objects. The input to the generator
cludes a real road network map for Hennepin County, Minregsot
USA. The output of the generator includes different sets ofing
objects that move on the given road network map. The used data
sets require some data preprocessing to partition the spatech
objects move is intdV x N squared grid cells of width relative to
the minimum and the maximum step taken by any of the underly-
ing moving objects. Ouspace griddata structure mirrors the space
partitions by storing an identifier for each cé€l] and updatable list
of objects moving within that cell’;. To have the travel time grid
TTG filled before starting the experiment, the travel time bemwe
any pair of cells(C; andC};, is obtained by taking the average time
it takes from the underlying set of objects to move fréfto C;.

To have the algorithms tested against different workloddera
than single queries, a query workload generator is builthi@io
workloads of predictive queries that vary in the number arigs,
the query region size, and the query future time. The number o
queries in the generated workloads starts at 10K querielsgteh,
and increases by 10K until reaches 100K queries in a querk-wor
load. The generated query regions are squares and thefiologa
are uniformly distributed over the space. The size of theeggted
queries vary from 0.01 to 0.16 of the total space size. Theréut
times for the generated queries vary from 10 to 80 time unites
3k query workload is used for warming up the system before we
start to measure the experimental results.

All experiments are based on an actual implementatidtaofia
All the behaviors of the generated objects, query workloed-g
erator, and query processing algorithms are implemente@ on
Core(TM) i3 4GB RAM PC running Windows 7 with C++. In all
experiments, the evaluation and comparison are in termsPaf C
time cost.

6.2 Impact of Threshold Tuning

In the first set of experiments, we study the impact of differe
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threshold7 values on the efficiency d&fanda The minimum value
that the7 can take in this experiment is zero, which means that the
results for any possible query will be precomputed in adeaic-
cordingly, once a predictive query is received, the answeead
and returned to the user without any further computatiors dib-
vious here that at this threshold value, we will have thecftste-
sponse time, since no computation happens after receivingy.
Just the precomputed result is accessed and returnedlyglimech
final query answer. However, it is expected to have the magst si
nificant overhead for updating those precomputed answehe T
maximum threshold value is ten which decided based on the num
ber of queries in a timeout divided by the number of cells in ou
space grid.

Figure 5 illustrates the effect of choosing different timad val-
ues on the performance &anda In this experiment we run 5k
queries on 10K moving objects @ = 0, 2, 4, 5, 6, 8, 10 shown
in the x-axis and y-axis represents the average CPU costgey q
in milliseconds. In Figure 5(a), we study the influence oé#fnold
tuning on the two phases of tlgeiery processingnodule. As the
value of T increases, the cost &hase lincreases. The justifica-
tion is that when7 has large value, this means that most of the
answers in the cells intersecting with the query region riedue
computed from scratch. With large threshold value, onlyrigise
with frequency rate above that value are precompuRtthse llis
not sensitive to threshold tuning. The reason is Badse licon-
cerns mainly with updating the statistics inside the cdflscted by
received queries, and those cells are only sensitive tazbesthe
query region rather than the threshold value.

Figure 5(b) depicts the sensitivity of the main modulePamda
to different threshold values. The costadiery processingnod-
ule increases whefi increases. We justified that in the previous
sub-figure. Theperiodic statistics maintenanaeodule, statistics
maintenancedor short, is not sensitive t@ at all. The third mod-
ule, object movemeris significantly affected by threshold value,
as with small values, more answers are precomputed, henee mo
updates are triggered with each single object movementyizsed
versa. In a nutshell, between the minimgmand the maximum
T, the threshold value can be tuned to provide the requirexhbel
between the time a user has to wait to receive a query resiithen
overhead cost used to prepare this answer in advance.

6.3 Impact of Timeout

In this set of experiments, we study the effect of timeoutigal
on the efficiency ofPanda We run a workload of 30K queries on
20K objects with threshold@™ = 8, while varying the timeout val-
ues from 3k queries every timeout to 15K queries per timebut.
Figure 6, the x-axis represents the number of queries pemoitiin
and the y-axis represents the average CPU cost per quenyj-in mi
liseconds for processing the given workload at that timealue.
Figure 6(a) shows that there is a slim effect of selectinfpdkht
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timeouts on the two phases of theery processingnodule. At
larger timeouts, 12K and 15K, there is a higher opportunity f
queries counters to exceed the given threshold. Howeviakets
most of the experiment time before the counter passing linesh-
old. So the effect of timeout is not significant on the two pEsasf
this module. In all cases, more portions of the queries arsae
expected to be precomputed, which in turn starts to decribase
cost of computing answers from scratch at timeout 12Khasel
Figure 6(b) assures that timeout values have different ainpa

the three main modules of tHeandasystem. With smaller time-
outs, theperiodic statistics maintenaneaodule is dispatched more
times which gives it higher cost than with bigger timeoutsheT
curve of the statistics maintenance cost has a decreasimg)fiiom
0.65 milliseconds/query at timeout = 3k to 0.12 millisecafadiery

at timeout = 15k. As depicted in the previous figure, there is a
slim effect of timeout tuning on the average query cost offhery
processingmodule. With an opposite impact, the cost of thie
ject movementodule sharply increases with higher timeouts as a
result of more queries parts are being precomputed whiclmsnea
each single object movement triggers a possible update.

6.4 Efficiency Evaluation

To evaluate the efficiency ¢fanda we processed workloads of
predictive queries while varying the number of receivedripse
from 10K to 100K. We compare the response time and update cost
of Pandaat two different threshold values, two and eight respec-
tively. The response time is the time a user has to wait tolget t
query result, and it is equal hase lof thequery processingiod-
ule. The update cost is the time consumed to update the precom
puted answer when a change happens, and it is equivaleng to th
cost of theobject movemeniodule. In this experiment, we use
timeoutequals to the time required to process 3K queries which
means after every 3k queries, we call ttatistics maintenance
module to adjusPandadecision about which parts to precompute.
As we mentioned in the setup, we use a warmup workload with 3k
queries before we write down the experimental results. TBeslu
data file contains 20k of moving objects.

Figures 7 provides a comparison betwé&amdaresponse time
and update cost with different queries workloads at the texo s
lected threshold values. The horizontal axis represem tsitim-
ber of queries in thousands in each workload file, and thecadrt
axis measures the average CPU cost per query in millisec&igis
ure 7(a) studies the update cost at different workloads xpea&ed,
the update costs &t = 2 are much bigger than the onesjat 8 in
all workloads, while the behavior of the response time, Fegi(b),
is the opposite. It is also remarkable from the decreasieggtof
the average update cost per query tRamdaacts efficiently even
with heavy workloads. The reason for that is the same object u
date serves many queries with the same update cost. On te oth
hand, there is a very slight increase in the response timeithe
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almost remains steady from 60K to 100K.

6.5 Scalability with Outsized Queries

We proceed to study the scalability Bandawith large query
sizes. In this set of experiments, Figure 8, we show Haaidacan
scale up with outsized queries, where we run a workload of 20k
queries on 20K moving object &t = 5 and timeout = 5K. The re-
gion size of the given queries vary from 0.01 to 0.16 of thaltot
space. From this figure, we notice that when the size incsease
Pandastill behaves efficiently without significant increase i th
total processing cost, for example when the query size asem by
16 times, from 0.01 to 0.16 of the total space, the averageepss
ing time per query increases only by three times, from 0.11.34
milliseconds/query. We also notice that the most affectatspare
the query processingndobject movemenhodules because when
query size increases, the number of cells intersecting gugry
region increases. Accordingly, more cells need to compheie te-
sults from scratch and more are already precomputed andméed
updated with objects movements. We can conclude that isici@a
query size affects the response time without significantteed
on update cost.

6.6 Scalability with Number of Objects

In our second set of scalability experiments, Figure 9 depie
behavior of the main components Bandawhen the number of
moving objects increases from 5K to 80K. We run these experi-
ments with7 = 5, timeout = 3K, and 20K queries. As seen in this
figure, theobject movemeris the most affected module as there
is a positive relationship between the number of objectsuaidte
overhead cost results from their movements. Itis also ebsgdhat
there is almost no impact of increasing the underlying nunoife
objects on both thetatistics maintenancand thequery processing
modules. As noticed from the average CPU cost per query wigen t
number of objects increases by 16 times, from 5K to 80K, tleg-av
age cost per query increases only by less than four timesfrom
0.7 to 2.7 milliseconds/query. Also, the average cost pgeabb
decreases from 2.95 milliseconds/object at 5K objectsGd mil-
liseconds/object at 80K objects. This shows tRahdacan scale
up with large number of moving objects without scarifyingther
the response time nor the overall performance.

7. CONCLUSION

We have presenteBandaas a scalable, efficient, and generic
framework for supporting a wide variety of predictive spati
temporal queries. Unlike previous attempts in supportiredje-
tive queriesPandatargets long-term query prediction as it relies on
adapting a well-designed long-term prediction functian(&) scale
up to large number of moving objects, and (b) support largetrer
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of predictive queries. The main ideaéndais to precompute the
answer for certain areas of space that are likely to be hirégip-
tive queries.Pandaemploys a tunable threshold that achieves a
trade-off between the computational overhead requirepriezom-
putation and the query response laterRandais extensible to sup-
port various kinds of predictive spatio-temporal querigdiding
range, aggregate, aridnearest-neighbor queries. FinalBanda
lends itself to support continuous queries, which is vememn
in spatio-temporal databases. Experimental resultsdbaiséarge

data sets, show th&andais scalable, efficient, and as accurate as

its underlying prediction function.
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