
Panda: A Predictive Spatio-Temporal Query Processor ∗

Abdeltawab M. Hendawi Mohamed F. Mokbel

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
{hendawi, mokbel}@cs.umn.edu

ABSTRACT
This paper presents thePandasystem for efficient support of a wide
variety ofpredictivespatio-temporal queries that are widely used in
several applications including traffic management, location-based
advertising, and ride sharing. Unlike previous attempts insupport-
ing predictive queries,Pandatargets long-term query prediction as
it relies on adapting a well-designed long-term predictionfunction
to: (a) scale up to large number of moving objects, and (b) sup-
port large number of predictive queries. As a means of scalability,
Pandasmartly precomputes parts of the most frequent incoming
predictive queries, which significantly reduces the query response
time. Pandaemploys a tunable threshold that achieves a trade-
off between query response time and the maintenance cost of pre-
comptued answers. Experimental results, based on large data sets,
show thatPandais scalable, efficient, and as accurate as its under-
lying prediction function.

1. INTRODUCTION
The emergence of wireless communication networks and cell

phone technologies with embedded global positioning systems
(GPS) have resulted in a wide deployment of location-based ser-
vices [8, 15]. Common examples of such services include range
queries [7, 25], e.g., “find all gas stations within three miles of
my current location” andK-nearest-neighbor (kNN) queries, e.g.,
“find the two nearest restaurants to mycurrent location”. However,
such common examples focus on thecurrent locations of moving
objects. Another valuable set of location-based services focuses on
predictivequeries [9, 10], in which the same previous queries are
asked, yet, for afuture time instance, e.g., “find all gas stations that
will be within three miles of myfuture location after 30 minutes”.
Predictivequeries are extremely beneficial in a wide variety of ap-
plications that include traffic management, e.g., predict congested
areas before it takes place, location-based advertising, e.g., predict
the customers who are expected to be nearby in the next hour, and
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ride sharing, e.g., find those riders who are likely to share their
route with me.

In this paper, we present thePandasystem, designed to provide
efficient support forpredictivespatio-temporal queries.Pandapro-
vides the necessary infrastructure to support a wide variety of pre-
dictivequeries that include predictive spatio-temporal range, aggre-
gate, andk-nearest-neighbor queries as well ascontinuousqueries.
Pandadistinguishes itself from all previous attempts for process-
ing predictive queries [10, 27] in the following: (1)Pandatargets
long-termpredication in the order of tens of minutes, while exist-
ing attempts mainly target short-term prediction in terms of only
minutes and seconds, (2)Pandasmartly precomputes parts of the
frequent incoming queries, which significantly reduces thequery
response time, and (3)Pandais generic in the sense that it does not
only address a certain type of predictive queries, as done bypre-
vious work, instead, it provides a generic infrastructure for a wide
variety of predictive queries.

The main idea ofPandais to monitor those space areas that are
highly accessed using predictive queries. For such areas,Panda
precomputes the prediction of objects being in these areas before-
hand. Whenever a predictive query is received byPanda, it checks
if parts of this predictive query are included in those precomputed
space areas. If this is the case,Pandaretrieves parts of its answer
from the precomputed areas with a very low response time. For
other parts of the incoming predictive query that are not included
in the precomputed areas,Pandahas to dispatch the full predic-
tion module to find out the answer, which will take more time to
compute. It is important to note here thatPandadoes not aim to
predict the whole query answer, instead,Pandapredicts the answer
for certain areas of the space. Then, the overlap between thein-
coming query and the precomputed areas controls how efficient the
query would be. This isolation between the precomputed areaand
the query area presents the main reason behind the generic nature
of Pandaas any type of predictive queries (e.g., range andkNN)
can use the same precomputed areas to serve its own purpose. An-
other main reason for the isolation between the precomputedareas
and queries is to provide a form ofshared executionenvironment
among various queries. IfPandawould go for precomputing the
answer of incoming queries, there would be significant redundant
computations among overlapped query areas.

Pandaprovides a tunable threshold that provides a trade-off be-
tween the predictive query response time and the overhead ofpre-
computing the answer of selected areas. At one extreme, we may
precompute the query answer for all possible areas, which will pro-
vide a minimal response time, yet, a significant system overhead
will be consumed for the precomputation and materialization of the
answer. On the other extreme, we may not precompute any answer,
which will provide a minimum system overhead, yet, an incoming



predictive query will suffer the most due to the need of computing
the query answer from scratch without any precomputations.The
underlying prediction function deployed byPandamainly relies on
a long-termprediction function, designed by John Krumm [6, 13]
to predict the finaldestination of a singleuser based on his/her cur-
rent trajectory. Unfortunately, a direct deployment of such long-
term prediction function does not scale up for large numbers of
moving objects nor it serves our purpose for predictive queries that
are concerned with the moving object location in a future time
rather than its final destination.Pandaadapts such well-designed
prediction function to: (a) scale up with the large number ofusers
through a specially designed data structure shared among all mov-
ing objects, and (b) provide the prediction for a future query time
(e.g., after 30 minutes) rather than only the prediction forthe final
destination.

The rest of this paper is organized as follows. Section 2 high-
lights related work. Section 3 gives an overview of thePandasys-
tem. The generic framework forPanda’s query processor is given
in Section 4, while its extensibility to a wide variety of predictive
queries is presented in Section 5. Section 6 provides experimental
evaluation ofPanda. Finally, Section 7 concludes the paper.

2. RELATED WORK
In terms of supported predictive queries, existing algorithms

for predictive query processing have focused only on one kind
of predictive queries, e.g.,range queries[10, 20, 27],k-nearest-
neighbor queries[1, 16, 27],reverse-nearest-neighbor queries[1],
continuous-nearest-neighbor queries[14], aggregate queries[19],
or predictive joinwith estimating the expected query selectivity [4,
5, 24, 23]. Some of this work attaches the expiry time interval to
a kNN query result [21, 22]. Thus, thekNN query answer is pre-
sented in the form of <result, interval>, where the interval indicates
the future interval during which the answer is valid.

In terms of the underlying prediction function, existing algo-
rithms for predictive query processing can be classified into three
categories:

(1) Linearity-based prediction, where the underlying prediction
function is based on a simple assumption that objects move ina
linear function in time along the input velocity and direction. So,
query processing techniques in this category, e.g., [1, 16,18, 22,
23], take into consideration the position of a moving point at a
certain time reference, its direction, and the velocity to compute
and store the future positions of that object in a TPR-tree-based in-
dex [17]. When a predictive query is received, the query processor
retrieves the anticipated position in the given time [18]. The work
in this category is concerned with the applications of the linearity-
based prediction models to answer nearest neighbor queries[16]
and reverse nearest neighbor queries [1], and to estimate the query
selectivity [23]. Some of these applications attach the expiry time
interval to thekNN query result [22].

(2) Historical-based prediction, where the predication function
uses object historical trajectories to predict the object next trajec-
tory. Then, query processing techniques in this category, e.g., [2,
6, 10, 11, 12, 19] are applied to trajectory of location points. Ex-
isting work in this category is based on either mobility model [10],
or ordered historical routes [2, 6, 12]. The mobility model [10]
is used to capture the different possible turning pattern atdifferent
roads junctions, and the travel speed for each segment in theroad
network for each single object in the system. Then, the modelis
used to predict the future trajectory of each object, and based on
that they can answer predictive range queries. The main concern
of that model is to put more focus on the prediction of the object
behavior in junctions based on historical data of objects trajecto-

Figure 1: The Panda System Architecture

ries. In the ordered historical routes, the stored past trajectories are
ordered according to the similarity with the current time and loca-
tion of the object and the top route is considered the most possible
one [2, 6, 12]. Some of the existing work in this category is em-
ployed for predicting the current object trajectory in non-euclidian
space [11] such as road-level granularity. For example, a Predic-
tive Location Model (PLM) [11] is proposed to predict locations
in location-based services. The model considers the start point as
the object current location while the end point could be any of the
possible exit points. PLM computes the shortest path trajectory
between the current location and each of the exit points, then the
trajectory with the highest probability is considered the predicted
path.

(3) Other prediction functions, where more complicated predic-
tion functions are employed to realize better prediction accuracy.
Query processing techniques in this category, e.g., [9, 20,26, 27],
are adjusted based on the outcome of the prediction function. Exist-
ing work in this category either exploits a single function [20, 27],
or mixes between two or more functions to form a hybrid prediction
model [9, 26]. As an example for a single function, a Transformed
Minkowski Sum [27] is used to answer circular region range and
K-NN queries, while Recursive Motion Function (RMF) [20] is
used to predict a curve that best fits the recent locations of amov-
ing object and accordingly answer range queries. In the hybrid
functions category, two methods [9, 26] are combined to evaluate
predictive range and nearest neighbor queries in highly dynamic
and uncertain environments. Unfortunately, all the employed pre-
diction functions can support only short-term prediction in terms of
seconds or minutes.

Pandadistinguishes itself from all the above work in the follow-
ing: (1)Pandais a generic framework that is not only applicable to
one kind of predictive queries. Instead, a wide variety of predictive
queries, e.g., range and nearest-neighbor queries can be supported
within one framework, (2)Pandarelies on a long-term prediction
function applicable to tens of minutes, and (3)Pandais a scalable
framework that supports large number of predictive snapshot and
continuous queries.

3. SYSTEM OVERVIEW
This section gives an overview of thePandasystem outlining the

system architecture and underlying prediction function.

3.1 System Architecture
Figure 1 gives the system architecture of thePanda system,

which includes three main modules, namely,query processing, pe-
riodic statistics maintenance, andanswer maintenance. Each mod-
ule is dispatched by an event, namely,query arrival, periodic statis-
tics maintenance trigger, andobject movement, respectively. As a
shared storage, a list of precomputed answers is maintained, which



is frequently updated offline and used to construct the final query
answer for received predictive queries. Below is a brief overview of
the actions taken byPandafor each event. Details of these actions
are discussed in Section 4.
Query arrival. Once a query is received byPanda, the query pro-
cessor divides the query area into two parts. The first part isalready
precomputed where this part of the answer is just retrieved from
the precomputed storage. The second part is not precomputedand
needs to be evaluated from scratch through the computation of the
prediction function against a candidate set of moving objects.
Object movement.WheneverPandareceives an object movement,
it dispatches the answer maintenance module to check if thismove-
ment affects any of the precomputed answers. If this is the case, the
affected precomputed answers are updated accordingly.
Periodic statistics maintenance trigger. System statistics that
decide on which parts of the space to precompute for potential
incoming frequent queries need to be updated periodically using
the statistics maintenance module. The module basically reset the
statistics to ensure the accuracy and recency of collected statistics.

3.2 Prediction Function
The long-term prediction function deployed inPandais mainly

an adaptation of the one introduced by John Krumm [6, 13] to pre-
dict the final destination of a single object,F= P (Ci|So). F is
applied to any space that is partitioned into a set of grid cells C. F
takes two inputs, namely, a cellCi ∈ C and a sequence of cellsSo

= {C1, C2, · · · , Ck} that represents the current trip of an objectO.
Then,F returns the probability thatCi will be the final destination
of O.

As F only predicts the destination of an object, it does not have
the sense of time. In other words,F cannot predict where an ob-
ject will be after time periodt. Since this is a core requirement in
Panda, we adaptF to be able to compute the probability that object
O will be passing by the given cellCi after timet, wheret is spec-
ified in the predictive query. The adaptation results in the function
F̂ which is a normalization of the results from the original predic-
tion functionF using the set of cellsDt that could be a possible
destination of an objectO after timet.

F̂ =
P (Ci|So)∑

d∈Dt
P (Cd|So)

(1)

Here, the numerator is the output of the original predictionfunc-
tion F, and the denominator is the summations of the probabilities
of all grid cells inDt, also computed fromF . Dt is the set of
possible destination cells of objectO after timet, computed based
on the travel time distance. It is important to mention here that the
recomputation of this prediction function is triggered only when an
objectO changes its location from cell to another rather than from
point to another point within the same cell.

Pandaalso has another adaptation ofF to scale it up to support
large numbers of moving objects asF is mainly designed to support
single object prediction. The scaling up is mainly supported by the
underlying data structure, discussed in the next section, which gives
an infrastructure to share by large numbers of moving objects.

4. PANDA: A PREDICTIVE SPATIO-
TEMPORAL QUERY PROCESSING

A salient feature ofPanda is that it is a generic framework
that supports a wide variety of predicative spatio-temporal queries.
Panda’s query processor can support range queries, aggregate
queries, andk-nearest-neighbor queries within the same frame-
work. In addition,Pandacan support stationary as well as moving

objects. Finally,Pandais easily extensible to support continuous
queries. This generic feature ofPandamakes it more appealing to
industry and easier to realize in real commercial systems. This is in
contrast to all previous work in predictive spatio-temporal queries
that focus on only one kind of spatio-temporal queries. As de-
scribed in Figure 1,Panda reacts to three main events, namely,
query arrival, object movement, and aperiodic statistics mainte-
nance trigger. Each event promptsPandato call one of its three
main modules to take the appropriate response. The section first
starts by describing the underlying data structure ofPanda(Sec-
tion 4.1). Then, the reaction ofPandato the events query arrival,
object movement, and periodic statistics maintenance trigger are
described in Section 4.2, 4.3, and 4.4, respectively. Following the
spirit of Panda, the discussion in this section is made generic with-
out referring to a particular predictive query type, exceptwhen giv-
ing examples. The extensibility ofPanadato support various pre-
dictive query types will be described in next section (Section 5).

4.1 Data Structure
Figure 2 depicts the underlying data structure used byPanda. A

brief overview of each data structure is outlined below:
Object List OL. This is a list of all moving objects in the system.
For each objectO ∈ OL, we keep track of an object identifier and
the sequence of cells traversed byO in its current trip. For example,
as illustrated in Figure 2,O2 in its current trip, has passed through
the sequence of cells {C13, C7, C2, C3}. This means thatO2 has
started atC13 and it is currently moving insideC3.
Space GridSG. Pandapartitions the whole space intoN × N

equal-size grid cells. For each cellCi ∈ SG, we maintain four
pieces of information as: (1)CellID as the cell identifier, (2)Cur-
rent Objectsas the list of moving objects currently located inside
Ci, presented as pointers to the Object ListOL, (3) Query Listas
the list of predictive queries recently issued onCi. Each queryQ in
this list is presented by the triple (Time, Counter, Answer), where
Time is the future time included inQ, Counter is the number of
times thatQ is recently issued,Answeris the precomputed answer
for Q which may have different format based on the type ofQ, and
(4) Frequent Cellsas the list of cells that one of their precomputed
answers should be updated with the movement of an object inCi.
Travel Time Grid TTG. This is a two-dimensional array ofN2

× N2 cells where each cellTTG[i, j] has the average travel time
between space cellsCi andCj , whereCi andCj ∈ SG. TTG is
fully pre-loaded intoPandaand is a read-only data structure.

4.2 Query Processing in Panda
Panda receives a predictive spatio-temporal query, e.g., range

or nearest-neighbor query, that asks about the query answerafter
a future timet. The main idea behind efficiency and scalability
in Pandais thatPandaprecomputes partial results of the frequent
incoming queries beforehand. In general,Pandadoes not aim to
precompute the whole query answer, instead, it precomputesthe
answer for certain areas of the space. Then, the overlap between the
incoming query and the precomputed areas controls how efficient
the query would be. If all the query is precomputed, the querywill
have best performance in terms of lower latency, however,Panda
will encounter high overhead of maintaining the precomputed an-
swer. This isolation between the precomputed area and the query
area presents the main reason behind the generic nature ofPandaas
any type of predictive queries (e.g., range andk-nearest-neighbor)
can use the same precomputed areas to serve its own purpose. An-
other main reason for the isolation between the precomputedareas
and queries is to provide a form ofshared executionenvironment
among various queries. IfPandawould go for precomputing the



Figure 2: Data Structures in Panda

answer of incoming queries, there would be significant redundant
computations among overlapped query areas.

Upon the arrival of a new predictive spatio-temporal queryQ,
with an area of interestR, requesting a prediction about future time
t, Pandafirst dividesQ into a sets of grid cellsCf that overlap with
the query region of interestR. For each cellc ∈ Cf , Pandagoes
through two main phases, namely,result computationandstatistic
maintenance. The result computation phase (Section 4.2.1) is re-
sponsible on getting the query result from cellc either as a precom-
puted result or by computing the result from scratch. Thestatistic
maintenancephase (Section 4.2.2) is responsible on maintaining a
set of statistics that help in deciding whether the answer ofcell c,
for a future timet, should be precomputed or not. The precompu-
tation at cellc will significantly help for the next query that asks
for prediction onc with the same future timet, yet, precomputa-
tion will cause a system overhead in continuously maintaining the
answer atc. Throughout this section, Algorithm 1 gives the pseudo
code of thePandaquery processor where the first three lines in the
algorithm find out the set of cellsCf that overlaps with the query
regionR, and start the iterations over these cells.

4.2.1 Phase I: Result Computation.
Phase I receives: (a) a predictive queryQ, either as range, aggre-

gate, ork-nearest-neighbor, asking about future timet, and (b) a
cell ci that overlaps with the query area of interestR. The output
of Phase I is the partial answer ofQ computed fromci.

Main idea. The main idea of Phase I is to start by checking if the
query answer at the input cellci is already computed. If this is the
case, then Phase I is immediately concluded by updating the query
resultQ by the precomputed answer ofci. If the answer atci is not
precomputed, then, Phase I will proceed by computing the answer
of ci from scratch. Phase I avoids the trivial way of computing the
prediction function of all objects in the system to find whichobjects
can make it to the query answer at future timet. Instead, Phase I
applies a smarttime filter to limit its search to only those objects

Algorithm 1 PandaPredictive Query Processor
Input: RegionR, timet, ThresholdT
1: QueryResult← null, CellResult← null
2: Cf ← the set of grid cells intersecting with (R)
3: for each cellci ∈ Cf do
4: /* Phase I:Result Computation */
5: if there is an answer inci at timet then
6: CellResult← read answer fromci
7: else
8: CR← the set of grid cells reachable toci in time t
9: for each cellcj ∈ CR do

10: for each objectO ∈ current objects incj do
11: ObjectPrediction← ComputeF̂ = P (ci|O, t)
12: UpdateResults (CellResult, ObjectPrediction)
13: end for
14: end for
15: end if
16: UpdateResults (QueryResult, CellResult)
17: /* Phase II: Statistics Maintenance */
18: e← the entry in the query list ofci at timet
19: if e is NULL then
20: e← Insert a new blank entrye to the query list ofci with

e.Counter=0 ande.Answer is Null
21: end if
22: e.Counter← e.Counter + 1
23: if e.Counter≥ T AND e.Answer is NULLthen
24: e.Answer← CellResult
25: CR ← the set of grid cells reachable toci in time t
26: Addci to the list of frequent cells in all cells inCR

27: end if
28: end for
29: Return QueryResult

that can possibly reach to cellci within the future timet. Basically,
Phase I utilizes theTravel Time Grid (TTG)data structure to find the
set of cellsCR that may include objects reachable toci within time
t. Then, we calculate the prediction function for only those objects
that lie within any of the cells inCR. The result of these prediction
functions pile up to build the answer result produced fromci.

Algorithm. The pseudo code of Phase I is depicted in Lines 4
to 16 in Algorithm 1. Phase I starts by checking if the answer of
ci at timet is already precomputed in its ownQuery Listentry in
the grid data structureSG. If this is the case, we just retrieve the
precomputed answer as the complete cell answer (Line 6 in Algo-
rithm 1), and conclude the phase by using the cell result to update
the final query result (Line 16 in Algorithm 1). Updating the result
is done through the generic functionUpdateResultsthat takes two
parameters, the first is the result to be updated, and the second is
the value to be used to update the result. As will be detailed in Sec-
tion 5, the operations inside this functions depend on the underlying
query type, e.g., aggregate, range, ork-nearest-neighbor queries. In
case that the answer of cellci is not precomputed, we start by com-
puting this answer from scratch (Lines 8 to 14 in algorithm 1). To
do so, we apply atime filterby retrieving only the set of cellsCR

that are reachable toci within the future timet by checking the
Travel Time Grid (TTG). Only those objects that lie within any of
the cells inCR may contribute to the final cell answer, and hence
the query answer. For each objectO in any of the cells ofCR, we
utilize our underlying prediction function (Section 3.2) to calculate
the predicted value of havingO in ci within time t (Line 11 in Al-
gorithm 1). We then use this predicted value to update the result of
cell ci using the genericUpdateResultsfunction. Once we are done
with computing all the predicted values of all objects in anyof the
cells ofCR, we again utilize the generic functionUpdateResults
to update the final query result by the result coming from cellci
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(b) Precomputed Parts

(c) Travel Time Filter
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Figure 3: Phase I Example.

(Line 16 in Algorithm 1).
Example. Figure 3 gives a running example of Phase I where 19

objects,O1 to O19 are laid on a 6× 6 grid structure. Figure 3(a)
indicates the arrival of a new predictive range queryQ30, a shaded
rectangle in cellC19, that asks about the set of objects that will be
in the area ofQ30 after 30 minutes. Though we are using a range
query as a running example, all idea here are applied to aggregate
andk-nearest-neighbor queries. First, we find out all the cells that
overlap the area of queryQ30. For ease of illustration, we intention-
ally haveQ30 covering only one cell,C19, in which we are going
to carry on for the next steps. IfQ30 covers more than one cell,
then, the next steps will be repeated for each single cell covered by
Q30. Figure 3(b) gives theQuery Liststructure ofC19, where two
previous predictive queries came at this cell before; a query that
asks about 30 minutes in future, and it came only one time before
(counter= 1) and another query that asks about 20 minutes in the
future and were issued 10 times before. By looking at this data
structure, we find that the answer of the future timet is set tonull,
i.e., it is not precomputed. In this case, we need to compute the
answer for this cell from scratch. Note that if this query wasasking
about the set of objects after 20 minutes, we would just report the
answer as{O1, O8} as it is already precomputed. Unfortunately,
for the case oft = 30, we need to proceed for more computations.

Figure 3(c) starts the process of computing the answer of cell
C19. As a first step, we utilize theTravel Time Grid (TTG)data
structure to find out the set of cells that are reachable toC19 within
30 minutes. We find that there are only three cells that can con-
tribute to the answer ofC19, namely,C9, C16, C33. This means
that objects that are not located in any of these cells are notgoing
to make any contribution toC19 within 30 minutes, which filters
out large number of moving objects that. Then, we can only focus
on the objects located inC9, C16, C33, where there are only four
objectsO5, O9, O18, andO19. For each of these four objects, we
calculate the prediction function̂F to find out the probability that
these objects can be inC19 in 30 minutes. With probability calcu-
lation, we find out thatO19 has a zero probability of being inC19

in 30 minutes, while the other three objects have a non-zero proba-
bility. We finally report the answer in Figure 3(d) as{O5, O9 O18}
along with their probabilities of being inC19 in 30 minutes (Prob-
abilities are not shown in the figure as it is an illustrative example).

4.2.2 Phase II: Statistics Maintenance
Phase II does not add anything to the query answer. Instead, it

updates a set of statistics that help in deciding what parts of the
space and queries need to be precomputed. The input to this phase

is a cellci and its answer list, computed in Phase I. Then, Phase II
uses this information to update the statistics maintained by Panda.

Main idea. The main idea of Phase II is to employ a tunable
threshold,0 ≤ T ≤ ∞, that provides a trade-off between the pre-
dictive query response time and the overhead for precomputing the
answer of selected areas. At one extreme,T is set to 0, which
means that all queries will be precomputed beforehand. Though
this will provide a minimal response time for any incoming query,
a significant system overhead will be consumed for the precompu-
tation and materialization of the answer. On the other extreme,T
is set to∞, which means that nothing will be precomputed, and
all incoming queries need to be computed from scratch. This will
provide a minimum system overhead, yet, an incoming predictive
query will suffer from high latency. To efficiently utilize the tun-
able thresholdT , Phase II utilizes thecounterinformation in the
Query Listdata structure of cellci (described in Section 4.1). If
this counterexceeds the threshold valueT , then, this query is con-
sidered frequent, and the answer of this query in cellci is precom-
puted, i.e., stored in theQuery Listdata structure. In addition, we
add cellci to the list of frequent cells in all cells that are reachable
to ci within time t. This is mainly to say that any object movement
in any of these reachable cells will affect the result computed (and
maintained) at cellci. Such list of reachable cells can be directly
obtained from theTravel Time Grid (TTG)data structure.

Algorithm. The pseudo code of Phase II is depicted in Lines 18
to 27 in Algorithm 1. Phase II starts by retrieving the entrye from
the Query Listof ci that corresponds to the querying timet. If
there is no such prior entry, i.e.,e is NULL, we just add a new
blank entry in theQuery Listof ci for time t, with counterset to
zero andanswerset to null (Lines 18 to 21 in algorithm 1). Then,
we just increase thecounterof e by one to update the number of
times that this query is issued at cellci with time t. Then, we
check thecounteragainst the system threshold T and the value of
the current cellAnswer. This check may result in three different
cases as follows: (1)e.counter< T , i.e., thecounteris less than
the system thresholdT . In this case, Phase II decides that it is
not important to precompute the result of this query, as it isnot
considered as a frequent query yet. So, Phase II is just concluded.
(2) e.Answer6= NULL. In this case, the query timet is already
considered frequent and the answer is already precomputed.In this
case, Phase II will also just conclude as there is no change instatus
here. (3)e.counter≥ T AND e.Answeris NULL. This case means
that the query timet has just become a frequent one, and we need
to start precomputing the result fort at cell ci. In this case, we
first add the computed cell result from Phase I to the answer ofe.



(a) Statistics Update (b) Reachable Cells

Figure 4: Phase II Example.

Then, we find out the set of cellsCR that are reachable to cellci
within time t. For these cells, we add cellci to their list of frequent
cells. This is mainly to say that any object movement of any cell cj
∈ CR will affect the result computed at cellci (Lines 18 to 23 in
algorithm 1).

Example. Figure 4 gives a running example of Phase II contin-
uing the computations of Phase I in Figure 3. Figure 4(a) shows
that thecounterof the time entry 30 is updated to be 2. Assuming
the time thresholdT is set to 2. Then, the timet is now considered
frequent. Figure 4(b) depicts the actions taken by Phase II upon the
consideration thatQ30 becomes frequent. First, theQuery Listof
C19 is updated to hold the computed answer from Phase I. Second,
the cellC19 is added to the list of frequent cells forC9, C16, and
C33 to indicate that any movement in these three cells may trigger
a change of answer for cellC19.

4.3 Object Movement in Panda
As has been discussed in the previous section, the efficiencyof

the Pandageneric query processor relies mainly on how much of
the query answer is precomputed. Though we have discussed how
Panda takes advantage of the precomputed answers, we did not
discuss howPandamaintains those precomputed answers, given
the underlying dynamic environment of moving objects. Thissec-
tion discusses theanswer maintenancemodule inPanda, depicted
in Figure 1, which is basically triggered with every single object
movement in any cellci in the space gridSG.

Main idea. The main idea behind theanswer maintenancemod-
ule is to check if this object movement has any effect on any of
the precomputed answers. If this is the case, thenPandacomputes
this effect and propagates it to all affected precomputed answers.
If Pandafigures out that this object movement has no effect on any
of the precomputed answers, then, it does nothing for this object
movement. As the underlying prediction function̂F mainly relies
on the sequence of prior visited cells for a moving object, anobject
movement within the cell does not change the object predication
function, and hence will not have any effect on any of the precom-
puted answers. It is important to note that theanswer maintenance
module does not decide upon which parts of the queries/spaceto
be precomputed, as this decision is already taken by the statistics

Algorithm 2 Answer Maintenance
Input: ObjectO,Cell Cold, ,Cell Cnew

1: if Cold =Cnew then
2: Return
3: end if
4: AddO to the set ofcurrent objectsof Cnew

5: C ← The set offrequent cellsof Cnew

6: for each cell Ci ∈ C do
7: t← travel time fromCnew toCi from TTG[new, i]

8: ObjectPrediction← ComputeF̂ = P (Cnew|O, t)
9: UpdateResults (CellResult, ObjectPrediction)

10: end for
11: RemoveO from the set ofcurrent objectsof Cold

12: C ← The set offrequent cellsof Cold

13: for each cell Ci ∈ C do
14: UpdateResults (CellResult,O)
15: end for
16: Return

collected in the generic query processor module. Instead, the an-
swer maintenancemodule just ensures efficient and accurate main-
tenance of existing precomputed answers.

Algorithm. Algorithm 2 gives the pseudo code of thePanda
answer maintenancemodule. The algorithm takes three input pa-
rameters, the moved objectO, its old cellCold before movement,
and its new cell after movementCnew. The first thing we do is to
check if the new cell is the same as the old cell. If this is the case,
the algorithm immediately terminates as this object movement will
not have any effect on any of the precomputed cells. On the other
side, if the new cell is different from the old one, the algorithm pro-
ceeds in two parts. In the first part (Lines 4 to 10 in Algorithm2),
we first addO to the set of current objects ofCnew . Then, we re-
trieve the set offrequent cellsof Cnew, i.e., those cells that have
precomputed answers and may be affected by any change of ob-
jects inCnew. For each cellCi in the set offrequent cells, we do:
(a) retrieve the travel timet from the new cell toCi from theTravel
Time Griddata structure, (b) compute the predicted value ofO be-
ing inCi aftert time units, and (c) update the precomputed result at
cell Ci by the predicated value, using the generic functionUpdate
Results. The second part of the algorithm (Lines 11 to 15 in Algo-
rithm 2) is very similar to the first part, except that we are working
with Cold instead ofCnew , where we removeO from the set of
objects ofCold, and update all the precomputed frequent cells of
Cold accordingly. It is important to notice here that we do not need
to compute the object prediction in the second part as it is already
calculated before and stored in the precomputed answer atCi.

Example. Back to our running example in Figure 4(b) that il-
lustrates the precomputed answer for the queryQ30 in cell C19.
Assume that objectO9 moves out from its cellC16 to C17. In this
case, we addO9 to the list ofcurrent objectsin C17, and get its
list of frequent cells, which only includesC1. Then, we obtain the
time t betweenC1 andC17 as 40. We then computêF = P (C1|O9,
40), which gives the probability thatO9 will be in C1 after 40 time
units. We then incrementally update the answer atC1 by the value
of F̂ . We do the same forC16, the cell thatO9 has just departed.
We first deleteO9 from the list ofcurrent objectsin C16. Then,
we read the list offrequent cellsof C16 which returns onlyC19.
At this point, we do not need to compute the prediction function F̂
as it should be already stored in thequery listof C19. So, we just
update the answer atC19 by removingO9 and its probability.

4.4 Periodic Statistics Maintenance
As has been seen earlier, thequery processingmodule (Sec-



Algorithm 3 Periodic Statistics Maintenance
Input: System ThresholdT
1: for each cellCi ∈ the Space GridSG do
2: for each entrye ∈ Ci.QueryList do
3: if e.Counter≥ T then
4: e.Counter← 0
5: else
6: RemoveCi from the list of frequent cells in each of its

reachable cells withine.Time
7: Deletee from Ci.QueryList
8: end if
9: end for

10: end for
11: Return;

tion 4.2) mainly relies on simple maintained statistics, namely, the
counterin theQuery Listdata structure, to decide on which parts
of the space to precompute for which future query time. How-
ever, thecounterinformation just keeps increasing while frequent
queries may no longer be frequent any more, yet, as they stillkeep
their countervalue intact, their answers may still be unnecessarily
precomputed, causing extra system overhead. It is the job ofthepe-
riodic statistics maintenancemodule, discussed in this section, to
ensure that current statistics information is accurate andupdated.

Main Idea. The main idea behind this module is to run peri-
odically eacht units to sweep over current statistics and update it.
For a queryQ to be considered frequent, it has to appear at leastT
times in the last time periodt, whereT is the system threshold, de-
scribed in Section 4.2. In the mean time, a frequent queryQ, who
failed to appear at leastT times in the last time periodt is demoted
to be infrequent.

Algorithm. Algorithm 3 gives the pseudo code for theperiodic
statistics maintenancemodule. The algorithm sweeps over all grid
cells in the grid data structureSG. For each cellCi, the algorithm
goes through every single entrye in Ci.QueryList. For each entrye,
we compare itscounteragainst the system thresholdT , which will
result in one of these two cases: (1)e.Counter≥ T . In this case,
e represents a frequent query, and thus we just reset its counter to
0 to restart its statistics with the next time periodt. (2) e.Counter
< T , in whiche represents a query that failed to appear more than
T times in the last time periodt. In this case, we removee from
the listCi.QueryListwhile doing a clean up by removing the entry
for Ci from the list of frequent cells in each of its reachable cells
within e.Time.

5. EXTENSIBILITY OF PANDA
This section discusses the extensibility ofPandaframework to

support various kinds of predictive spatio-temporal queries along
with continuous queries.

5.1 Extensibility in Predictive Queries
Algorithms 1 and 2, that give thePanda framework for query

processing and the maintenance of precomputed answers, respec-
tively, were described in terms of a generic function, termed Up-
dateResults(Result,List), called twice in each algorithm. TheUp-
dateResultsfunction takes two inputs, a (partial) query result and
a list of objects along with their prediction functions, andits ob-
jective is to update the given query result by the given list of ob-
jects. The specific implementation of theUpdateResultsgeneric
function depends on the underlying type predictive query. Below is
a brief description of the functionality of theUpdateResultsfunc-
tion for predictive spatio-temporal range, aggregate, andk-nearest-
neighbor queries.

Range Queries. A predictive range query has a query regionR

and a future timet, and asks about the objects expected to be in-
side theR after timet. In this case, theUpdateResults(Result,List)
implementation is very simple as it just adds the set of objects in
in List, along with the values of their prediction functions to the
current result. The running example of Figure 3 was described in
terms of range queries.
Aggregate Queries.A predictive aggregate query has a query re-
gion R and a future timet, and asks about the number of objects
N predicted to be insideR after timet. In this case, theUpdateRe-
sults(Result,List)implementation just adds the number of objects
in List to the current value ofResult. In Figure 3, ifQ30 is an
aggregate query, its answer will be stored as 3.
K-Nearest-Neighbor Queries.A predictiveK-nearest-neighbor
query has point locationP , a future timet, and asks about theK
objects expected to be closest toP after timet. To fit thePanda
framework, the pointP is translated to an areaR, which basi-
cally includes the grid cell that containsP . Then, theUpdateRe-
sults(Result,List)implementation basically add the objects inList
to the currentResult. If Resultends up to have more thanK ob-
jects, then, only the closestk objects toP are kept atResult, while
all other objects are removed fromResult. If the final query result
ends up to have less thanK objects, the query is issued again with
largerR that includes the cell that containsP and all its neighbor
cells. Similarly, if the final query result hasK objects, yet, a circle
C centered atP with radiusd (the distance fromP to its furthest
Kth object) overlaps with any grid cell that is not covered byR, we
will issue the query again with largerR that includes all the cells
covered by circleC. In Figure 3, consider thatQ30 is aK-nearest-
neighbor query with location pointP , located inC19 and depicted
by a star in Figure 3(a), withK = 5 andt = 30. In this case,Panda
will form a range query that includes cellC19. This gives an an-
swer with only three objects, which is less thanK. Then, the query
is issued again with an areaR that covers the cellsC13, C14, C19,
C20, C25, andC26, which will return more than five objects as an
answer. Only the closest five will be selected.

5.2 Extensibility to Continuous Queries
Unlike snapshot predictive spatio-temporal queries that are is-

sued once, and are terminated immediately once a query answer is
returned to the user, continuous predictive spatio-temporal queries
stay active in the server for long intervals, e.g., hours or days, where
updates in the query answer are continuously sent to the user. Ex-
amples of continuous predictive spatio-temporal queries include:
“Continuously, monitor all moving objects within five milesof my
location", “Alert me if any moving object is expected to be within
one mile of my area in the next 30 minutes", or “Send E-coupons
to my closest three customers, 10 minutes before they becomemy
closest ones".

Unlike previous techniques for predictive spatio-temporal
queries, it is a silent feature inPanda that it lends itself to con-
tinuous query execution. Once a continuous query is issued to
Panda, it is immediately registered as a frequent one, regardless
of the number of times it is issued. To this end, the answer of the
continuous query is always precomputed and stored in theQuery
List data structure of the cells overlapping the query region. The
only additional component here is to push the precomputed answer
to the user upon any change. As continuous queries could be range,
aggregate, ork-nearest-neighbor queries, they follow the same re-
quirements of each query type as described in the previous section.
Once a continuous query is terminated, we return to the normal
processing mode where we take care of thecounterof each query
to determine the query parts to precompute.



 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

C
P

U
 T

im
e
 (

m
s
)

Threshold Value

PhaseI
PhaseII

(a) Query Processing Phases

 0

 1

 2

 3

 4

 5

 6

0 2 4 6 8 10

C
P

U
 T

im
e
 (

m
s
)

Threshold Value

Query Processing
Object Movement

Statistics Maintenance

(b) Main modules

Figure 5: Effect of Threshold Tuning

6. EXPERIMENTS
In this section, we evaluate the efficiency and the scalability of

our proposed systemPandafor processing predictive queries. We
start by explaining the environment of the conducted experiments
in Section 6.1. Then, we study the impact of threshold tuningon
the performance of the main modules ofPandain Section 6.2. Sec-
tion 6.3 provides the effect of different timeouts onPandaeffi-
ciency. The behavior ofPandawith different query workloads is
given in Section 6.4. Finally, we examine the scalability ofPanda
with respect to outsized queries and large number of objectsin Sec-
tions 6.5 and 6.6, respectively.

6.1 Experiment Setup
In our performance evaluation experiments, we use the Network-

based Generator of Moving Objects [3] to generate large setsof
synthetic data of moving objects. The input to the generatorin-
cludes a real road network map for Hennepin County, Minnesota,
USA. The output of the generator includes different sets of moving
objects that move on the given road network map. The used data
sets require some data preprocessing to partition the spacein which
objects move is intoN × N squared grid cells of width relative to
the minimum and the maximum step taken by any of the underly-
ing moving objects. Ourspace griddata structure mirrors the space
partitions by storing an identifier for each cellCi and updatable list
of objects moving within that cellCi. To have the travel time grid
TTG filled before starting the experiment, the travel time between
any pair of cells,Ci andCj , is obtained by taking the average time
it takes from the underlying set of objects to move fromCi toCj .

To have the algorithms tested against different workload rather
than single queries, a query workload generator is built to obtain
workloads of predictive queries that vary in the number of queries,
the query region size, and the query future time. The number of
queries in the generated workloads starts at 10K queries perbatch,
and increases by 10K until reaches 100K queries in a query work-
load. The generated query regions are squares and their locations
are uniformly distributed over the space. The size of the generated
queries vary from 0.01 to 0.16 of the total space size. The future
times for the generated queries vary from 10 to 80 time unites. A
3k query workload is used for warming up the system before we
start to measure the experimental results.

All experiments are based on an actual implementation ofPanda.
All the behaviors of the generated objects, query workload gen-
erator, and query processing algorithms are implemented ona
Core(TM) i3 4GB RAM PC running Windows 7 with C++. In all
experiments, the evaluation and comparison are in terms of CPU
time cost.

6.2 Impact of Threshold Tuning
In the first set of experiments, we study the impact of different
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thresholdT values on the efficiency ofPanda. The minimum value
that theT can take in this experiment is zero, which means that the
results for any possible query will be precomputed in advance. Ac-
cordingly, once a predictive query is received, the answer is read
and returned to the user without any further computation. Itis ob-
vious here that at this threshold value, we will have the fastest re-
sponse time, since no computation happens after receiving aquery.
Just the precomputed result is accessed and returned directly as a
final query answer. However, it is expected to have the most sig-
nificant overhead for updating those precomputed answers. The
maximum threshold value is ten which decided based on the num-
ber of queries in a timeout divided by the number of cells in our
space grid.

Figure 5 illustrates the effect of choosing different threshold val-
ues on the performance ofPanda. In this experiment we run 5k
queries on 10K moving objects atT = 0, 2, 4, 5, 6, 8, 10 shown
in the x-axis and y-axis represents the average CPU cost per query
in milliseconds. In Figure 5(a), we study the influence of threshold
tuning on the two phases of thequery processingmodule. As the
value ofT increases, the cost ofPhase Iincreases. The justifica-
tion is that whenT has large value, this means that most of the
answers in the cells intersecting with the query region needto be
computed from scratch. With large threshold value, only queries
with frequency rate above that value are precomputed.Phase IIis
not sensitive to threshold tuning. The reason is thatPhase IIcon-
cerns mainly with updating the statistics inside the cells affected by
received queries, and those cells are only sensitive to the size of the
query region rather than the threshold value.

Figure 5(b) depicts the sensitivity of the main modules inPanda
to different threshold values. The cost ofquery processingmod-
ule increases whenT increases. We justified that in the previous
sub-figure. Theperiodic statistics maintenancemodule,statistics
maintenancefor short, is not sensitive toT at all. The third mod-
ule, object movementis significantly affected by threshold value,
as with small values, more answers are precomputed, hence more
updates are triggered with each single object movement, andvise
versa. In a nutshell, between the minimumT and the maximum
T , the threshold value can be tuned to provide the required balance
between the time a user has to wait to receive a query result and the
overhead cost used to prepare this answer in advance.

6.3 Impact of Timeout
In this set of experiments, we study the effect of timeout values

on the efficiency ofPanda. We run a workload of 30K queries on
20K objects with thresholdT = 8, while varying the timeout val-
ues from 3k queries every timeout to 15K queries per timeout.In
Figure 6, the x-axis represents the number of queries per timeout
and the y-axis represents the average CPU cost per query in mil-
liseconds for processing the given workload at that timeoutvalue.
Figure 6(a) shows that there is a slim effect of selecting different
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timeouts on the two phases of thequery processingmodule. At
larger timeouts, 12K and 15K, there is a higher opportunity for
queries counters to exceed the given threshold. However, ittakes
most of the experiment time before the counter passing that thresh-
old. So the effect of timeout is not significant on the two phases of
this module. In all cases, more portions of the queries answers are
expected to be precomputed, which in turn starts to decreasethe
cost of computing answers from scratch at timeout 12K inphaseI.
Figure 6(b) assures that timeout values have different impact on
the three main modules of thePandasystem. With smaller time-
outs, theperiodic statistics maintenancemodule is dispatched more
times which gives it higher cost than with bigger timeouts. The
curve of the statistics maintenance cost has a decreasing trend from
0.65 milliseconds/query at timeout = 3k to 0.12 milliseconds/query
at timeout = 15k. As depicted in the previous figure, there is a
slim effect of timeout tuning on the average query cost of thequery
processingmodule. With an opposite impact, the cost of theob-
ject movementmodule sharply increases with higher timeouts as a
result of more queries parts are being precomputed which means
each single object movement triggers a possible update.

6.4 Efficiency Evaluation
To evaluate the efficiency ofPanda, we processed workloads of

predictive queries while varying the number of received queries
from 10K to 100K. We compare the response time and update cost
of Pandaat two different threshold values, two and eight respec-
tively. The response time is the time a user has to wait to get the
query result, and it is equal toPhase Iof thequery processingmod-
ule. The update cost is the time consumed to update the precom-
puted answer when a change happens, and it is equivalent to the
cost of theobject movementmodule. In this experiment, we use
timeoutequals to the time required to process 3K queries which
means after every 3k queries, we call thestatistics maintenance
module to adjustPandadecision about which parts to precompute.
As we mentioned in the setup, we use a warmup workload with 3k
queries before we write down the experimental results. The used
data file contains 20k of moving objects.

Figures 7 provides a comparison betweenPandaresponse time
and update cost with different queries workloads at the two se-
lected threshold values. The horizontal axis represents the num-
ber of queries in thousands in each workload file, and the vertical
axis measures the average CPU cost per query in milliseconds. Fig-
ure 7(a) studies the update cost at different workloads. As expected,
the update costs atT = 2 are much bigger than the ones atT = 8 in
all workloads, while the behavior of the response time, Figure 7(b),
is the opposite. It is also remarkable from the decreasing trend of
the average update cost per query thatPandaacts efficiently even
with heavy workloads. The reason for that is the same object up-
date serves many queries with the same update cost. On the other
hand, there is a very slight increase in the response time then it
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almost remains steady from 60K to 100K.

6.5 Scalability with Outsized Queries
We proceed to study the scalability ofPandawith large query

sizes. In this set of experiments, Figure 8, we show thatPandacan
scale up with outsized queries, where we run a workload of 20k
queries on 20K moving object atT = 5 and timeout = 5K. The re-
gion size of the given queries vary from 0.01 to 0.16 of the total
space. From this figure, we notice that when the size increases,
Pandastill behaves efficiently without significant increase in the
total processing cost, for example when the query size increased by
16 times, from 0.01 to 0.16 of the total space, the average process-
ing time per query increases only by three times, from 0.11 to0.34
milliseconds/query. We also notice that the most affected parts are
thequery processingandobject movementmodules because when
query size increases, the number of cells intersecting withquery
region increases. Accordingly, more cells need to compute their re-
sults from scratch and more are already precomputed and needto be
updated with objects movements. We can conclude that increasing
query size affects the response time without significant overhead
on update cost.

6.6 Scalability with Number of Objects
In our second set of scalability experiments, Figure 9 depicts the

behavior of the main components ofPandawhen the number of
moving objects increases from 5K to 80K. We run these experi-
ments withT = 5, timeout = 3K, and 20K queries. As seen in this
figure, theobject movementis the most affected module as there
is a positive relationship between the number of objects andupdate
overhead cost results from their movements. It is also observed that
there is almost no impact of increasing the underlying number of
objects on both thestatistics maintenanceand thequery processing
modules. As noticed from the average CPU cost per query when the
number of objects increases by 16 times, from 5K to 80K, the aver-
age cost per query increases only by less than four times, i.e., from
0.7 to 2.7 milliseconds/query. Also, the average cost per object
decreases from 2.95 milliseconds/object at 5K objects to 0.67 mil-
liseconds/object at 80K objects. This shows thatPandacan scale
up with large number of moving objects without scarifying neither
the response time nor the overall performance.

7. CONCLUSION
We have presentedPandaas a scalable, efficient, and generic

framework for supporting a wide variety of predictive spatio-
temporal queries. Unlike previous attempts in supporting predic-
tive queries,Pandatargets long-term query prediction as it relies on
adapting a well-designed long-term prediction function to: (a) scale
up to large number of moving objects, and (b) support large number
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of predictive queries. The main idea ofPandais to precompute the
answer for certain areas of space that are likely to be hit by predic-
tive queries.Pandaemploys a tunable thresholdT that achieves a
trade-off between the computational overhead required forprecom-
putation and the query response latency.Pandais extensible to sup-
port various kinds of predictive spatio-temporal queries including
range, aggregate, andk-nearest-neighbor queries. Finally,Panda
lends itself to support continuous queries, which is very common
in spatio-temporal databases. Experimental results, based on large
data sets, show thatPandais scalable, efficient, and as accurate as
its underlying prediction function.
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