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ABSTRACT
This paper presents Sphinx, a full-fledged distributed system which
uses a standard SQL interface to process big spatial data. Sphinx
adds spatial data types, indexes and query processing, inside the
code-base of Cloudera Impala for efficient processing of spatial
data. In particular, Sphinx is composed of four main components,
namely,query parser, indexer, query planner, andquery executor.
Thequery parser injects spatial data types and functions in the SQL
interface of Sphinx. Theindexer creates spatial indexes in Sphinx
by adopting a two-layered index design. Thequery planner utilizes
these indexes to construct efficient query plans for range query and
spatial join operations. Finally, thequery executor carries out these
plans on big spatial datasets in a distributed cluster. A system pro-
totype of Sphinx running on real datasets shows up-to three orders
of magnitude performance improvement over traditional Impala.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS
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1. INTRODUCTION
The recent explosion in the amounts of spatial data generated by

many applications, such as satellite images, GPS tracks, medical
images, and geotagged tweets, urged researchers and developers
to extend big data systems to efficiently support spatial data. This
includes Hadoop-GIS [1], SpatialHadoop [4], and ESRI toolsfor
Hadoop [12], among others. Unfortunately, all these systems suf-
fer from the following two limitations. (1) Despite SQL-like lan-
guages, such as HiveQL, they lack an ANSI-standard SQL interface
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SELECT COUNT(*)
FROM OSM_Points
WHERE x ≥ x1 AND x < x2 AND

y ≥ y1 AND y < y2;

(a) Range query in Impala

SELECT COUNT(*)
FROM OSM_Points
WHERE Contains(Rectangle(x1, y1, x2, y2),

OSM_Points.coords);
(b) Range query in Sphinx

Figure 1: Range query in Impala vs. Sphinx

which is much preferred by existing DBMS users, and (2) they in-
herit the limitations of the underlying systems, such as significant
startup time, and materializing intermediate data to disk,which im-
pede these system from reaching the full potential of the underlying
hardware.

In this paper, we introduce Sphinx; a full-fledged system for
distributed execution of interactive SQL queries on Big Spatial
Data. We have chosen to build Sphinx inside Impala [7] ratherthan
any other open-source distributed big data system (e.g., Hadoop
and Spark) as Impala has several advantages which include: (1) it
adopts the ANSI-standard SQL interface, (2) employs query opti-
mization, (3) C++ runtime code generation, and (4) low-level di-
rect disk access. With these features, Impala achieves an order
of magnitude speedup [5, 7, 11] on standard TPC-H and TPC-DS
queries compared to other popular SQL-on-Hadoop systems such
as Hive [10] and Spark-SQL.

Figure 1 shows a range query example that gives the essence of
Sphinx. Figure 1(a) shows a range query expressed in Impala using
primitive data types and operations, and it takes 21 minuteson a ta-
ble of 2.7 Billion points with a cluster of 10 cores. As Impaladoes
not understand the properties of this spaital query, it has to perform
a full-table scan with a very little room of optimization to do. In
Sphinx, the same query is expressed as shown in Figure 1(b). In
addition to the expressive language, this query runs in one second
on Sphinx, giving three orders of magnitude speedup over plain-
vanilla Impala. The main reason behind this performance boost
is the spatial indexes that we add in Sphinx and the spatial query
processing that is injected in the core of the query planner and ex-
ecutor.

Figure 2 gives an overview of Sphinx which consists of four
components, all implemented inside the core of Impala. (1) The
query parser (Section 2) enriches the SQL interface with spatial
data types (e.g., Point and Polygon), spatial functions (e.g., Overlap
and Touch), and new commands to construct and import spatialin-
dexes. (2) Theindexer (Section 3) constructs spatial indexes based
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Figure 2: Overview of Sphinx

on grid, R-tree or Quad-tree, and organized in two layers as one
global index and multiple local index. (3) Thequery planner (Sec-
tion 4) utilizes the spatial indexes to introduce new efficient query
plans for therange query and spatial join operations. (4) Thequery
executor (Section 5) introduces theR-tree scanner andspatial join
operators, which use C++ runtime code generation to efficiently
executespatial range and spatial join queries, respectively. We
conduct an experimental evaluation on the proposed system pro-
totype using a publicly available real dataset of 2.7 Billion points
extracted from OpenStreetMap. We show that Sphinx outperforms
traditional Impala by up-to three orders of magnitude with both
range query and spatial join queries. In addition, we show that
Sphinx scales well with both the input size and the cluster size.

2. QUERY PARSER
To make it user-friendly and easy to use, Sphinx extends the

query parser of Impala to introduce spatial data types, functions,
and new commands to construct and import spatial indexes.
Spatial Data Types. Sphinx adds theGeometry datatype as
an abstraction for all standard spatial datatypes, such asPoint,
Linestring and Polygon, as defined by the Open Geospa-
tial Consortium (OGC). We adopt the standard Well-Known Text
(WKT) format to be able to import text files from other systems
such as PostGIS and Oracle Spatial.
Spatial Functions Sphinx adds OGC-compliant spatial functions
which are implemented as either user-defined functions (UDF) or
user-defined aggregate functions (UDAF). It is imperative to men-
tion that all those functions only work in Sphinx as the inputand/or
the output of each function is of theGeometry datatype, which
is supported only in Sphinx. These functions includebasic func-
tions, e.g.,MakePoint, spatial predicates, e.g.,Touch, spatial
analysis functions, e.g.,Union, andspatial aggregate functions,
e.g.,Envelope which computes the minimum-bounding rectan-
gle (MBR) of a set of objects.
Spatial Indexing Sphinx also adds new commands to constructs
spatial indexes, and import existing indexes from SpatialHadoop.

/* Create R-tree index on the coords attribute */
CREATE INDEX PointsIndex

ON Points USING RTREE (coords);
/* Import an index built on the coords attribute */
CREATE EXTERNAL TABLE OSM_Points

(... /* Schema definition */)
INDEXED ON coords AS RTREE
LOCATION(‘/osm_points’);
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Figure 3: Indexing plan in Sphinx

3. SPATIAL INDEXER
In this section, we describe how Sphinx constructs spatial in-

dexes on HDFS-resident tables. The main goal is to store the
records in a spatial-aware way by grouping nearby records and stor-
ing them physically together in the same HDFS block. While tradi-
tional Impala already provides apartitioned table feature, where a
table is hierarchically partitioned based on a sequence of columns,
Sphinx employs spatial indexes which overcome the following
three limitations in partitioned table: (1) While Impala assigns one
value per partition, e.g., dpartment ID, Sphinx assigns a region,
i.e., a rectangle, to each partition which is more suitable to spatial
data. (2) While Impala assigns each record to exactly one parti-
tion, Sphinx can replicate a record to multiple partitions which can
be used to index polygons which span multiple partitions. (3) Im-
pala puts the burden of choosing partition boundaries on theuser,
which is not suitable for skewed spatial data. Sphinx provides a
one-statement index command which takes care of defining parti-
tion boundaries based on the data distribution. In the rest of this
section, we first describe how the index is stored in Sphinx, and
then we explain how Sphinx builds this spatial index efficiently.

3.1 Index Layout
Sphinx employs a two-layered design for spatial indexes in

HDFS [1,4,12], where theglobal index is stored in the master node
and defines how records are partitioned across machines, while lo-
cal indexes are stored inside slave nodes and define how records are
internally organized inside that node. This design well fitswith the
architecture of Impala and Sphinx where the global index is stored
in thecatalog server on the master and the local indexes are stored
in HDFS data nodes, and are processed by theimpalad processes
running on the slaves. This also allows Sphinx to easily import an
index which was built in SpatialHadoop by simply importing the
global index into the catalog server.

3.2 Index Construction in Sphinx
Sphinx provides an efficient algorithm for constructing a spatial

index on a user-selected attribute in a table. We focus on thecon-
struction of R-tree and R+-tree as examples ofnon-replicated and
replicated indexes, respectively. Figure 3 illustrates the index con-
struction plan in Sphinx. When the user issues aCREATE INDEX
statement, Sphinx creates this query plan which is executedin par-
allel using its query execution engine. The indexing algorithm con-
sists of four phases, namely,sampling, subdivision, partitioning,
andlocal indexing, described below.
The Sampling Phase. The job of this phase is to summarize the
data so that it fits on a single machine while preserving its distri-
bution, to some level. This summary will be used in the next step
to decide how to partition the space across machines while balanc-
ing the load. To summarize the data, this phase scans the input, in
parallel, and reads a sample of 1% of the records. Each recordis
converted to a point by taking the centroid of the index key. Finally,
all sample points are grouped in one machine for the next phase.
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Figure 4: Spatial Join Query Plans

The Subdivision Phase. This phase runs on a single machine, and
it subdivides the space inton cells, which will be used to partition
the input records as one partition per cell. The objective isto bal-
ance the load across partitions while fitting each partitionin a single
HDFS block, typically 128MB. Sphinx adjusts number of cellsn to
number of HDFS blocks in the indexed dataset which ensures that
the average partition size is equal to HDFS block capacity. Then, it
subdivides the space inton cells, each containing roughly the same
number of sample points, by bulk loading the sample into an R-tree
using the sort-tile-recursive (STR) algorithm [8]. The leaf nodes of
the STR-tree are used as cell boundaries, which are broadcast to all
nodes to be used in the next phase.
The Partitioning Phase. This phase scans the input table and as-
signs each record to overlapping cell(s). The main challenge is to
handle boundary objects which overlap more than one cell. Sphinx
employs either adistribution or replication strategy, for R-tree and
R+-tree, respectively. Thedistribution strategy assigns a record to
exactly one cell and expands the cell boundaries to fully contain
the record. Thereplication strategy replicates a record to all over-
lapping cells, and the query executor will have to handle therepli-
cation to ensure a correct answer as described in Section 5. This
step is implemented as abroadcast join where the smaller table
(cell boundaries) is replicated to all machines and the join predi-
cate uses either thedistribution or replication strategies.
The Local Indexing Phase. In the final phase, records are shuffled
across machines and grouped by theCellID column. The contents
of each cell are processed separately where they are bulk loaded
into an in-memory local index, e.g., R-tree, and the index iswritten
to HDFS as one file. Since the size of each partition is expected to
be within the HDFS block capacity, this step can handle arbitrarily
large files. If one partition goes beyond the HDFS block capacity,
it is split into chunks, each fits in one HDFS block.

4. QUERY PLANNER
Thequery planner in Sphinx is responsible on generating aquery

plan for a user query, which is later executed by thequery execu-
tor. In general, thequery planner first generates a single-machine
logical plan, which is never executed. Then, it translates it into a
distributedphysical plan which is executed in parallel. Sphinx in-
troduces new query plans for both therange query andspatial join
operations, as described below.

4.1 Range Query Plans
In range query, the input is a query rangeA and a spatial attribute

x in a tableR, while the output is all recordsr ∈ R wherer.x over-
lapsA. Traditional Impala supports only one plan for range query
which employs afull table scan and compares each record to the
query area. If the input tableR is indexed on the search column
x, Sphinx utilizes the spatial index to build a more efficientR-tree
search plan. This plan improves over thefull scan plan by two new

features. (1) Theearly pruning feature which utilizes theglobal
index to prune partitions that are outside the query area. (2) It uses
R-tree scanners which utilize thelocal indexes in selected parti-
tions to quickly select matching records. The details of theR-tree
scanner will be described in Section 5.

4.2 Spatial Join Plans
In spatial join, the input is composed of two tables,R andS, with

designated geometric columns,R.x andS.y, and a spatial predicate
θ, such astouch or overlap. The output is a tableT that contains all
recordst = 〈r, s〉, where the predicateθ is true for〈r.x, s.y〉, r ∈
R, ands ∈ S. Figure 4(a) shows the logical query plan of spatial
join. Traditional Impala can translate this plan into one physical
plan that uses the naive spatial join algorithm which computes the
cross joinR × S, followed by a spatial filter on the predicateθ.
Sphinx improves on this approach by introducing three alternative
physical plans based on whether the two tables are indexed, one
table is indexed, or none of them are indexed, all described below.

(1) Overlap Join: This plan, shown in Figure 4(b), is used if
the two input tables are indexed on the join columns. The basic
idea is to find pairs of overlapping partitions and perform a single-
machine spatial join between every pair of partitions. To realize
this plan, Sphinx introduces the novelspatial multicast connection
patterns which creates a communication stream between every pair
of machines which are assigned overlapping partitions. To join a
pair of partitions, Sphinx uses thespatial join operator which will
be described in Section 5.

(2) Partition Join: This plan, shown in Figure 4(c), is employed
if only one input table is indexed. In this case, the non-indexed
table, sayR, is partitioned to match the other (indexed) table. Once
the tableR is partitioned, there will be a one-to-one correspondence
between the partitions ofR andS where each pair of partitions are
joined using thespatial join operator.

(3) Co-partition Join: If none of the input files are indexed,
sphinx employs theco-partition join which is a port of the tradi-
tionalpartition-based spatial-merge (PBSM) join algorithm [9]. In
this plan, shown in Figure 4(d), both input files are partitioned us-
ing a common uniform grid, and the contents of each grid cell from
the two files are spatially joined.

5. QUERY EXECUTOR
Thequery executor is the component that executes the physical

query plans, created by thequery planner, in the distributed en-
vironment. Sphinx introduces two new components in the query
executor, namely,R-tree scanner for range queries, andspatial join
operator. These components are completely written in C++ and
make use of the Impala runtime code generation [11], which gives
a higher performance compared to other big data systems written
in Java.
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Figure 5: Experimental results of Impala and Sphinx

5.1 R-tree Scanner
The R-tree scanner takes as input one locally-indexed partition

P and a rectangular query rangeA, and returns all records inP that
overlapA. The R-tree scanner starts by computing the estimated
selectivityσ using the equationσ = Area(A ∩ P )/Area(P ),
whereA andP are the MBRs of the query range and processed
partition, respectively. The MBR ofP is available as part of the
global index which is stored in the main memory of the master
node. Based on the selectivity, the R-tree scanner has threemodes
of operation.

(1) Match All (σ = 1.0): If the P is completely contained in
A, all records are added to the answer without testing them against
the queryA. (2) Full Scan (δ < σ < 1.0): If the selectivity is
larger than a thresholdδ, the R-tree is known to impose a significant
overhead on the search query. Thus, the R-tree scanner skipsthe
index and compares each record against the query rangeA. (3) R-
tree search (σ ≤ δ): If the selectivity is lower thanδ, the R-tree
index is utilized to quickly retrieve matching records.

If the index is replicated, e.g., R+-tree, a finalduplicate avoid-
ance step is carried out to remove duplicate answers.

5.2 Spatial Join Operator
The spatial join operator joins two partitionsP1 and P2 re-

trieved from the two input files and returns every pair of overlap-
ping records in the two partitions. This operator also has three
modes of execution based on the local indexes in the two joined
partitions.

(1) R-tree Join: If both partitions are locally indexed using R-
tree, this execution mode the synchronized traversal algorithm [2,6]
to concurrently traverse both trees while pruning disjointtree
nodes. (2)Bulk Index Join: If only one partition is locally in-
dexed, this execution mode uses thebulk index join algorithm [3,6]
which partitions the non-indexed partition according to the R-tree
of the indexed partition, and then joins each pair of correspond-
ing partitions. (3)Plane-sweep Join: If none of the partitions are
indexed, the spatial join operator performs a plane-sweep join al-
gorithm [6] which works efficiently with non-indexed data.

Similar to the R-tree scanner, the spatial join operator applies a
duplicate avoidance step if the input partitions are indexed using a
replicated index.

6. EXPERIMENTS
Sphinx is implemented inside Impala 1.2.1 and deployed on an

Amazon EC2 cluster of 20 single-core nodes. Figure 5(a) shows a
nice linear scale up of the index construction time as the input table
increases from 25GB to 100GB. Figure 5(b) shows three ordersof
magnitude speedup of Sphinx over Impala when running a range
query. Even with high selectivity ratios, Sphinx gives almost the
same performance as Impala which indicates a low index overhead.

Figure 5(c) compares the performance of the spatial join query
in Impala and Sphinx, where the two input tables are of the same
size. In this experiments, we only use theoverlap join algorithm in
Sphinx which is executed when the two input files are indexed.As
shown in the figure, the naive algorithm in Impala is not scalable at
all as it quickly fails, even for small input sizes. Figure 5(d) shows
the performance of the spatial join in Sphinx with much larger files
while increasing the cluster size from 5 to 20 nodes. This exper-
iments shows the great performance and scalability of the spatial
join operation in Sphinx.

7. CONCLUSION
In this paper, we introduced Sphinx, the first and only system

that extends the core of Impala to provide real-time query process-
ing of SQL queries on spatial data. Sphinx modifies thequery
planner by injecting standard spatial data types, spatial functions
as well as a new command to construct spatial indexes. It adopts a
two-layered approach to build a spatial index which consists of one
global index, stored in acatalog, which partitions records across
machines, and multiple local indexes, stored in HDFS blocks, that
organize records contained in each partition. We also extend the
query planner by building efficient query plans for range and spa-
tial join queries. These plans utilize the global index to prune un-
wanted partitions from the input. We also implemented two new
components in thequery executor, namely, R-tree scanner and spa-
tial join operator, which use runtime code generation to generate
optimized machine code that runs natively on the system. Finally,
we provided an experimental study on large scale real data that
show the efficiency and scalability of Sphinx as it compares to Im-
pala.
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