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ABSTRACT

Geotagged data (e.g. images or news items) have empowered vari-

ous important applications, e.g., search engines and news agencies.

However, the lack of available geotagged data significantly reduces

the impact of such applications. Meanwhile, existing geotagging

approaches rely on the existence of prior knowledge, e.g., accu-

rate training dataset for machine learning techniques. This paper

presents Stella; a crowdsourcing framework for image geotagging.

The high accuracy of Stella is resulted by being able to recruit work-

ers near the image location even without knowing its location. In

addition, Stella also return its confidence about the reported loca-

tion to help users in understanding the result quality. Experimental

evaluation shows that Stella consistently geotags an image with an

average of 95% accuracy and 90% of confidence.
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1 INTRODUCTION

Geotagging is the process of attaching a geographic location to an

object (e.g., image or news item). Geotagging enables a myriad of

important applications, e.g., web search engines use geotagged web-

sites for enhanced search experience [1], location-based services an-

alyze geotagged tweets to extract points-of-interest (POI) [19], and

news agencies place geotagged news items on a map for enhanced

user experience [21]. Meanwhile, several research efforts use geo-

tagged data to discover local events [11], identify scenic routes [2],

∗Also affiliated with University of Minnesota, MN, USA.
This work is partially supported by the National Science Foundation, USA, under
Grants IIS-1525953 and CNS-1512877.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5889-7/18/11. . . $15.00
https://doi.org/10.1145/3274895.3274902

Figure 1: Example of Geotagging Images

find out flooded areas [23], track food poisoning incidents [22], un-

derstanding city demographics [17], and many more. Due to the im-

portance of such applications, academic and commercial systems

were built to query, analyze, and visualize geotagged contents, e.g.,

see [3, 16, 18]. Unfortunately, the lack of available geotagged data

significantly reduce the impact of such applications, e.g., only 0.7%

of tweets [7] and 4.8% of Flickr images [8] are geotagged.

Motivated by the importance of applications that need geotagged

data, there were several commercial and academic efforts for geo-

tagging, e.g., see [30, 31]. Unfortunately, most efforts are geared

toward text-based data using natural language processing tech-

nique [30]. Meanwhile, there have been lack of research in image

geotagging, where the state-of-the-art technique [31] suffers from

low accuracy due to its over reliance with accurate training dataset.

This can be seen from using major web search engines, e.g., Google

Images 1, to geotag an image. Among the images in Figure 1, we

could only geotag the first one. This is because web search engines

rely on something like Google PlaNet [31], which geotag an image

by training a convolutional neural network using millions of geo-

tagged images, thus, unsuitable for new images. This is why it was

successful only in geotagging our first image, a popular landmark

in Chicago, USA, while other images are not that popular.

As the case with other machine-hard operations, researchers have

turned to crowdsourcing to seek the wisdom of the crowd to solve

those operations, e.g., POI labeling [9] and image search [32]. Fol-

lowing a similar approach, we tried to use crowdsourcing for im-

age geotagging by running an experiment on Amazon Mechanical

Turk 2 where we recruited 60 workers to identify the city of each

image in Figure 1. It ends up that we were only able to identify

the first image. This was expected as the workers were randomly

recruited, thus, it would be difficult to geotag the other two images.

Should a crowdsourcing platform is smart enough, it would re-

cruit workers who are familiar with these images. We believe that

the closer a worker is to an image location, the more likely that

he is able to geotag the image. We call such workers as domestic

workers. To test our hypothesis, we ran another experiment where

we recruited workers only from the state of each image. It ends up

that a large majority of the workers were able to identify the city

of each image. However, the challenge here is how to recruit those

domestic workers, if we do not know the image location itself.

1https://images.google.com/
2https://www.mturk.com/
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Figure 2: Overview of Stella Geotagging Process

In this paper, we present Stella; a crowdsourcing-based geo-

tagging framework. Without loss of generality, we describe Stella

in the case of image geotagging. Stella pushes the boundaries of

crowdsourcing platforms to support geotagging by being able to re-

cruit domestic workers without knowing the image location. Stella

overcomes this dilemma by using an iterative approach to gradually

understand the image location. Figure 2 shows an example of Stella

in geotagging the second image of Figure 1 with a total budget of

60 workers. In the first iteration, Stella recruits only 20 worldwide

workers out of its budget of 60. Figure 2(a) shows the answers we

get from those 20 worldwide workers, where we ended up getting

20 different locations. While an existing crowdsourcing framework

(e.g., Amazon Mechanical Turk) would conclude no answer here,

Stella takes it further. Stella notices that the majority of the an-

swers are within USA though they are from different locations and

thus, concludes that this image must be somewhere in USA. In the

second iteration, Stella recruits another 20 workers, all from USA

rather than worldwide workers. Figure 2(b) shows the answers we

get from those 20 USA workers, where again, we ended up get-

ting 20 different locations within USA. However, Stella notices that

the majority of the answers are within the Washington state. Hence,

in the third iteration, Stella recruits its last 20 workers, all from

the Washington state. Figure 2(c) shows the answers from those 20

workers, where there is a clear agreement on the whereabouts of

the image. As a result, Stella can safely conclude the location of

the image. The main idea is that Stella was finally able to recruit 20

domestic workers, i.e., those workers who live close to the image,

even though the image location was unknown.

Stella does not only return the image location as an answer. In-

stead, it goes beyond to report on how confident it is in the answer.

The main idea is to calculate the confidence based on the spatial di-

versity of the answers. The less spatially diverse answers we have,

the more confident Stella is. Also, the more domestic workers we

can recruit, the higher the confidence in the answer is. Extensive ex-

periments of Stella using real deployment on Amazon Mechanical

Turk shows that Stella is consistently able to geotag images with an

average of 95% accuracy and 90% confidence.

The rest of this paper is organized as follows: Section 2 gives an

overview of Stella. A basic Stella framework is presented in Sec-

tion 3. Section 4 gives a set of optimizations to enhance the per-

formance of Stella. Section 5 discusses how we evaluate Stella’s

results and confidence. Extensive experimental results of Stella are

presented in Section 6. Related work to Stella is highlighted in Sec-

tion 7. Finally, Section 8 concludes the paper.

Figure 3: Stella System Architecture

2 SYSTEM OVERVIEW

Figure 3 gives the system architecture of Stella. A user submits an

image O that needs to be geotagged and a budget B that the user is

willing to pay. The answer is returned to the user as the location of

O and a confidence value C that tells how much Stella is confident

about the reported location of O . Meanwhile, workers who are reg-

istered in Stella indicate their willingness to participate in a given

crowdsourcing task and are willing to share part of their location

information. Studying the workers’ location privacy and incentives

is beyond the scope of this paper (see [26] and [20] for a study on

worker’s location privacy and incentives, respectively).

For efficient retrieval of workers within a certain area, Stella in-

dexes the workers’ locations in a multi-resolution non-overlapping

spatial index structure. A worker’s location is taken from the worker

profile upon registering in Stella. Then, it is updated only when the

worker explicitly updates it to get more matching tasks. So, there

is no need to track any kind of worker’s movement. The index can

be a predefined spatial regions, such as the whole world in the first

level, country in the second level, state in the third level, and so on,

or a well-established space partitioning index structure, e.g., a pyra-

mid index structure [24]. For ease of understanding, we use a pyra-

mid structure as our multi-resolution index structure with height H

where each worker’s location information is stored in one of the

cells on the lowest level of the pyramid.

Internally, the main challenge that Stella faces is how to find and

recruit domestic workers without knowing the image location. The

hypothesis is that domestic workers are more capable of geotagging

an image than non-domestic workers. We have verified our hypothe-

sis by running 150+ real crowdsourcing tasks with 600+ workers on

Amazon Mechanical Turk (will be discussed further in Section 6.1).

Stella addresses this challenge by introducing the idea of adaptive
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Algorithm 1 Basic Stella

1: procedure GEOTAG(Index P , Imaдe O , Budдet B)

2: S ← P .root ; C ← 100%; N ← B/P .H

3: while S do

4: W ← SelectDomesticWorkers(N , S)

5: (S,O .loc,C ) ← ResultCalculation(W )

6: end while

7: return O .loc,C

8: end procedure

crowdsourcing. Unlike conventional crowdsourcing platforms that

assign a given task to all workers at once, Stella assigns the geotag-

ging task to only a subset of the workers. Then, based on the result,

Stella learns more knowledge about the image whereabouts and re-

cruits another subset of the workers that are more domestic than the

previous ones. This process is depicted in Figure 3 by the iterations

over two main internal modules in Stella, namely, Selecting Domes-

tic Workers and Result Calculation. The first module receives an

amount of budget that it can spend on one iteration, N , as well as

a hint about O location, provided as a feedback from running the

second module from the previous iteration. The goal of this mod-

ule is to find N domestic workers located within the provided hint,

and send their information to the second module. Then, the second

module sends the geotagging task to the assigned workers. Unless

this is the last iteration, the objective is to find a smaller search

space for the next iteration. If this is the last iteration, the module

will provide the final answer, along with a confidence value that is

computed incrementally across iterations.

3 BASIC STELLA FRAMEWORK

This section presents our basic Stella; the simplest form of the Stella

framework (pseudocode shown in Algorithm 1). This is to focus on

the main idea of Stella without digging into the optimization detail

on every internal decision of Stella. Stella takes image O , budget B,

and pyramid index structure P as its input, and outputs the image

location O .loc and a confidence value C . Then, Stella goes through

H iterations, where H is the pyramid height, with N = B/H workers

assigned in each iteration. Each iteration is composed of two steps:

(1) Selecting domestic workers (Section 3.1), where the objective is

to select N workers within a search space, and (2) Result calculation

(Section 3.2), where the objective is to predict the image location

along with computing the confidence.

3.1 Step 1: Selecting Domestic Workers

This step takes a current search space S and the number of workers

N as its input. The goal is to find N workers, inside and uniformly

distributed over S , and output those workers to the second step. We

do so by exploiting the structure of the pyramid index for the cells

rooted at S and recruit N /4 workers from each child cell of S . For

each cell, we recursively traverse its children until we do not have

any workers left or until we reach the lowest level of P . For example,

if N = 4, we select one worker from each of S children. If N = 16, we

select one worker from each of the 16 cells that are two levels below

S . In general, we will traverse ⌊log4 N ⌋ level(s) to uniformly assign

workers. If N is not divisible by four, we assign the remainder of the

workers randomly among the cells. When we decide to get workers

from a certain cell, we randomly select them.

Figure 4: Basic Stella Example

3.2 Step 2: Result Calculation

This step takes the set of N workers from the previous step and

sends them the image O . The answer is received from each worker

in the form of (latitude, longitude). Unless this is the last iteration,

we are not trying to infer the exact location ofO . Instead, the goal is

to identify which cell among the children of S that will be the new

search space of the next iteration. So, instead of checking the exact

(latitude, longitude) of every answer, we check which cell among

the children of S that these coordinates are. Then, the answer is

seen as if each worker is voting on which child of S contains O .

By deploying a simple majority voting, we decide that the quarter

that takes the most votes becomes the new S . If this iteration is the

last one, we infer the exact location of O . There are many ways to

do so, including, reporting the location as the minimum bounding

rectangle (MBR) that includes the N results, finding the centroid of

the N results, or using a density-based clustering technique such as

DBSCAN [4]. Without loss of generality, Stella chooses to report

back the MBR of the answers as the location of O .

Meanwhile, the confidence value of each iteration, i.e., the local

confidence, is computed as the ratio of workers who vote for the

new search space over N . With a pyramid of height H , there will

be a total of H local confidence values. At the final iteration, we

calculate the overall confidence as the geometric mean [25] of the H

local confidence values. We decide to use geometric mean as it has

been widely used to compare values that has different properties,

e.g., in calculating the citation impact of research articles [25].

3.3 Detailed Example

Figure 4 gives an example of basic Stella, where the set of available

workers are depicted by circles (regardless of their colors) in the

lowest pyramid level. With a pyramid height of four levels (H = 4)

and budget B = 64, there is a total of four iterations with 16 workers

in each iteration (N = 16). At the start, the initial search space S

is set as the root of the pyramid. In the first iteration, we select 16

workers uniformly distributed over S by picking one from each of

the 16 cells at the third level (depicted as light gray circles). Then,

these workers vote on which quarter O is located. An example of

the voting result is depicted on the right of the second pyramid level.

We select quarter Q1 (depicted as gray cell) as the new S with local

confidence of 12/16 = 75%.
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Algorithm 2 Optimized Stella

1: procedure GEOTAG(Index P , Imaдe O , Budдet B)

2: S ← P .root ; C ← 100%; N ← B/P .H

3: L ← Empty List; /* OPTIMIZATIONS 1, 2 */

4: while S do

5: if SkipIteration(L, S) then /*OPTIMIZATION 2*/

6: (S,C,N ) ← OfflineCalculation(S , L)

7: continue;

8: end if

/* Step 1: OPTIMIZATIONS 1, 4 */

9: W ← SelectDomesticWorkers(N , S , L)

/* Step 2: OPTIMIZATIONS 1, 2, 3, 4 */

10: (S,O .loc,C,L) ← ResultCalculation(W )

11: end while

12: return O .loc,C

13: end procedure

In the second iteration, we select another 16 workers all within

Q1 by selecting one worker from each of the 16 cells in the low-

est pyramid level that are the grandchildren of Q1 (depicted as dark

gray circles). The voting result is shown next to level 3 with a lo-

cal confidence of 14/16 = 87.5%. In the third iteration, we select

another 16 workers within Q2. Since we only have one level left

at the end, we end up selecting four workers from each of the four

children of Q2 (depicted by the black circles). Again, all the 16

workers agree that O is located in Q3 with a local confidence of

100%. In the final iteration, we recruit our last batch of 16 workers

(making a total of 64 workers) which all selected randomly fromQ3

(these workers are not depicted in the figure). Then, we report back

the image location as the MBR that includes all exact locations re-

turned from these last 16 workers with an overall confidence value

of (12/16 × 14/16 × 16/16 × 16/16)
1
4 = 90%.

4 OPTIMIZING STELLA

This section presents our optimized Stella; where we deploy four

techniques to optimize our basic approach. All optimizations are

generally geared towards ensuring that the recruited N workers are

more domestic. Algorithm 2 gives the pseudo code of our optimized

Stella, which follows the same skeleton of our basic Stella with the

added optimizations annotated by comments.

4.1 Optimization 1: Domestic Workers

Objective. The objective of this optimization is to fully deploy the

domestic worker concept behind Stella. Recruiting all workers uni-

formly distributed over the whole space will give low quality an-

swer as there are only a small part of workers that are domestic to

the image while other workers have a far distance to the image. That

is why we only have subset of our workers chosen uniformly, then,

we narrow down the search space, and recruit workers uniformly

from the new smaller search space. In this optimization, we avoid

recruiting workers uniformly from the new smaller search space

in every iteration. We would like to always have our workers dis-

tributed in a skewed way biased towards the image location.

Main Idea. The main idea is that after retrieving the detailed work-

ers’ answers of exact (latitude, longitude) from an iteration, Stella

passes this information to the next one. Then, the next iteration

Figure 5: Optimized Stella Example

will use this information to select N workers that match the spatial

distribution of the exact locations from the previous iterations by

mapping them into the children of S rather than selecting them uni-

formly. With this, we are taking advantage of every bit of workers’

answers that we have to predict the location of O to recruit workers

where O is more likely to be.

Algorithm. We make the following three modifications which are

annotated by OPTIMIZATION 1 in the algorithm: (1) We first ini-

tialize an empty list L to be used as a buffer to store the N workers’

(latitude, longitude) answers. (2) We modify Step 1 to take an addi-

tional parameter L, and use it as a guide for the distribution of the N

workers to be recruited within S . Since L is initially empty, the first

iteration will select the N workers in a uniform way. (3) We mod-

ify Step 2 to return a fourth output, which is an updated list L that

contains the N current iteration results. The list L and new search

space S will be passed to the next iteration. The first step of the next

iteration will traverse ⌊log4 N ⌋ level(s) and make use of L to decide

on number of workers to get from each pyramid cell.

Example. Figure 5 shows the effect of this optimization on the ex-

ample of Figure 4 with H = 4 and N = 16. In the first iteration,

the first step of the algorithm is similar to basic Stella as we do not

have any prior results. The second step of the algorithm comes up

with a more detailed voting box that votes on the grandchildren of

Q1. In the second iteration, we recruit four workers from the four

non-zero voted cells within Q1 and none from other cells (depicted

by dark gray circles). By contrasting Figures 5 and 4 for the dark

gray circles, it is very clear that the recruited workers in the opti-

mized Stella are much more localized than the ones in the basic

Stella. Then, another detailed voting box is produced from this iter-

ation, yet, with only votes on the children of Q2, as there is only one

pyramid level below it. In the third iteration, we recruit ⌊14/14×N ⌋

= 16 workers from top left child (depicted by black circles). It can

be visually seen that there are more black circles in Q3, namely 16,

in Figure 5 than that of Figure 4, namely four.

4.2 Optimization 2: Skipping Iterations

Objective. The objective of this optimization is to take advantage

of cases where there are kind of an agreement on the whereabouts

of the image O in one of the iterations and skip the iteration. Then,
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Figure 6: Optimization 3 Example

we reuse the budget from every skipped iteration to recruit more do-

mestic workers in further iterations. For example, in geotagging an

image of the Statue of Liberty in New York City, USA, it is likely

that we can infer the city directly regardless of its exact location

only from the first iteration. Thus, we can skip multiple iterations

and use the skipped budget to recruit more domestic workers di-

rectly within the New York City to find the image exact location.

Main Idea. The main idea behind this optimization is to check on

whether or not the previous iteration results agree on a certain child

of S . To do so, we identify if there exists an outlier cell among S

children that contains most workers’ answers from the previous it-

eration. In Stella, we go with a simple high majority formula where,

among the four children of S , we consider that a certain cell Q is

an outlier cell if it has more than x% of the votes, with x is a sys-

tem parameter with a default value of x = 80%. If there is such an

outlier quarter Q , we reuse the results from the previous iteration

as the results that are coming from workers in Q in the current it-

eration. Reusing these results saves us a budget of N workers that

we can use in further iterations. However, we would still need to

make offline computation to update the local confidence value for

every skipped iteration. The number of workers of any skipped it-

erations will be distributed equally over the forthcoming iterations,

which will make these workers more domestic than the case of hav-

ing them in their original skipped iteration(s).

Algorithm. We make the following three modifications which are

annotated by OPTIMIZATION 2 in the algorithm: (1) We initialize

an empty list L to store N workers’ answers, which we will use to

decide on whether or not we can skip an iteration. (2) We start

each iteration by performing a test that takes L and S as the inputs

to check whether or not we can skip the current iteration. In the

first iteration, the test will return false as L is still empty. In further

iterations, the test will return true if and only if it finds an outlier

cell. In that case, we skip the current iteration. Instead, we will only

make offline calculation to update the search space S , confidence C ,

and number of workers N . (3) We will need to return the updated

list L as the fourth output to be used in the next iteration.

Example. Consider the example in Figure 5 with H = 4 and B =

64. In the first iteration, the algorithm will proceed the same way

as before. In the second iteration, we have the number of workers

voting for each child ofQ1 where the two left children ofQ1 receive

6 votes each. Applying our threshold value of x = 80%, we find that

no child inQ1 has more than x% of the total votes, so we proceed as

usual. In the third iteration, the number of workers voting of each

child of Q2 is (14, 0, 0, 0), with the top left child of Q2 having a

clear higher majority, i.e., 14/16 = 87.5% of the total votes which

is more than 80%. So, we skip this iteration and do not hire any

workers here. Instead, we only do offline computation to update S to

be Q3, N to be 32, the local confidence value of 87.5%. As the next

iteration is the final one, we recruit 32 workers from Q3. This will

clearly give a more accurate result as we will be recruiting workers

that are more domestic than the original ones with the new overall

confidence of: (12/16 × 14/16 × 14/16 × 32/32)
1
4 = 87%.

4.3 Optimization 3: Weighted Confidence

Objective. The main objective of this optimization is to increase the

confidence of Stella. Based on our hypothesis of domestic workers,

there is a higher probability that a worker will return an accurate lo-

cation when the worker selects his nearby locations rather than fur-

ther locations. Thus, instead of valuing all workers’ answers equally,

we should assign a higher weight to an answer that is closely located

with the worker’s location, thus increasing the confidence of Stella.

For example, when a worker who is living in Minneapolis geotags

O to be in Minneapolis, it’s more likely that the worker is more

confident than geotagging O to be in Seattle.

Main Idea. The main idea behind this optimization is to weight

each worker’s answer based on the distance between the worker’s

location and his answer. The closer the distance is, the higher the

weight will be. Without loss of generality, we use a simple cell dis-

tance to calculate the distance between two cells. For each worker

w, the weight of w’s answer is calculated as: dmax - dactual + 1

where dactual is the cell distance between the worker and his an-

swer and dmax is the maximum cell distance at any pyramid lev-

els, e.g., dmax = 2 in level 2 and dmax = 6 in level 3. Then, these

weights are used to calculate the local confidence in each iteration

as the ratio between the weighted sum of answers in the selected

cell to the total weighted sum of all answers in this iteration.

Algorithm. The only modification for this optimization (annotated

by OPTIMIZATION 3 in the algorithm) is that Step 2 of the al-

gorithm will make use of the location of every worker it received

from Step 1. We will retrieve the exact location of each worker that

is stored in the index P and use it to calculate the weight of her an-

swer. Similarly, the local confidence and overall confidence values

of the iteration is calculated based on the total weighted answer on

the new search space over the total weight of the iteration.

Example. Figure 6 gives an example that illustrates this optimiza-

tion, where we only show the third level of a pyramid index. Here,

we are recruiting eight workers, depicted by the gray circles, who

have reported eight locations, depicted by the black triangles. For

example, worker w4 is physically located in the top right cell and

has reported the image location in the bottom left cell. In this level,

we have dmax = 6. Then, each worker answer will be weighted dif-

ferently. For example, w1’s answer is located at the same cell as

its location, i.e., dactual = 0, hence, w1’s answer is weighted as

dmax − dactual + 1 = 7. Going on, w2 , w3 , w4 , w5, w6, w7, and

w8 answers will be weighted as 5, 1, 1, 7, 4, 4, and 4, respectively.

Out of these 33 total weights, 20 of them are for the bottom left cell

(answers of w1 , w2 , w4 , and w5). Hence, the local confidence value

is 20/33 = 60%, which is higher than basic Stella (50%).

4.4 Optimization 4: Widening Search Space

Objective. The objective of this optimization is to avoid the case

where there is low confidence when identifying an image location.
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Figure 7: Optimization 4 Example

For example, consider the case where we have 100 workers who

cast their votes on the four quarters that are the children of a cell as

follows: (50, 45, 3, 2). In basic Stella, we will just select the first

quarter as it has the majority of answers, namely 50, though the

confidence is only 50%. For a case like this, it will be better if we

expand our search horizon to also include the second quarter that

receives 45 votes, as this quarter is still promising to contain the

image. Should we be able to widen our new search space to include

the first two quarters, we would be able to have a 95% confidence

instead of the 50% confidence as in basic Stella.

Main Idea. The main idea of this optimization is to go beyond the

idea of narrowing down the search space S to only one quarter cell.

Instead, we select all quarter(s) that contain more votes than the

average votes per quarter as the new search space S , i.e., a quarter

will be included in the new S if it has more than 25% of the votes.

Algorithm. We make the following three modifications which are

annotated by OPTIMIZATION 4 in the algorithm: (1) Step 1 is mod-

ified to select its workers from multiple cells rather than from only

one cell as it was the case in basic Stella. In particular, the first ac-

tion of this step is to divide the number of workers N by the number

of cells in S to set the number of workers to be recruited from each

cell in S . Then, selecting the set of workers from each cell in S is

done in the same way as in basic Stella or in Optimization 1 of our

optimized Stella. (2) Step 2 is modified to return back multiple cells

inside S , rather than only one cell as it was in basic Stella. Those

multiples cells in S are the ones that have more than the average

votes per cell.

Example. Figure 7 gives an example of this optimization by using

a pyramid of H = 3 and N = 16. The first root iteration will have

16 workers, depicted as gray circles, who will vote on quarters as

(7,7,1,1). Since two of these quarters have more than the average

votes per quarter (i.e., 4), we select these two quarters, namely Q1

and Q2, for the new S with a local confidence of (7+ 7)/16 = 87.5%.

In the second iteration, we allocate only eight workers to each ofQ1

and Q2, i.e., two workers from each of the eight children of Q1 and

Q2, depicted as black circles. The voting result is shown in the figure

next to the lowest level, where only one cell, Q3, is selected since it

is the only one with above average votes. The third iteration finds

the exact location of the image and returns the overall confidence

of (14/16 × 12/16 × 1)
1
3 = 87%.

5 EVALUATING STELLA

One may evaluate the quality of a geotagging process based on

how close is the resulting location to the actual image location. The

(a) Overall Accuracy Chart (b) Dist & Confidence Chart

Figure 8: Stella Accuracy Chart

closer the distance is, the better the accuracy. However, Stella re-

turns the confidence of the answer in addition to the answer itself

to help users to get a good idea on how much they can trust the an-

swer. Yet, this makes it more challenging to evaluate the outcome

of Stella. For example, it is clear that the best possible outcome of

Stella is to have the exact correct location of an image with 100%

confidence. Meanwhile, having a high confidence is not valuable,

unless it comes with a highly accurate location as it can mislead

the user to trust inaccurate result. For example, it is preferred to

have both inaccurate location and confidence rather than inaccurate

location with high confidence.

Figure 8(a) illustrates a spectrum of 25 possible answers and how

we would evaluate each of them. The x-axis represents the distance

accuracy of Stella answer, where 0 is the worst and 1 is the best. The

y-axis represents the confidence returned from Stella, also ranging

from 0 to 1. The 25 answer points depicted by black circles repre-

sent all the 25 combinations of distance accuracies and confidence

values. On top of each point, we plot its ranking, with 1 is the best

and 25 is the worst. For example, the top rightmost answer (1,1) has

the best distance accuracy and confidence. The worst ranked answer

(rank 25th ) is at (0,1), i.e., a very inaccurate answer with 100% con-

fidence as the confidence misleads the user to trust inaccurate result.

The rest of the section describes the concept of distance accuracy,

confidence accuracy, and how we use both accuracies to come up

with the overall accuracy of Stella, which is basically depicted by

the ranking order in Figure 8(a).

Distance Accuracy. Distance accuracy evaluates the spatial loca-

tion of an image O returned by Stella to the truth location of O

where the closer the distance is, the better the accuracy, regard-

less of the reported confidence. In the case when an answer is re-

turned as an area, we consider O .loc as the centroid of the area.

We use a simple linear regression model to calculate the distance

accuracy as: 1 − dist (O .loc,Oactual )/dmax where dist () is a eu-

clidean distance function between two points and dmax is a sys-

tem parameter that acts as a normalization upper bound distance.

If dist (O .loc,Oactual ) is greater than dmax , then the distance accu-

racy is set to 0. Figure 8(b) replicates the same setting of Figure 8(a)

while the ranking of the possible answers is only based on the dis-

tance accuracy (depicted as numbers inside circles).

Confidence Accuracy. Given a distance accuracy and a confidence,

confidence accuracy measures how accurate the confidence reflects

the distance accuracy. For example, a high/low confidence with an
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Figure 9: Amazon Mechanical Turk Deployment

accurate/inaccurate distance accuracy should result in a good con-

fidence accuracy. Hence, the confidence accuracy is calculated as:

1−|DistAccuracy−C |,whereC is the output confidence. This means

that if a distance accuracy of 1 with 100% confidence, the confi-

dence accuracy will be at its maximum value of 1. Similarly, with

every combination that has equal distance accuracy and confidence.

Meanwhile, the worst confidence accuracy is when a distance accu-

racy of 0 and C is 100% or when a distance accuracy of 1 and C

is 0%. Figure 8(b) also shows the ranking based only on the confi-

dence accuracy (depicted as bold number).

Overall Accuracy. Relying solely on distance accuracy allows two

answers with the same distance from the image location to have the

same quality, regardless of the resulting confidence. On one hand,

if Stella reports an inaccurate location, it is strongly preferable that

it gives low confidence. On the other hand, relying solely on confi-

dence accuracy would equate two answers with same accuracy re-

gardless of their distance accuracy. For example, in Figure 8(b), the

points (0,0) and (1,1) have the same confidence accuracy, however,

the latter one is strongly preferred as it provides the accurate loca-

tion. We evaluate the overall accuracy as a linear combination of

both accuracies as: α × DistAccuracy + (1 - α) × ConfAccuracy,

where 0 ≤ α ≤ 1 is a system parameter to weight the importance of

each accuracy. The overall ranking depicted in Figure 8(a) is calcu-

lated based on having α = 0.5.

6 EXPERIMENT

This section presents our experiment of Stella: basic Stella (termed

Stella) and the optimized Stella (termed Stella+). To the best of our

knowledge, Stella is the first framework that solves the geotagging

problem without relying on having a rich set of training dataset.

Hence, it is not comparable to other geotagging frameworks. In-

stead, we first evaluate the idea of Stella by deploying it on top of a

commercial crowdsourcing platform, namely Amazon Mechanical

Turk (termed MTurk), to compare its performance to the general

deployment of Amazon Mechanical Turk in Section 6.1. Then, we

evaluate the impact of each optimization of Stella in Section 6.2.

In all our experiments, we use four evaluation metrics: (1) The

average distance between the worker location and the true location

of an image O . This gives an indication on how successful each

technique is in recruiting domestic workers. (2) The distance accu-

racy, i.e., how far is the reported location of an image O from its

true location. (3) The confidence value, where the higher the confi-

dence is the better. This gives an indication of how each approach is

confident with its result. (4) The overall accuracy, which combines

both the distance and confidence accuracies.

Note that we do not include latency in our evaluation metric. The

main reason is that Stella is more about batch processing of geotag-

ging and is not a real-time geotagging framework. While Stella may

incur extra penalty in latency in comparison with other techniques,

i.e., upper-bounded by the number of iterations × the latency of

a single crowdsourcing deployment, it is currently the only frame-

work that is able to geotag images with high accuracy while other

approaches fail to do so. From our real experiment with Amazon

Mechanical Turk, Stella often completes the geotagging task much

earlier than its upper bound as we only deploy a subset of the total

workers in each iteration, thus, resulting in less turn around time.

Furthermore, for some images, Stella+ is able to minimize the la-

tency further due to its second optimization.

6.1 Amazon Mechanical Turk Deployment

Experimental setup. We selected 20 images and geotagged them

in a total of 150+ crowdsourcing tasks by using 600+ workers with

a reward of $0.05 per assignment. To ease the readability of the

paper, based on the results, we categorize every image into three

categories: popular, moderately popular, and unpopular images. A

popular image is an image that more than 50% of the workers agree

on its exact location, and thus MTurk can geotag the image accu-

rately with majority voting. A moderately popular image is an im-

age that more than 50% of workers are aware with its location, e.g.,

they are aware in which state of the US that the image is located.

We categorize the rest as unpopular.

We first try to geotag every image using a major web search en-

gine. However, it was only able to find the location of popular im-

ages, thus, having 0% accuracy for both moderately popular and

unpopular images. To ensure a fair comparison, we simulated both

Stella approaches using a real deployment on top of MTurk. Since

MTurk only allows us to select workers from a certain country or

state if the workers live in the US, we simulated Stella in a total of

three iterations: (1) We recruit workers within the US and map their

results into four non-overlapping regions. (2) We recruit workers

all from the majority region to find the state of the image. (3) We

recruit workers all from the majority state to find the city of the im-

age. We also ask the workers to provide their zip-code to see how

domestic the recruited workers are. For each image, we use a total

of 30 workers to geotag with all three approaches.

Experimental Results. Figure 9(a) gives the average worker’s dis-

tance for each approach. Both Stella and Stella+ use the average

distance of the workers that we recruit at the last iteration as they

are the ones that provide the final location of the images. For every

image popularity, Stella and Stella+ are able to recruit significantly
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Figure 10: Stella’s Overall Performance

more domestic workers than MTurk. Specifically, both Stella vari-

ants and MTurk are able to recruit workers with an average distance

of 88 miles and 1,879 miles, respectively. There is no performance

difference between Stella and Stella+ as the interface of MTurk only

allows us to recruit workers within a state, thus, they recruit a simi-

lar subset of workers for every image.

Figure 9(b) gives the distance accuracy in geotagging images

across various image popularities. We set the maximum distance

threshold, dmax , as the diagonal length of the state where each

image is located. Instead of finding the centroid of an MBR that

covers all workers’ answers, we calculate the distance accuracy of

MTurk as the average distance accuracy among the recruited work-

ers. The reason is that the MTurk answers often give different loca-

tions which increases the size of the MBR that covers all of those an-

swers. In such case, the centroid of the MBR is no longer represents

the workers’ answers accurately. For example, if 9 out of 10 work-

ers choose Chicago, IL, and 1 worker chooses Boston, MA, as the

location of an image, then the centroid of the MBR that covers all 10

answers is located somewhere around Cleveland, OH. As shown in

the figure, both Stella and Stella+ significantly outperform MTurk

for all image popularities. For popular images, while 80% of MTurk

workers are able to provide the accurate city of the images, the rest

of the workers provided locations that are very far. Furthermore, the

distance accuracy of MTurk is worsen for both moderately popular

and unpopular images where it has an accuracy of 35% and 20%, re-

spectively. In contrast, Stella and Stella+ are able to maintain their

distance accuracy across all image popularities. There is no differ-

ence in the distance accuracy between Stella and Stella+ as they are

able to narrow down the accurate state of the images and recruit

domestic workers to provide each image final location.

Figure 9(c) and Figure 9(d) give the confidence and overall ac-

curacy of each approach across different image popularities, respec-

tively. The confidence of MTurk is calculated as the ratio of work-

ers who agree on the final answer within a city level over the total

number of answers. Both Stella and Stella+ consistently outperform

MTurk, as they have more agreement among workers. The improve-

ment of Stella+ in all three image popularities is mainly due to its

third optimization that assigns a different weight for each worker’s

answer. In Figure 9(d), we can see that Stella and Stella+ consis-

tently have higher overall accuracy than MTurk. However, we also

see that the overall accuracy of MTurk is better than its distance

accuracy (Figure 10(b)) and confidence (Figure 10(c)). The reason

is that MTurk has a good confidence accuracy where it reports a

low accuracy result when it is not confident in its result. Contrast

such result to both Stella approaches where they have a high overall

accuracy due to its high distance accuracy and confidence.

6.2 Standalone Stella Deployment

Experimental setup. Due to the limitation of the Amazon Me-

chanical Turk interface, we need to run our detailed evaluation of

Stella in a different environment. Similar to prior research that used

real non-crowdsourcing datasets as workers’ locations [9], we use

Foursquare dataset [12], consists of 1.7+ million users, as the work-

ers that we can recruit. Then, we follow the distance-aware quality

model, introduced in [9], which models the accuracy of a worker

based on an exponential function. In particular, the input to the func-

tion is the distance between a worker w to an image, dw , and the

function will output the distance between w’s answer to the image,

aw . aw = 0 means that the answer of w is located at a zero distance

from the image location, thus, is highly accurate. We generate such

function by first plotting the accuracy of the 600+ workers from

our Amazon Mechanical Turk experiment in Section 6.1 where the

x-axis is the dw and the y-axis is the aw . Then, we generate an ex-

ponential trend line that fits the plot which results in an exponential

function of: aw = 1.431e0.059dw − 1.

Unless mentioned otherwise, we use a total of 128 workers, a

pyramid index of six levels which covers the mainland of USA, and

a default α = 0.5 for our accuracy evaluation to weight distance

and confidence accuracy equally. For our second optimization, we

set x = 80%. To minimize the inconsistency that may be resulted,

we run each experiment 100× on a machine with Intel Quad Core

i7-4790 3.6Ghz, two threads per core, and 32GB of RAM running

64-bit Ubuntu 16.04.

Overall Performance. We compare the end to end performance of

Stella and Stella+, with two basic crowdsourcing techniques: ran-

dom and uniform workers assignment. Random selects workers ran-

domly. Meanwhile, uniform first divides the space into equal grids,

where the number of grid cells is equal to the number of workers

that it will assign, then it randomly selects one worker within each

grid cell. For each experiment, we randomly select a location as the

image location and varies the number of workers that we recruit

from 64 workers to 256 workers.

Figure 10(a) gives the average recruited worker’s distance to an

image. Stella and Stella+ recruit workers with an average distance

of 46 and 32 miles, respectively. We omit the the average worker’s

distance of the two basic approaches as random and uniform has

a very large distance of 958 and 1,341 miles, respectively. Stella+

is consistently able to recruit 30% more domestic workers than

Stella which is resulted from its first two optimizations. We also see

that there is not much difference in the average recruited worker’s

distance when varying the number of workers as both Stella ap-

proaches still recruit workers in the same search space.
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Figure 10(b) gives the distance accuracy of every approach. Both

Stella approaches are consistently able to outperform both basic ap-

proaches by having an average 90% more accuracy than random

and uniform. Both Stella and Stella+ also have a similar distance

accuracy between each other. The reason is that distance accuracy

is calculated only based on the last iteration results and since both

approaches are able to narrow down search space to the accurate

one, there is no difference in their distance accuracy.

Figure 10(c) gives the overall confidence of every approach. We

calculate the confidence of the basic approaches by projecting their

results into the lowest pyramid level and taking the ratio of an-

swers that fall into the cell that contains the majority of answers.

Both Stella and Stella+ outperform the two basic approaches by

achieving 50% and 90% more confidence, respectively. Stella+ out-

performs Stella by having 40% more confidence as Optimizations

1 and 2 allow Stella+ to recruit more domestic workers while Op-

timization 3 gives higher weight to their answers. The confidence

also directly impact the overall accuracy of each approach as can

be seen in Figure 10(d), where Stella, Stella+, and the two basic ap-

proaches have 96%, 79%, and 50% overall accuracy, respectively.

Internal Performance. We compare six variants of Stella in this

section: the basic Stella, the optimized Stella+, Stella with Opti-

mization 1 only (Stella1), with Optimization 2 only (Stella2), and

so on. For ease of readability, we combine several variants of Stella

into one series if they have a similar performance. In this experi-

ment, we also study the effect of varying the number of iterations

of each approach in addition to varying the number of workers.

Figure 11(a) gives the average worker’s distance to an image by

varying the number of workers. Both Stella1 and Stella2 are able

to assign more domestic workers than basic Stella. This confirms

our idea of Optimization 1 that by recruiting workers distributed

in a skewed way that matches the answers distribution, we will be

able to get more domestic workers. Optimization 2 is able to as-

sign more domestic workers than Stella as it is able to skip some

of the iterations and use the skipped budget for further iterations

to recruit 25% more domestic workers. Combining these two opti-

mization results in a better performance as shown by Stella+ which

outperforms Stella by recruiting 35% more domestic workers.

Figure 11(b) gives the overall confidence for each variant of

Stella. Stella4 is able to achieve 20% more confidence than Stella as

it is able to select more than one cell as the new search space. How-

ever, Stella3 does not have any impact to the overall confidence. The

reason is that there is less agreement between workers at the lower

pyramid level which is caused by from the accuracy model that we

extract. For example, even with dw = 0, the answer will have an

error distance of aw = 0.431 in lat/lon degree which, in our case, is
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roughly 23.4 miles while each cell has a diameter of 55 miles. How-

ever, by combining Optimizations 3 and 4 together, we achieve a

better confidence as shown by Stella+. The reason is that Optimiza-

tion 3 now has an impact in calculating the confidence as workers’

answers can agree on more than one cell due to Optimization 4.

Figure 12(a) gives the average worker’s distance that each variant

of Stella assigns by varying the number of iterations. All variants

are able to recruit more domestic workers as they traverse deeper

into the pyramid which confirms our adaptive crowdsourcing con-

cept. Both Stella1 and Stella2 are able to assign more domestic

workers than Stella due to their optimizations which are geared to-

wards recruiting more domestic workers. Meanwhile, Stella+ out-

performs other variants of Stella as its third optimization weights

those domestic workers’ answers more. Figure 12(b) gives the over-

all accuracy of all variants. The overall accuracy of Stella, Stella1,

Stella2, and Stella3 decrease with deeper pyramid levels as there

is less agreement between workers due to the the accuracy model

that we extract. However, Stella4 is able to maintain its accuracy as

it expands its search space in the lower pyramid levels. However,

by combining Optimizations 3 and 4 together, Stella+ consistently

outperforms Stella4.

7 RELATED WORK

Crowdsourcing Frameworks. Many crowdsourcing efforts are fo-

cused on providing efficient techniques to solve different types of

machine-hard tasks. Examples include integrating crowdsourcing

into the query plan of a Database [6, 13], using the crowd to sort

and join data [13], to compute skyline over noisy dataset [15], for

real-time image search [32], and many more. However, up to our

knowledge, crowdsourcing has not been used for geotagging as it is

first deemed unfit to be solved by the crowd due to the low accuracy

of the result. In this paper, we provide the first framework that lever-

ages crowdsourcing for geotagging. Task assignment, i.e., studying

on how to assign a task to a set of workers, is a very important prob-

lem and has been widely studied [5, 29, 33]. [5] assigns a task to a

worker that has completed similar tasks with high performance. In

geotagging, the only information to predict such performance met-

ric is to check the worker’s performance in solving other tasks that

are co-located with the new task. However, we do not know the lo-

cation of the new task and in fact, this is what we are trying to find.

[33] assigns tasks that results in the highest improvement in quality

by representing the possible answer of a task in a matrix. This ap-

proach will only work when there is a limited amount of answers for

a task, e.g., a label of "equal" or "not equal" in an entity resolution,

which is not the case in geotagging as every location can be treated

as an answer. Our task assignment technique is closely related to
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[29] where it tries to maximize the overall utility, i.e., the location

coverage in our case, given a fixed budget. The main difference is

that [29] spends all of its budget at once and thus, the best result it

can get is the first iteration of Stella.

Spatial Crowdsourcing. Several works have been conducted in

studying spatial crowdsourcing where each crowdsourced task con-

tains a spatial information about the task and/or the workers. Spa-

tial crowdsourcing frameworks [10, 14, 27, 28] require workers to

physically go to the location of the task, e.g., take a picture of an ob-

ject. However, these applications use one main assumption that the

task’s location to be known in advance. Similar to these techniques,

our work tries to find the workers who are located near the task.

However, without knowing the location of the image in advance,

existing techniques are not fit to solve the geotagging problem.

Object Geotagging Techniques. Many works have been con-

ducted to geotag an object by using natural language processing

(NLP) [30], incorporating user profile [7], or using machine learn-

ing techniques [31]. However, they suffer from two main limita-

tions: (1) Each object type, e.g., text and image, requires its own

tailored solution. For example, NLP techniques cannot geotag im-

ages while computer vision technique cannot geotag tweets. (2) The

answer quality mainly rely on having prior knowledge, e.g., an accu-

rate training dataset. With Stella, we do not need to create a specific

solution for each object type and we do not rely on having a large

accurate training datasets. In fact, some of these approaches can use

Stella to create an accurate training dataset for their techniques.

8 CONCLUSION

We presented Stella; a crowdsourcing-based framework for image

geotagging. Given an image and budget, Stella finds the spatial lo-

cation of the image by asking the crowd within the given budget. In

order to geotag an image accurately, Stella identifies and recruits

domestic workers, i.e., workers who live nearby the location of

the image, despite of its unknown location. Stella overcomes this

dilemma by introducing a novel crowdsourcing technique, called

adaptive crowdsourcing, that gradually understands the image loca-

tion. The main idea is to split the crowdsourcing process into mul-

tiple iterations and use a subset of the total workers in each itera-

tion. Then, based on the result, Stella earns more knowledge about

the image whereabouts and recruits another subset of the workers

that are more domestic than the previous ones. In the last iteration,

Stella will use the last set of workers to find the exact location of the

image. Stella also reports back its confidence in geotagging the im-

age to help the requester in understanding the result quality. Stella

is equipped with four optimization techniques to further enhance

its accuracy and performance. Extensive experimental evaluation

of Stella using real settings and real datasets show that Stella is able

to achieve an average of 95% accuracy as well as 90% confidence.
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