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ABSTRACT

Understanding link travel times (LTT) has received signi�cant at-

tention in transportation and spatial computing literature but they

often remain behind closed doors, primarily because the data used

for capturing them is considered con�dential. Consequently, free

and open maps such as OpenStreetMap (OSM) or TIGER, while

being remarkably accurate in capturing geometry and topology

of the road network are oblivious to actual travel times. Without

LTTs computing the optimal routes or estimated time of arrival

is challenging and prone to substantial errors. In this work we

set to enrich the underlying map information with LTT by using

a most basic data about urban trajectories, which also becomes

increasingly available for public use: set of origin/destination loca-

tion/timestamp pairs. Our system, W-edge utilizes such basic trip

information to calculate LTT to each individual road segment, e�ec-

tively assigning a weight to individual edges of the underlying road

network. We demonstrate that using appropriately trained edge

weights, the errors in estimating travel times are up to 60% lower

than the errors observed in OSRM or GraphHopper, two prominent

OSM-based, tra�c-oblivious, routing engines.
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1 INTRODUCTION

Given a road network represented as a set of nodes and weighted

edges, a source node, and a destination node, the shortest path

operation �nds a path from the source node to the destination

node that minimizes the sum of edge weights. Finding shortest

(or quickest) paths is critical for a number of spatial queries such

as navigation, route planning or isochrone calculation. The most

common way to de�ne edge weights is by link travel time (LTT): an

average time a vehicle spends on the road between two neighboring

nodes in the graph which de�nes the road network. We use terms

LTT and edge weight interchangeably throughout this paper, but

note that the methodology proposed here can be seamlessly applied
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to extract per-edge cost di�erent to duration, such asCO2 emissions

or fuel consumption [11].

The actual travel time between any two points can be highly

variable due to variations in tra�c demand, tra�c lights, uncer-

tain arrivals at the intersections, tra�c light dynamics, individual

driving behavior, etc. Hence, obtaining such edge weights or LTTs

is highly non-trivial and a substantial amount of literature has

been devoted to derive such information. Unlike the case for edge

length and maximum speed that are mostly publicly available ei-

ther through governmental or public websites (e.g., OpenStreetMap

(OSM) or TIGER), accurate edge weights inferred either through

loop detectors [1], ANPR [5], private GPS traces [3] are considered

as proprietary information and not accessible to public. This sets

apart commercial routing engines (e.g. Google Maps) from those

who use publicly available data, like OSRM [7] and Graphhopper

[4], where LTTs are inferred using heuristics and available road

metadata1. To verify this, we performed comprehensive experi-

ments in tra�c-oblivious, OSM-based, routing engines OSMR and

Graphhopper and found that they exhibit very large errors, greater

than 50% in peak hours, in estimating travel times; see Section 4.

This demonstrates the need to have publicly accessible accurate

edge weights, which will have great impact in developing freely

accessible and accurate shortest path operations.

In this paper we describe a methodology, W-edge, for enriching

the road network with LTTs which utilizes nothing more than

origin/destination location and timestamp information. We focus

on data in this form as it is the ‘lowest common denominator’ of

the trajectory datasets available for public use. While a number

of cities have already publicly shared such taxi trajectories, we

expect many other urban areas to follow. In particular, Freedom of

Information Act (FOIA) [2] is a powerful tool in the hands of public

[10] to request and obtain data in this form from publicly regulated

transport organizations, such as taxi or public buses.

2 PROBLEM FORMULATION

The road network is represented as a graph, where each node is a

unique (latitude, lonдitude ) pair and an edge between two nodes

exists if and only if there is a road directly connecting them. Nodes

lying in the middle of two-way streets often have in-degree and

out-degree equal to 2; nodes lying on the highways have in-degree

and out-degree 1; nodes at the intersection of two roads would have

either in-degree or out-degree greater than 1.

A journey τ is represented by the available information:

Iτ = [(lat , lon)or iд , tstampor iд , (lat , lon)dest , tstampdest ,mileaдe].

With each journey we associate a path in the road network given

by a list of edges in the graph representing the road network

Pτ = [e0, . . . , el ]. E�ectively we want to do the map-matching

using only origin and destination of the trajectory. To that end we

query OSRM, an OSM-based routing engine, and denote by Pτ the

1E.g. speed limit, number of lanes, road type, etc.
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result of the shortest path query using the journey τ origin and

destination [6]. Obviously, Pτ does not necessarily correspond to

the actual route traveled and here the mileage information can be

used to eliminate those journeys for which the length of Pτ does

not matchmileaдe . Namely, from the set of available journeys, we

consider only those ‘reliable’ journeys that satisfy:

mileaдe (1 − ϵ ) < Lenдth(Pτ ) < mileaдe (1 + ϵ ), (1)

for a small ϵ . In the rest of paper we use ϵ = 0.05, which allows

high level of con�dence that actual journey traveled over the corre-

sponding path, and keeps a substantial fraction (around 40% of the

total) of reliable journeys for training the model.

We denote by Γ the set of reliable journeys represented by

(Iτ , Pτ ), for τ ∈ Γ. We aim to �nd weights of the edges in the

underlying road graph that minimize
X

τ ∈Γ

(
X

e ∈Pτ

We le − δτ
)2
, (2)

where le is the length, in meters, of the edge e . Note that for given

journey τ ,
P
e ∈Pτ

We le represents an estimate of travel time (in sec-

onds), while δτ represents the observed travel time. The above sum

e�ectively measures the sum of squares of the di�erence between

the estimated and actual travel times for the set of journeys Γ. In

other words, we look for weighing of the edges of the road network

such that for every journey which follows a path Pτ its duration is

accurately approximated by the sum of the weights of the edges on

the path Pτ .

An important remark here is that weights which minimize the

errors (2) do not necessarily correspond to e�ective con�guration

for computing the shortest paths. Namely, allowing negative edge

weights, as in [12], can disturb shortest path computation by not

allowing convergence. This issue has been recognized in [8] which

constrains the weights to be non-negative. However, even with this

constraint, the non-negative least square solver LSEC [8] may (and

it does) converge to a solution which associates zero weight to a

large fraction of edges which allows shortcuts in the shortest-path

computation and create sub-optimal routes and inaccurate ETA

estimates; see our Technical report [9] for more details. Hence, we

propose an alternative way for computing edge weights which rely

on Ridge regression.

3 W-EDGE: WEIGHING THE EDGES OF ROAD
NETWORK

In this section we describe W-edge system which takes as input

a graph representation of the road network and a cohort of basic

journey information and outputs for each of the graph the expected

time, in seconds, a vehicle needs to traverse that edge. We refer to

that time as weight or link travel time. Computing the edge weight

can be oblivious to time of the travel in which it would capture the

’average’ travel time, but edge weight can also depend on the time

of the day and/or day of the week in which case we would have

weight which is not a scalar but rather a function of time.

As we discuss above, minimizing (2) blindly, without taking into

account the physical constraints which limit the actual travel time

over any given edge, may lead to weights which are ine�ective

for the most critical routing primitive: shortest path computation.

Additionally, the underlying road network can be very large (e.g.

graphs which represent the road network of the metropolitan areas

we study have hundreds of thousands of edges) grouping the edges

in a structured way can signi�cantly reduce the dimensionality of

the problem and allow scaling the solver to millions of trajectories.

Finally, to avoid over-�tting the model we focus only on edges

which contain a non-trivial fraction of trajectories.

At this point we assume that every journey is map matched

using origin/destination pairs and that we have �ltered all of the

journeys which do not satisfy the mileage constraint, as described

above.

We split W-edge into three sequential phases: (1) heavy edge de-

tection (to avoid over-�tting when low-frequency edges are used in

the model), (2) heavy road detection (for dimensionality reduction)

and (3) constraint-aware linear regression (for ensuring that edge

weights correspond to physical constraints).

3.1 Heavy edges inference

Many journeys share large fraction of their trajectory with other

journeys, yet they may have a few edges (typically near the origin

or destination) which may be shared with a few or none other

trajectories. Regression problems of type (2) which allow each edge

in the graph, independently of its ‘popularity’ to act as a regression

feature can easily lead to over-�tting. For that reason we focus

on edges which support a large number of trajectories, which we

call heavy edges. For a training set of trajectories, the set of heavy

edges H is derived by sorting the edges according the number of

trajectories which pass them and taking the top hl of them. Here,

hl the number of heavy edges, is a con�gurable parameter which

controls the complexity of themodel on one hand, and the execution

time as well as the accuracy on the other. Throughout the paper we

�x hl = 10000, which captures most major roads in the three cities

we study, yet resulting models are not computationally excessive.

Now instead of minimizing the sum (2) we focus on

X

τ ∈Γ

(
X

e ∈Pτ ∩H

We le +W0

X

e ∈Pτ \H

le − δτ
)2
. (3)

whereW0 is a unique weight of the light edges which we assign

to all non-heavy edges. Above process reduces the complexity of the

model (number of regression features) for 1-2 orders of magnitude

in the 3 cities we study by e�ectively assigning the same weight to

all light edges. The key insight here is that majority of shortest paths

lie mostly on heavy edges, and therefore the weight of light edges

has marginal e�ect on shortest paths or their length(duration).

3.2 Heavy road detection

Many edges appear in the trajectories simultaneously. By ensuring

that they have the same weight we can substantially reduce the

dimensionality of the problem. To that end we will group heavy

edges together if they belong to the same trajectories. More formally,

we split the set H of heavy edges into subsets H1, . . . ,Hr such that:

(∀i ) (∀τ ∈ Γ) (∀e1, e2 ∈ Hi )e1 ∈ τ ⇐⇒ e2 ∈ τ .

In simple words if an edge lies on a trajectory, than all the other

edges from its group must lie on that trajectory.
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We refer to the (disjoint) sets H1, . . . ,Hr as heavy roads, as they

typically group neighboring edges which form a road or part of a

road.

Using the heavy road nomenclature we will rewrite the (3) as:

X

τ ∈Γ

(
X

д:Pτ ∩Hд,∅

WдLд +W0

X

e ∈Pτ \H

le − δτ
)2
. (4)

where Lд is the length of the heavy road Hд :

Lд =
X

e ∈Hд

le

Thus the number of unknowns in (4) is r + 1, where r is the

number of heavy roads: one weight for each of r heavy roads and

one weight for all other ‘light’ edges. In the data from three cities

we study, the number of heavy roads r is 3-4 times smaller than the

number of heavy edges.

3.3 Enforcing physical constraints via Ridge
regression

Authors of [8, 12] solve (2) allowing negative or zero weights which

can fundamentally harm the shortest path computation. Here we

strive to not only solve the appropriate numerical regression prob-

lem but also keep weights physically realistic. To that end, note that

weightWд is inverse of the speed on the relevant road segment and

is measured in sec/m. However, on each road segment the speed

is limited and that information is often captured by the map itself;

e.g. in OSM using a tagmaxspeed (in km/h). Denotingmaxspeedд
the speed limit at road segment д, the physical constraint (account-

ing for appropriate unit change from km/h to sec/m) for weights

becomes:

Wд ≥ 3.6/maxspeedд (5)

Note that we do not enforce upper limit on weights, as certain

roads may become extremely congested (in particular periods of

the day/week) and we would like to capture and preserve that

information via high edge weight. To ensure that constraint (5)

holds for all д we propose to use Ridge regression regularization.

Namely we add regularization term to (4) that penalizes weights

which largely deviate from the average speed:

X

τ ∈Γ

(
X

д:Pτ ∩Hд,∅

WдLд+W0

X

e ∈Pτ \H

le −δτ
)2
+α
X

д

(Wд−σ )
2. (6)

Here σ is the inverse of the average speed observed by all the

journeys in our data. Parameter α , represent the regularization

strength. A small α allows large variability betweenWд ’s, a lot

of violations of physical constraint (5) and can potentially lead to

over-�tting. A very large α may put too much emphasis on the

regularization term neglecting errors we strive to minimize. We

choose the hyper-parameter α using a grid search over a small

validation set we withdraw from the training cohort.

We use scikit-learn Python library to �ndW ’s which minimize

(6) and can scale to millions of trajectories, thanks to dimensionality

reduction described above and sparse matrix representation of the

feature matrix.

With an appropriate regularization strength α (see our Tech

report [9] for details on how we automatically tune α ), Ridge re-

gression regularization indeed forces most ofWд ’s to be close to

σ and we empirically observe that a large majority of segment

weights satisfy the constraint (5).

The weights derived by minimizing (6) satisfy the speed limits

in over 99% of cases. For a small minority of edges which violate

the speed limit constraint we hard code the weights to be exactly

equal to 3.6/maxspeedд . Thus weight W̄д at road segment д is

W̄д =max (3.6/maxspeedд ,Wд ),

where Wд are obtained by minimizing (6). This last step, has a

minor e�ect on the overall ETA estimation, measured through cost

(4) since it applies to a minor fraction of the road network, but it

eliminates arti�cial shortcuts which may arise by allowing edges

with very high speeds, say over 120kmph.

4 EVALUATION

4.1 Data

For the purpose of evaluating W-edgewe take advantage of the data

generated by a 4000-car taxi �eet in Doha from February 2018, with

1.6M journeys which in average last 13.9 minute. The underlying

graph has around 175K nodes and 320K edges. In the Tech report

[9] we examine in depth the behavior of W-edge using the data

from New York and Porto taxi �eets in addition to Doha.

As we explain above, the map-matching using only O-D pairs is

done using OSRM and consider only those journeys whose mileage

matches the OSRM route within 5% threshold.

4.2 W-edge vs. tra�c-oblivious shortest paths

Our �rst question is: How does W-edge compare with tra�c

oblivious OSM-based routing engines in terms of ETA er-

rors? To that end we choose the two default engines that OSM

landing page2 o�ers: Open Source Routing Machine (OSRM) [7]

and Graphhopper (GH) [4]. Both of those routing engines utilize

the underlying OSM data to build the road network graph equipped

with weights which are used for computing the optimal routes. The

weights OSRM and GH use are derived from the OSM metadata

in a way to prioritize routing over motorways and other primary

roads. For each (origin,destination) pair both OSRM and GH return

a route together with ETA (estimated time of arrival, or route du-

ration) which is derived by solving an appropriate quickest-path

query. While both OSRM and GH have a web-based API, OSRM

also o�ers code to set-up a local-server on own premises, which we

do, in order to submit a high volume of queries to it. Namely demo

OSRM and GH servers with no optimization allow us throughput

of around 1 query per second while the local copy of OSRM allows

us 100 queries per second.

For each city we �rst �lter out all the trajectories which do not

match the length of OSRM path and are left with about 40% of the

original trajectories. We split these trajectories into training (80%)

and test data (20%). And we also withdraw a small fraction (5%) of

the training data for validation and tuning the hyper-parameter α .

In the training phase we use the training data (minus validation

set) to infer the weights of individual edges as detailed in Section 3.

2https://www.openstreetmap.org/directions
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Figure 1: Mean/median absolute error and mean average

precision error (MAPE). OSRM and GH have substantial er-

rors. Using W-edge reduces all three metrics. Adding tempo-

ral granularity in how frequently weights may change addi-

tionally reduces errors. E.g. Median absolute errors in Doha

using OSRM or GraphHopper are 296 and 258 seconds, re-

spectively. Using W-edge:168 they go down to 107 seconds, a

reduction of 64% and 59%, to OSRM and GH, respectively.

In order to di�erentiate among di�erent levels of temporal granu-

larity we train three di�erent models: W-edge:1 single weight per

edge; W-edge:24 24 weights per edge, corresponding to hour of the

day and W-edge:168 168 weights, for each hour of the day for each

day of the week

For each journey τ in the test data we compare the actual travel

time with 5 values: OSRM journey duration, Graphhopper journey

duration as well as the sum of weight edges over the route Pτ , using

W-edge:1, W-edge:24 and W-edge:168. We evaluate three di�erent

metrics: median absolute error (in seconds), mean absolute error

(in seconds) and mean absolute percentage error (MAPE, in %) and

report the results in Figure 1.

From the �gure we can learn several lessons. First, while query-

ing tra�c-oblivious routing engines may o�er reasonable routes

the actual ETA is very inaccurate. The mean absolute error is be-

tween 6 and 7 minutes in both OSRM and GH, which is very large,

especially given that average trip duration is only 13.9 minutes.

Second, in all three metrics GH routing engine outperforms OSRM.

Third, adding a single tra�c-aware weight per edge can substan-

tially reduce the ETA errors compared to tra�c oblivious OSRM

and GH. Fourth, W-edge:24 o�ers substantial reduction in errors

compared to W-edge:1, while di�erentiating between di�erent days

of the week in W-edge:168 does o�er improvement to W-edge:24,

albeit it is quantitatively relatively small.

4.3 When do errors appear?

Throughout the day there is a substantial variability of tra�c con-

ditions and we examine how such variability a�ects the accuracy

of tra�c-oblivious OSRM or GH as well as tra�c-aware W-edge.

Similarly to the previous section we evaluate the errors on the

Figure 2: Mean absolute errors throughout the day

test journeys using the three di�erent W-edge models, as described

above. We slice the day in 24 hour-long periods and within each

hour we evaluate the errors between the actual and the predicted

travel time. In Figure 2 we report the mean absolute error across

the day; the results for median absolute error and MAPE are quali-

tatively similar and we omit them here.

From Figure 2 we can observe that in all studied scenarios the

errors over night are generally lower than the errors during the

day. Mean absolute errors (MAE) of tra�c-oblivious OSRM and

GH can be as large as 10 minutes in the peak hour, while tra�c-

aware W-edge keeps MAE less than 3.5 minutes throughout the

day. Note that majority of journeys happen during the day and

hence W-edge:1 optimizes for the errors in that period and hence

has substantial errors over night. Interestingly enough, both OSRM

and Graphhopper have fairly low errors over night, indicating that

the heuristics used by both engines to match the OSM metadata

to travel times are suitable for o�-peak periods, and consequently

lead to large errors during the peak hours.

4.4 Public LTT data

As we said above, our primary motivation was enriching the public

maps with link travel time information which could be freely used

in a range of location based services. To that end, we publish the

individual edge weights derived by W-edge and they can be found

at: http://ds.qcri.org/people/rstanojevic/wedge/readme.txt.
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