
Towards a GPU Accelerated Spatial Computing
Framework

Harshada Chavan Rami Alghamdi Mohamed F. Mokbel

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455

{chava057, alghamdi, mokbel}@cs.umn.edu

Abstract—Ease of availability of spatial data has increased
the interest in the domain of spatial computing. Various services
such as Uber, Google maps, and Blue Brain Project have been
developed that consume and process such spatial data. Spatial
data processing is not only data intensive but also compute
intensive. A lot of efforts have been made by the spatial computing
community to tackle the problems due to huge volumes of
data. However, unfortunately, not enough attention has been
given to address the compute intensive nature of the problem.
In parallel to the advancements in spatial domain, Graphics
Processing Units (GPUs) have emerged as compelling computing
units. A lot of work has been done in spatial domain to leverage
the computing power of GPUs. However, to the best of our
knowledge, none of the work present a holistic system. In this
paper, we propose a vision for a GPU accelerated end-to-end
system for performing spatial computations. Our envisioned
system supports a plethora of spatial operations ranging from
basic operations, computational geometry operations to Open
Geospatial Consortium (OGC) compliant operations. Our system
exploits the power of CPU-GPU co-processing by scheduling the
execution of spatial operators either on CPU or GPU based on
a cost model. Within the framework of our system we discuss
the challenges and open research problems in building such a
system. We also provide some preliminary results to show the
computational gain achieved by performing spatial operations
on GPUs.

I. INTRODUCTION

Recently, the ease of accessibility of spatial data has
increased interest in the field of spatial computing. Examples
of freely available spatial data include the Landsat satellite
images made available by United States Geological Survey
(USGS) [1], geo-tagged Twitter data [2], and the world map
available at OpenStreetMap [3]. Numerous services such as
Uber [4], Google Maps [5], and Blue Brain Project [45], have
been developed taking advantage of such data. Though such
available spatial data is very rich and can enable a myriad
of important spatial applications and findings, processing and
mining useful information out of such data is hindered by two
main challenges. First, such datasets come in huge amounts,
making spatial data processing data intensive. For example,
NASA archive of satellite earth images has more than 1 PB
and increases daily by 25 GB [6], medical devices produce
spatial images (Xrays) at a rate of 50 PB per year [7]. Second,
operations on such spatial data are computationally intensive.
For example, it takes roughly 20 hours on a single machine

This work is partially supported by the National Science Foundation, USA,
under Grants IIS-1525953, CNS-1512877, IIS-0952977 and IIS-1218168.

to compute the spatial self-join of a polyline table with 73
million records representing road networks in USA [53].

The data intensive challenge is largely addressed by
the recently developed Big Spatial Data systems, e.g., Spa-
tialHadoop [26], Hadoop-GIS [15], MD-HBase [51], and
SciDB [59]. Yet, unfortunately, the computationally intensive
challenge has not received enough attention. For example,
spatial joins are typically performed in two steps, namely
filtering and refinement. The filtering step selects the candidate
objects using their minimum bounding rectangles (MBRs). In
the refinement step, the final result is computed by comparing
the actual geometries of candidate objects with the query
geometry. Total cost of the refinement step consists of two
factors: the I/O cost and computational cost. In case of complex
geometries i.e., polygons with large number of vertices, the
computational cost largely dominates the total cost of the
refinement step [60]. For example, the refinement step in
SpatialHadoop is the bottleneck in further improvement of the
performance of spatial join [26].

Meanwhile, advancements in Graphics Processing Unit
(GPU) chips in terms of more functionality and programmabil-
ity have established them as a compelling computing platform
for compute intensive tasks. GPUs were transformed from
being co-processors beside the CPUs for very narrow tasks, to
being used side by side with the CPUs [46]. Taking advantage
of the CPU-GPU co-processing seems rather practical toward
speeding up computations. During the last decade, GPUs have
been used for accelerating computations in a wide range of
domains that include physics [49], medical image process-
ing [56], and biology [21]. Availability of thousands of cores
make GPUs a promising hardware for performing compute
intensive tasks.

So far, few attempts have been made to leverage the enor-
mous power of GPUs to execute the computationally intensive
spatial operations (e.g., see [40], [60], and [64]). However, to
the best of our knowledge, all existing approaches represent
stand alone solutions as opposed to an end-to-end system.
In other words, these approaches are designed as algorithmic
designs for specific spatial operations, e.g., processing streams
of spatial k-NN queries [40], expediting the refinement phase
in spatial join [60], and spatial cross-comparison [64]. Such
stand alone approaches would have limited functionality if they
are isolated from a full-fledged usable system.

In this paper, we present our vision for the first holistic
GPU-aware system for spatial computing. The system would



exploit the computing power of GPUs for indexing, querying,
visualizing, and analyzing big spatial data. We believe that
having an end-to-end system is strongly preferred over having
several scattered solutions. An end-to-end system provides a
complete execution package for all spatial operations. Thus,
avoiding the need to switch between programs for different
spatial operations. Our envisioned system takes advantage
of the CPU-GPU co-processing. It wisely decides where to
execute a query operation for optimal execution- on CPU or
GPU. A query optimizer equipped with a cost model helps in
taking this decision. For executing spatial operations on GPUs,
the execution engine consists of GPU kernels written for each
of the spatial operators. The job of the query processor is to
invoke the execution of the operator either on CPU or on GPU,
as per the optimized query plan.

There are several open challenges in building such a GPU-
aware system for spatial computing. The challenges can be
classified into three main categories. (1) System implementa-
tion. System implementation poses challenges related to the
approach of building the system, portability of the system
and formulating the cost-model. The system could be built
from scratch or by extending an existing big spatial data
system. It is interesting to evaluate the pros and cons of
both the approaches. Secondly, tt is important to decide the
programming language used for implementing the system. This
decision will determine the GPU hardware supported by the
system i.e. the portability of the system. The programming
toolkits available at present bind the software with a spe-
cific GPU vendor. For example, a program implemented in
CUDA [8] can only be executed on NVIDIA GPUs. There
are some generic toolkits which are supported by all hardware
vendors, for example OpenGL [9]. Yet, programs written in
such languages are not as optimized because they do not take
advantage of the underlying hardware architecture. Therefore,
it is important to make a decision between portability and
efficiency. Additionally, we need to build a cost model that
will help the query optimizer to decide the target hardware for
executing a query operator. This decision combines data and
hardware parameters, e.g., metadata, input size, operation type,
and available resources on each hardware. (2) Algorithmic
design. Implementing GPU aware spatial operations is much
more than merely creating multi-threaded versions of single
threaded algorithms. Algorithms should be designed in a way
that keeps the workload balanced across all cores. Multiple
cores must work together and synchronize their CPU memory
accesses for effective query processing and to ensure high
memory bandwidth [40]. Since GPUs have limited device
memory, the algorithm must make minimum data transfers
between CPU and GPU to avoid delays due to low bandwidth
bus. (3) Data representation. GPUs are good at processing
array-based data storage [34]. On the other hand, CPUs are
capable of handling more complex data structures which are
more efficient than arrays. Deciding on data representation
format that is suitable and efficient on both CPU and GPU
is a challenge.

The rest of the paper is organized as follows. Section II
highlights related work. Section III gives a background knowl-
edge about GPUs. Architecture of our envisioned system is
given in Section IV. The challenges in building our system
are discussed in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK

This section highlights related work to this paper in terms
of supporting spatial operations in big data systems, building
systems for big spatial data, and spatial operations on the GPU.

Spatial operations in Big Data systems. Due to the
need to process big spatial data, several attempts were made
to support various spatial operations on top of existing big
data systems. This includes: (1) constructing R-trees through
data partitioning on a Hadoop cluster [20], (2) supporting
range queries by scanning partitions in Hadoop Distributed
File System (HDFS) [44], [73], (3) supporting various kinds
of k-nearest-neighbor (kNN) queries on Hadoop using ei-
ther a brute force approach for traditional kNN queries and
all-nearest-neighbor queries [73] or a Voronoi diagram for
traditional kNN queries [17] and reverse-nearest-neighbor
queries [17], (4) supporting spatial join on either Hadoop map-
reduce framework [73] or Spark system [70], and (5) support-
ing kNN join on map-reduce-based frameworks [43], [71].

Big spatial data systems. Following the need for more
efficient processing of big spatial data, it becomes of essence
to go beyond supporting specific spatial operations to build-
ing full-fledged systems for big spatial data. To this end,
various systems were introduced, which include: (1) Spatial-
Hadoop [25], [26] that injects spatial-awareness inside every
layer of the core Hadoop engine including indexing [22], query
processing [24], and visualization [27], [28]. (2) Hadoop-
GIS [15], [16] which extends Hive [63] to support spatial in-
dexing and query processing. (3) MD-HBase [50], [51], which
extends HBase [10] for spatial operations. (4) GeoSpark [69],
which extends the core of Spark engine [70] to support in-
memory spatial operations. (5) Sphinx [23], which injects
spatial indexing and query operations inside the engine of
Cloudera Impala [38]. (6) Parallel SECONDO [32], [42] which
supports trajectory analysis using SECONDO instances [30],
[31] on a hadoop cluster. (7) various industrial systems that
include ESRI GIS tools for Hadoop [66], GeoMesa [11], and
Geotrellis [12].

Spatial operations on the GPU. Existing work that lever-
ages the power of the GPU to support spatial operations is only
limited to specific operations that include: (1) supporting range
queries [18], [60] through introducing an intermediate GPU-
based filtering step to accelerate spatial selections. (2) Sup-
porting spatial intersection queries [64] through a GPU-based
algorithm for finding the overlap between two polygons.
(3) Supporting kNN queries through GPU-based implemen-
tations for Voronoi diagrams on road networks [29], parallel
locality-sensitive hashing [52], truncated bitonic sort [57], a
tree search method on kd-tree [48], multi-staged framework
for continuous queries [65], or a framework over moving
objects [40]. (4) extending Impala to support range queries,
aggregate queries, and spatial joins on the GPU [68]. Here,
the role of Impala is to manage spatial data and control spatial
operations in the cluster. Each node offloads spatial indexing,
and spatial filtering and refinement operations to the local
host GPU. Data retrieved on each node are locally indexed
on the fly on the GPU using R-trees index [67] and queries
are locally executed on the GPU [72]. The system proposed
here lacks a lot of features that other big spatial data systems
support such as global spatial indexes on on Hadoop storage
layer. Moreover, it does not support other important spatial



operations (e.g., kNN queries and computational geometry
operations), and visualization. It is far from being an end-to-
end system that fully exploit the GPU for spatial operations.

Our proposed work. As it is clear from the above related
work, processing big spatial data had started by supporting
only specific operations. Then, full-fledged systems were de-
veloped, which proved to be much more valuable. However,
when leveraging the power of the GPU, existing work is
limited to only specific operations. So, it becomes natural to
exploit the idea of building a GPU-aware full-fledged system
for spatial operations, which is what we are proposing in this
paper. Similar to the success of full-fledged systems developed
for big spatial data over supporting specific spatial operations,
we envision that building a GPU-aware full-fledged system
will be way superior and usable over supporting specific spatial
operations on the GPU.

III. BACKGROUND

This section briefly gives a background on GPUs starting
from its early adaptation as a new hardware (Section III-A)
and going through various architectures for integrating with
CPU (Section III-B).

A. The GPU for Display Systems

The very first invention for GPUs came from the need to
accelerate display routines in display systems. The first system
allowing graphical interaction with users, Sketchpad [61],
along with other systems at that time [33], [37] needed
a separate computer, named display system, for processing
display tasks for three reasons: (1) to free the main computer
from the repetitive tasks of display routines, (2) to overcome
the limits of the communication lines at the time that hampered
the transfer rate of display data, in a time-shared central
computer environment, and (3) to have a flicker-free display,
in 2D and 3D applications, the display have to be updated 30
times per second which led to occupying the main processor
most of the time. It was not clear whether to have a full-
capable processor or a customized one with less functionality
for display routines or not [47]. Then, in 1968, the clipping
divider [58] came out as the first specialized hardware unit
designed for the purpose of redrawing lines efficiently in 2D
and 3D environments. The clipping divider is considered to
be the first fixed hardware pipeline that accelerates graphics
tasks beside the processor. It was used in a head-mounted three
dimensional display [62] and in a commercial system called
Line Drawing System Model 1, which is considered the first
GPU in the market. As graphics applications kept emerging,
the GPU kept improving for accelerating graphics tasks in
applications such as real-time video systems, pilot simulators,
and 3D modeling.

B. The CPU-GPU Architecture

There are three CPU-GPU architectures (Figure 1): (1) The
discrete (dedicated) GPU (Figure 1a), where the GPU card is
installed on the computer and communicates with the CPU
through the PCI-e bus. The PCI-e has a low bandwidth and can
become a bottleneck in the GPU performance where transfers
of large data are involved [35]. Meanwhile, the discrete GPU
is used for high performance computing tasks due to having

Fig. 2: System Architecture

high number of cores, large memory size and bandwidth and
it is costly compared to other GPU architecture. For example,
the NVIDIA GPU card GTX TITAN X [13] has 3072 CUDA
cores with 1000 MHz base clock speed and memory band-
width of 336.5 GB/s. (2) The coupled (integrated) architecture
(Figure 1b), where the CPU and the GPU share the cache
and the physical memory. This is more affordable and more
common on personal computers for routine tasks. The HD
4000 GPU in Intel’s new Ivy Bridge CPU is an example of
a coupled GPU architecture. Integrated architecture eliminates
the need to transfer data over PCI-e bus, but provides less
performance since both the CPU and the GPU has to compete
over memory. (3) The 3D die-stacking (Figure 1c) is a new
emerging technology where the silicon dies are stacked on top
of one another. In this architecture, the GPU accelerator can
be tightly-integrated with the CPU.

IV. SYSTEM ARCHITECTURE

The ultimate goal of our envisioned system is to provide
an end-to-end support for the spatial queries using GPUs. The
system accepts SQL-like spatial queries from users, optimizes
them using a full-fledged query optimizer, executes the query
plans using CPU-GPU co-processing, and provides a module
for visualizing the results. The architecture of the system is
shown in Figure 2. The components of our system share simi-
larities with the components of traditional data management
systems. However, there are functional differences between
them. The presence of a different type of hardware (i.e., GPU)
adds responsibility to some of the existing components. In
our system, we envision to extend three main components,
namely, data representation (Section IV-A), query processor
(Section IV-B), and query optimizer (Section IV-C).

A. Data Representation Module

Architectural and functional differences between CPU and
GPU lead to different requirements in terms of data storage for-
mat. GPUs prefer data to be stored in contiguous memory lo-
cations such as arrays. Array format provides two advantages:
(1) It hides the inefficiency of GPUs in pointer chasing [54].
In arrays, locations can be computed using index arithmetic,
instead of following non-contiguous memory pointers. (2) It
helps in making coalesced read requests from GPU to CPU
memory (we discuss more about this in Section V-B). On the



(a) Discrete.

CPU GPU

Cache

Main Memory

(b) Integrated. (c) 3D die-stacking.

Fig. 1: CPU-GPU architectures

other hand, CPUs can efficiently process data stored in more
complex but efficient data structures. In order to cater to the
needs of both CPU and GPU, our envisioned system provides a
data representation module that takes care of representing data
in a suitable format for both, CPU and GPU. For example, if
B+-Tree index search operation is to be performed on GPUs,
the tree structure needs to be represented in an array format.
The array-based version of a B+-Tree, CSS-Tree [54], which
stores the keys into an array can be used for representing data.
This adds a new responsibility of representing data in a GPU
friendly format, to the data-representation module. The data
representation module takes care of adding array based B-Tree,
R-Tree, and spatial hash indexes for GPUs.

B. Query Processor

In addition to the CPU-based implementations of spatial
operations, query processor contains GPU specific kernel
implementations of these operators. Our envisioned system
supports various spatial operators that can be classified into the
following three categories: (1) Basic spatial operators. These
operators are necessary for any spatial data processing engine,
and include operators like spatial joins, spatial range, and k-
NN. (2) Computational geometry operators. Computational
geometry operations are important for visualization. They are
also used for supporting basic spatial operations. For example,
Voronoi diagrams can be used for supporting spatial k-NN
operations. In addition, computational geometry operations are
compute intensive. For example, to calculate the farthest pair
for a set of given points, we first need to compute the convex
hull of all points, then calculate the distance between every pair
of points on the convex hull to find the farthest pair. These
operations can be easily parallelized and therefore can be
accelerated using GPUs. Other examples of computational ge-
ometry operations include polygon union, skyline, and closest
pair. (3) Open Geospatial Consortium (OGC [14]) compliant
operations. To follow the industry standards and to increase
the adaptability of the system, our envisioned system supports
OGC-compliant operations that include Overlaps to test if the
given two geometries overlap, Within to test if one geometry
is completely inside the other geometry. Some steps in many
of these operations are compute intensive. For example, the
refinement step in spatial join and range queries for complex
geometries. Such steps should be executed on GPU to expedite
the computation. The responsibility of the query processor is
to execute the operator either on CPU or on GPU as per the
optimized query plan.

C. Query Optimizer

Traditionally, the query optimizer takes into account the
metadata information and hardware specifications to generate
an optimal query plan. In our envisioned system, the query
optimizer has an additional responsibility of determining the
optimal hardware for executing an operator. Our query opti-
mizer is equipped with a cost model that takes this decision.
The cost model considers the following four parameters while
making its decision [19]: (1) The operation type, (2) the
features of the underlying data, i.e., data size, data type, and
operation selectivity, (3) hardware specifications, i.e., number
of cores and memory bandwidth, and (4) present state of the
hardware, e.g., even if an operation runs faster on GPU, it
should be executed on CPU if GPU is overloaded.

Among the above four parameters, we have already investi-
gated the first parameter, i.e., the operation type. We performed
a preliminary experiment to evaluate the performance of a
multi-key index search operation on CPU and GPU. Multi-key
index search is an important step in various spatial operations
such as spatial hash joins [41], k-NN queries [40], and range
queries [18], [60]. We implemented an array-based B+-Tree
index, namely CSS-Tree [54] on GPU using CUDA. CSS-Tree
can be used to index partition ordering generated by space
filling curves [55] such as Z-curve or Hilbert curve. Space
filling curves are heavily used in spatial domain for multi-
dimensional indexing [39], [40]. For this experiment, we used
an Intel(R) Xeon(R) CPU E5405 with 2 GHz clock speed, 8GB
memory and 8 cores CPU and an NVIDIA GeForce GTX 470
with 625 MHz clock speed, 1.25 GB memory and 448 cores
GPU. We performed the experiment for varying values of tree
order and for searching 500 key values. Here, tree order acts
as an indication of the index size. The results of the experiment
are shown in Figure 3. It can be seen from the results that the
execution time on GPU is significantly smaller than that of
CPU. The multi-key index search operation performs 6 to 13
times faster than that on CPU.

The difference in execution time increases exponentially
with the increase in the index size. Such behavior can be
explained by looking into the architectures of CPU and GPU.
The architecture and therefore, the program execution model
of GPUs is significantly different than that of CPUs. GPUs are
well suited for easily parallelizable operations [53] like multi-
key index search. Multiple cores of GPUs can be exploited to
perform parallel index searches. However, the multi-key search
on CPU is executed sequentially.



Fig. 3: Effect of index size on execution time

Fig. 4: Effect of degree of parallelism on execution times

We performed another experiment to evaluate the effect
of increasing parallelism on the execution time of multi-key
index search operation on CPU and GPU. For this experiment,
the CSS-Tree index under consideration was of height 4 and
the order of the tree was 150. We performed multi-key search
operation for varying degree of parallelism indicated by the
number of search keys. The results of our experiment are
shown in Figure 4. It can be seen from the results that
increase in number of search keys does not affect the execution
time on GPUs but it increases the execution time on CPUs
exponentially. Since the parallelism on GPUs is hardware
supported, it does not incur much operational overheads due to
increase in degree parallel execution. An interesting behavior
can be observed for the lower values of number of keys. For
number of keys less than 100, the execution time of CPU
is lower than that of GPU. This is due to the facts that a
single core of CPU is faster than a single core of GPU. It
is the presence of a large number of cores that makes GPUs
faster than CPUs in the end. With the help of multi-threading,
CPUs can also be used for performing parallel index search.
However, this parallelism is not hardware supported. Thus, it
incurs overheads as the degree of parallelism increases. In both
the experiments the index was fully loaded in the GPU and
CPU memory.

We performed a third experiment to evaluate the perfor-
mance of the filtering step of spatial join on GPU compared
to CPU. Two datasets with 2.5K and 300K records were used
as input. We performed a nested loop filtering step where the
number of comparisons were equal to the cross product of
the sizes of two datasets. For this experiment, we used an

Intel i7 with 2.5GHz of clock speed as CPU and an NVIDIA
GeForce GT 750M with 0.9GHz clock speed, 2GB memory
and 384 cores as GPU. We implemented the filtering step using
CUDA. The results of our experiment are shown in Figure
5. The filtering step in spatial join is easily parallelizable
operation. Multiple cores of GPU perform multiple compar-
isons in parallel to speed up the computation, whereas CPU
performs all comparisons sequentially. This leads to a eight
times performance gain on GPU.

Fig. 5: MBR filtering performance

These experiments prove that executing easily paralleliz-
able operations on GPU yields better performance in terms of
execution time than on CPUs.

On the other hand CPUs are far better at executing pro-
grams with complex control flows [53]. GPUs are known
to be inefficient at computing complex operations such as
spatial overlay and join. These operations involve building
and accessing irregular data structures such as graphs, priority
queues. The accesses to the underlying data structures are
irregular and data-dependent [53]. Therefore, operation type is
an important parameter in deciding the execution placement.

V. CHALLENGES

This section outlines the main challenges and research
directions towards building a GPU accelerated framework for
spatial computing. These challenges can be divided into three
categories: (1) Challenges related to system implementation
(Section V-A), (2) challenges related to algorithmic changes
(Section V-B), and (3) challenges related to data representation
(Section V-C).

A. System Implementation

System implementation poses several challenges related
to the approach of building the system, making the system
portable, and formulating a cost model to decide the execution
placements of operators.

Building the system. There are two primary approaches
of building such a system. First approach is to build all
the components of our envisioned system from scratch. This
approach involves a lot of redundant work and is very time
consuming. Second approach is to extend an existing system.
Existing Big Spatial Data systems such as SpatialHadoop [26]
and HadoopGIS [15] can be extended to be GPU aware. This



approach is more effective and saves redoing the redundant
work. It is still a challenge to select the most suitable system
out of all the existing ones. However, with this approach, the
system inherits the limitations of the underlying system. It is
an interesting problem to evaluate the pros and cons of each
of the approaches.

Portability. There are multiple software development
toolkits available for programming GPUs. Moreover, certain
toolkits bind the software program to a specific vendor. For
example, programs written in CUDA [8] can only be executed
on NVIDIA GPUs. The simplest solution to this problem could
be implementing different versions of the same algorithm for
each hardware type. However, this approach incurs a lot of
development and maintenance cost. There are some general
toolkits that are hardware agnostic such as OpenGL [9], but
programs written in OpenGL are less efficient as they do
not take advantage of the underlying optimizations within the
hardware. Therefore, there is a trade-off between efficiency
and portability. One solution to this problem is to use kernel-
adapter based design incorporated in OmniDB [74]. OmniDB
implements a portable query processing kernel (qKernel) that
contains parameters and configurations that are architecture
specific. These parameters are provided by the adapters to
adapt kernel as per the target architecture. However, OmniDB
does not support spatial data types.

Formulating cost-model. Formulating a cost model that
considers data and hardware information to decide the execu-
tion placement of a spatial operator is not trivial. Extensive
experiments need to be done to study the effect of each of the
parameters on the execution time. Additionally, the cost model
must be able to adapt to the system load.

B. Algorithmic Design

Implementing a spatial operation for GPUs is much more
than simply transforming the single threaded version of the
program into a multi-threaded version. The algorithm should
utilize the limited memory on GPU effectively, reduces data
transfers between CPU and GPU, and keep load balanced
across all the cores of GPU.

Limited GPU memory. GPUs have limited device and
on-chip memory. The device memory is usually insufficient
for data intensive spatial applications that incur a lot of data
transfer between the CPU memory and the device memory.
These transfers take place over the low bandwidth (4–8
GB/sec [35]) PCI-e bus, leading to delays in computations.
Therefore, to achieve performance gains on the GPUs, data
transfers should be minimized. There are a couple of ways for
doing this. First, is to use coupled CPU-GPU architecture [35]
instead of discrete GPUs. However, the GPU in the coupled
architecture is much less powerful than the GPUs in the
discrete architecture [36]. The second way of achieving less
data transfers is to coalesce the memory accesses from GPU
to CPU memory, which is achieved by making algorithmic
changes.

Algorithmic change. In order to exploit the full potential
of GPUs, new GPU specific algorithms are needed. Single
threaded algorithms for problems which are embarrassingly
parallel (e.g., matrix multiplication and array-based opera-
tions) can be easily converted to a parallel multi-threaded

algorithms. However, more complex algorithms for problems
with irregular communication patterns (e.g., spatial joins and
spatial overlays) are difficult to convert from a single threaded
version to multi-threaded algorithms [53]. Also, algorithmic
efforts are required to reduce data transfers over PCI-e bus.
One way of reducing data transfers is by coalescing accesses
to CPU memory. If multiple threads are running in parallel
and accessing contiguous memory, read/write request from
these threads can be clubbed together to avoid multiple data
transfers over PCI-e bus. In order to take advantage of memory
coalescing, multiple cores must co-ordinate their activities.

Load balancing. Uniform load balancing across all cores
of GPU enhances the performance of computations on GPUs
by ensuring full utilization of all the processing units. Load
balancing is especially critical for spatial data computations
due to potential large data skew. This leads to the need for
careful partitioning of data and operations. Load imbalance
can cause inactivity bubbles and severely degrades the perfor-
mance [40]. This is especially more challenging with spatial
data since partitioning should preserve spatial locality for bet-
ter performance. Techniques such as space-filling curves [55]
(e.g., Z curve or Hilbert curve) can be realized on the GPU.

C. Data Representation

Our envisioned system consists of a data representation
module to make the data available as per the needs of the
hardware. The naı̈ve way of fulfilling this requirement is to
store data sets in two formats, one that is more suitable to CPU
and one that is more suitable to GPU. However, the complexity
of the problem increases if a number of different indexes are to
be created on the same data. This approach will end up creating
twice the number of indexes. Clearly, we need to invent a
smarter technique to solve the problem of data representation.

VI. CONCLUSION

The volume and complexity of processing spatial data is
increasing rapidly. Existing approaches for processing spatial
data are falling short of providing support for the high compu-
tational complexity. On the other side, GPUs have emerged as a
competitive general computing platform in the last decade. Re-
cent advancement in the GPUs hardware and their development
tools have enabled general processing on GPUs. GPUs have
been used in a wide range domain to solve compute intensive
problems. They have also been used to solve spatial operations.
However, none of the existing approaches present a GPU
accelerated end-to-end system to support spatial computations.
In this paper, we presented a detailed background on GPUs and
related work. We envisioned a holistic system to support spatial
operations using GPUs. We presented the system architecture
and also discussed the open challenges and research directions
in building our system. From our experiments, we presented
the computational benefits of performing easily parallelizable
spatial operations using GPUs. We believe that GPUs have the
potential to be a successful spatial computing framework.

REFERENCES

[1] http://landsat.usgs.gov/Landsat Search and Download.php.
[2] https://dev.twitter.com.
[3] http://planet.openstreetmap.org/.



[4] https://www.uber.com.
[5] https://www.google.com/maps.
[6] https://lpdaac.usgs.gov/about.
[7] http://www.eiroforum.org/activities/scientific highlights/2012/201209

XFEL/index.html.
[8] http://developer.nvidia.com/object/cuda.html.
[9] https://www.opengl.org/.

[10] https://hbase.apache.org/.
[11] http://www.geomesa.org/.
[12] http://geotrellis.io/.
[13] http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/.
[14] http://www.opengeospatial.org.
[15] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu,

Xiaodong Zhang, and Joel H. Saltz. Hadoop-gis: A high performance
spatial data warehousing system over mapreduce. PVLDB, 6(11), 2013.

[16] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu,
Xiaodong Zhang, and Joel H. Saltz. Hadoop-GIS: A High Performance
Spatial Data Warehousing System over MapReduce. PVLDB, 6(11),
2013.

[17] Afsin Akdogan, Ugur Demiryurek, Farmoush Banaei-Kashani, and
Cyrus Shahabi. Voronoi-based Geospatial Query Processing with
MapReduce. In International Conference on Cloud Computing Tech-
nology and Science, 2010.

[18] Nagender Bandi, Chengyu Sun, Amr El Abbadi, and Divyakant
Agrawal. Hardware Acceleration in Commercial Databases: A Case
Study of Spatial Operations. In Proceedings of the International
Conference on Very Large Data Bases, VLDB, 2004.

[19] Sebastian Breı́, Felix Beier, Hannes Rauhe, Kai-Uwe Sattler, Eike
Schallehn, and Gunter Saake. Efficient Co-processor Utilization in
Database Query Processing. Information Systems, 38(8), 2013.

[20] Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe.
Experiences on processing spatial data with mapreduce. In Scientific
and Statistical Database Management, 21st International Conference,
SSDBM 009, New Orleans, LA, USA, June 2-4, 2009, Proceedings,
2009.

[21] Lorenzo Dematté and Davide Prandi. GPU Computing for Systems
Biology. Briefings in Bioinformatics, 2(3), 2010.

[22] Ahmed Eldawy, Louai Alarabi, and Mohamed F. Mokbel. Spatial Parti-
tioning Techniques in Spatial Hadoop. Proceedings of the International
Conference on Very Large Data Bases, VLDB, 8(12), 2015.

[23] Ahmed Eldawy, Mostafa Elganainy, Ammar Bakeer, Ahmed Abdel-
motaleb, and Mohamed Mokbel. Sphinx: Distributed Execution of
Interactive SQL Queries on Big Spatial Data. November 2015.

[24] Ahmed Eldawy, Yuan Li, Mohamed F. Mokbel, and Ravi Janardan.
CG Hadoop: Computational Geometry in MapReduce. In Proceedings
of the ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, ACM GIS, November 2013.

[25] Ahmed Eldawy and Mohamed F Mokbel. A Demonstration of
Spatialhadoop: An Efficient Mapreduce Framework for Spatial Data.
Proceedings of the International Conference on Very Large Data Bases,
VLDB, 6(12), 2013.

[26] Ahmed Eldawy and Mohamed F. Mokbel. Spatialhadoop: A mapreduce
framework for spatial data. In Proceedings of the IEEE International
Conference on Data Engineering, ICDE, 2015.

[27] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. A
Demonstration of HadoopViz: An Extensible MapReduce System for
Visualizing Big Spatial Data. Proceedings of the International Confer-
ence on Very Large Data Bases, VLDB, 8(12), 2015.

[28] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan.
HadoopViz: A MapReduce Framework for Extensible Visualization of
Big Spatial Data. In Proceedings of the IEEE International Conference
on Data Engineering, ICDE, May 2016.

[29] Marta Fort and Joan Antoni Sellarès. GPU-based Computation of Dis-
tance Functions on Road Networks with Applications. In Proceedings
of the ACM Symposium on Applied Computing, SAC, 2009.

[30] Ralf Hartmut Güting, Thomas Behr, and Christian Düntgen. SEC-
ONDO: A platform for moving objects database research and for

publishing and integrating research implementations. IEEE Data
Engineering Bulletin, 33(2), 2010.

[31] Ralf Hartmut Güting, Victor Teixeira de Almeida, and Zhiming Ding.
Modeling and querying moving objects in networks. The International
Journal on Very Large Data Bases, VLDB Journal, 15(2), 2006.

[32] Ralf Hartmut Güting and Jiamin Lu. Parallel SECONDO: scalable
query processing in the cloud for non-standard applications.

[33] Barrett Hargreaves, John D. Joyce, George L. Cole, Ernest D. Foss,
Richard G. Gray, Elmer M. Sharp, Robert J. Sippel, Thomas M.
Spellman, and Robert A. Thorpe. Image processing hardware for a
man-machine graphical communication system. In Proceedings of the
October 27-29, 1964, Fall Joint Computer Conference, Part I, 1964.

[34] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju,
Qiong Luo, and Pedro V. Sander. Relational joins on graphics
processors. In Proceedings of the ACM International Conference on
Management of Data, SIGMOD, 2008.

[35] Jiong He, Mian Lu, and Bingsheng He. Revisiting Co-processing for
Hash Joins on the Coupled CPU-GPU Architecture. Proceedings of
the International Conference on Very Large Data Bases, VLDB, 6(10),
2013.

[36] Jiong He, Shuhao Zhang, and Bingsheng He. In-cache Query Co-
processing on Coupled CPU-GPU Architectures. Proceedings of the
International Conference on Very Large Data Bases, VLDB, 8(4), 2014.

[37] Timothy E. Johnson. Sketchpad iii: A computer program for drawing in
three dimensions. In Proceedings of Spring Joint Computer Conference,
1963.

[38] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky,
Casey Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht,
Matthew Jacobs, Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang,
Nong Li, Ippokratis Pandis, Henry Robinson, David Rorke, Silvius
Rus, John Russell, Dimitris Tsirogiannis, Skye Wanderman-Milne, and
Michael Yoder. Impala: A Modern, Open-Source SQL Engine for
Hadoop. In Proceedings of the International Conference on Innovative
Data Systems Research, CIDR, January 2015.

[39] Jonathan K. Lawder and Peter J. H. King. Using Space-Filling Curves
for Multi-dimensional Indexing. In Brian Lings and Keith Jeffery,
editors, Advances in Databases, volume 1832 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2000.

[40] Francesco Lettich, Salvatore Orlando, and Claudio Silvestri. Processing
streams of spatial k-nn queries and position updates on manycore gpus.
In Proceedings of the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM GIS, 2015.

[41] Ming-Ling Lo and Chinya V. Ravishankar. Spatial Hash-joins. In
Proceedings of the ACM International Conference on Management of
Data, SIGMOD, June 1996.

[42] Jiamin Lu and Ralf Hartmut Güting. Parallel SECONDO: A Practical
System for Large-scale Processing of Moving Objects. In Proceedings
of the IEEE International Conference on Data Engineering, ICDE, April
2014.

[43] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient
Processing of k Nearest Neighbor Joins using MapReduce. Proceedings
of the International Conference on Very Large Data Bases, VLDB, 2012.

[44] Qiang Ma, Bin Yang, Weining Qian, and Aoying Zhou. Query process-
ing of massive trajectory data based on mapreduce. In Proceedings of
the First International CIKM Workshop on Cloud Data Management,
CloudDb 2009, Hong Kong, China, November 2, 2009, 2009.

[45] Henry Markram. The Blue Brain Project. Nature Reviews Neuroscience,
7(2), 2006.

[46] Sparsh Mittal and Jeffrey S. Vetter. A Survey of CPU-GPU Heteroge-
neous Computing Techniques. ACM Computing Surveys, 47(4), 2015.

[47] T. H. Myer and I. E. Sutherland. On the design of display processors.
Communications of the ACM, 11(6), 1968.

[48] Naohito Nakasato. Implementation of a parallel tree method on a GPU.
Journal of Computer Science, 3(3), 2012.

[49] Cristóbal A. Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. A
Survey on Parallel Computing and its Applications in Data-Parallel
Problems using GPU Architectures. Communications in Computational
Physics, 15(2), 2014.

[50] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Lo-



cation Aware Services. In Proceedings of the International Conference
on Mobile Data Management, MDM, June 2011.

[51] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
Hbase: design and implementation of an elastic data infrastructure
for cloud-scale location services. Distributed and Parallel Databases,
31(2), 2013.

[52] Jia Pan and Dinesh Manocha. Fast gpu-based locality sensitive hashing
for k-nearest neighbor computation. In Proceedings of the ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ACM GIS, 2011.

[53] Sushil K. Prasad, Michael McDermott, Satish Puri, Dhara Shah, Danial
Aghajarian, Shashi Shekhar, and Xun Zhou. A Vision for GPU-
accelerated Parallel Computation on Geo-Spatial Datasets. Proceedings
of the ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, ACM GIS, 6(3), 2014.

[54] Jun Rao and Kenneth A. Ross. Cache Conscious Indexing for Decision-
Support in Main Memory. In Proceedings of the International Confer-
ence on Very Large Data Bases, VLDB, September 1999.

[55] Hans Sagan. Space-Filling Curves. Springer New York, 1994.
[56] Lin Shi, Wen Liu, Heye Zhang, Yongming Xie, and Defeng Wang. A

survey of GPU-based Medical Image Computing Techniques. Quanti-
tative Imaging in Medicine and Surgery, 2(3), 2012.

[57] Nikos Sismanis, Nikos Pitsianis, and Xiaobai Sun. Parallel search of
k-nearest neighbors with synchronous operations. In IEEE Conference
on High Performance Extreme Computing, HPEC, 2012.

[58] Robert F. Sproull and Ivan E. Sutherland. A clipping divider. In
Proceedings of Fall Joint Computer Conference, 1968.

[59] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman.
The Architecture of SciDB. In Proceedings of the International Con-
ference on Scientific and Statistical Database Management, SSDBM,
July 2011.

[60] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Hardware
Acceleration for Spatial Selections and Joins. In Proceedings of the
ACM International Conference on Management of Data, SIGMOD,
2003.

[61] Ivan E. Sutherland. Sketch pad a man-machine graphical commu-
nication system. In Proceedings of the SHARE Design Automation
Workshop, 1964.

[62] Ivan E. Sutherland. A Head-mounted Three Dimensional Display. In
Proceedings of Fall Joint Computer Conference, December 1968.

[63] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive - A Warehousing Solution Over a Map-Reduce Frame-
work. Proceedings of the International Conference on Very Large Data
Bases, VLDB, 2(2), 2009.

[64] Kaibo Wang, Yin Huai, Rubao Lee, Fusheng Wang, Xiaodong Zhang,
and Joel H. Saltz. Accelerating Pathology Image Data Cross-
Comparison on CPU-GPU Hybrid Systems. Proceedings of the In-
ternational Conference on Very Large Data Bases, VLDB, 5(11), 2012.

[65] Liao Wei, Zhang Zhiming, Yuan Zhimin, Fu Wei, and Wu Xiaoping.
Parallel continuous k-nearest neighbor computing in location based
spatial networks on gpus. In Computational and Information Sciences,
ICCIS, 2013.

[66] Randall T. Whitman, Michael B. Park, Sarah M. Ambrose, and Erik G.
Hoel. Spatial indexing and analytics on hadoop. In Proceedings
of the ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, ACM GIS, November 2014.

[67] Simin You, Jianting Zhang, and Le Gruenwald. GPU-based Spatial
Indexing and Query Processing using R-Trees. In ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data, BigSpa-
tial, November 2013.

[68] Simin You, Jianting Zhang, and Le Gruenwald. Scalable and efficient
spatial data management on multi-core CPU and GPU clusters: A
preliminary implementation based on impala. In International Workshop
on Big Data Management on Emerging Hardware, HardBD, April 2015.

[69] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. GeoSpark: A Cluster
Computing Framework for Processing Large-Scale Spatial Data. In
Proceedings of the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM GIS, November
2015.

[70] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster Computing with Working Sets.
In USENIX Workshop on Hot Topics in Cloud Computing, HotCloud,
June 2010.

[71] Chi Zhang, Feifi Li, and Jeffrey Jestes. Efficient Parallel kNN Joins
for Large Data in MapReduce. In Proceedings of the International
Conference on Extending Database Technology, EDBT, 2012.

[72] Jianting Zhang, Simin You, and Le Gruenwald. Parallel Online Spatial
and Temporal Aggregations on Multi-core CPUs and Many-core GPUs.
Information Systems, 44, 2014.

[73] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong
Xu. SJMR: Parallelizing spatial join with MapReduce on clusters. In
CLUSTER, 2009.

[74] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. OmniDB:
Towards Portable and Efficient Query Processing on Parallel CPU/GPU
Architectures. Proceedings of the International Conference on Very
Large Data Bases, VLDB, 6(12), 2013.


