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Abstract—This paper proposes LARS, a location-aware rec- Minnesota Film-Noir 3 Users from: | Visited venues in | % Visits
ommender system that uses location-based ratings to prodac o 7 Edina, MN | Minneapolis  MN|  37%
recommendations. Traditional recommender systems do noton- [ Documentary : e B
sider spatial properties of users nor items; LARS, on the oter Film-Noir X Robbinsdale, MN_ | Brooklyn Park, MN | 32 %
hand, supports a taxonomy of three novel classes of locatien —Romanee ; T T
based ratings, namely,spatial ratings for non-spatial items, non- Florida Yantansy - Faleon Heights, | St Paul MN | 17%
spatial ratings for spatial items, and spatial ratings for spatial items. ar_ : I BT
LARS exploits user rating locations through user partitioning, a ] ] )
technique that influences recommendations with ratings sptlly (a) Movielens preference locality (b) Foursquare preference locality

close to querying users in a manner that maximizes system
scalability while not sacrificing recommendation quality. LARS . .
exploits item locations usingtravel penalty, a technique that  In this paper, we propose LARS, a noveichtion-avare

favors recommendation candidates closer in travel distare to recommendenstem built specifically to produce high-quality

querying users in a way that avoids exhaustive access to apjatial  |ocation-based recommendations in an efficient manner. £ AR
items. LARS can apply these techniques separately, or togetr, produces recommendations using a taxonomyhede types

depending on the type of location-based rating available. per- ; . L . .
imental evidence using large-scale real-world data from bi the ~ ©f location-based ratings within a single framework: (1pSp

Foursquare location-based social network and the MovieLes tial ratings fpr non_—spa?ial items, represer_lted as a foplet
movie recommendation system reveals that LARS is efficient, (user, ulocation rating, item), where ulocation represents a

scalable, and capable of producing recommendations twicesa yser location, for example, a user located at home rating a
accurate compared to eX|st|ng recommendation approaches. bOOk; (2) non-spatial ratings for spatial items, represdnats
a four-tuple (iser, rating, item ilocation), where ilocation
represents an item location, for example, a user with unknow
Recommender systems make use of community opiniolsgation rating a restaurant; (3) spatial ratings for spati
to help users identify useful items from a considerablydardtems, represented as a five-tuples¢r, ulocation rating,
search space (e.g., Amazon inventory [1], Netflix movie$. [2]item, ilocation), for example, a user at his/her office rating
The technique used by many of these systems is collaborativeestaurant visited for lunch. Traditional rating triptes be
filtering (CF) [3], which analyzes past community opinionglassified as non-spatial ratings for non-spatial items émd
to find correlations of similar users and items to suggesbt fit this taxonomy.
k personalized items (e.g., movies) to a querying user
Community opinions are expressed through explicit ratinds Motivation: A Study of Location-Based Ratings
represented by the tripleuger, rating, item) that represents  The muotivation for our work comes from analysis of two
a userproviding a numeriaating for anitem real-world location-based rating datasets: (1) a subséhef
Currently, myriad applications can produloeation-based well-known MovielLens dataset [7] containing approximgatel
ratings that embed user and/or item locations. For exampl@7K movie ratings associated with user zip codes (i.e., spa-
location-based social networks (e.g., Foursquare [4] @ug+ tial ratings for non-spatial items) and (2) data from the
book Places [5]) allow users to “check-in” at spatial destin Foursquare [4] location-based social network containiseru
tions (e.g., restaurants) and rate their visit, thus aralsi@pof visit data for 1M users to 643K venues across the United State
associating both user and item locations with ratings. Sath (i.e., spatial ratings for spatial items). Appendix B paes
ings motivate an interesting new paradigmlodation-aware further details of both datasets. In our analysis we comsilst
recommendationsvhereby the recommender system exploitsbserved two interesting properties that motivate the rieed
the spatial aspect of ratings when producing recommenuatiolocation-aware recommendation techniques.
Existing recommendation techniques [6] assume ratings arePreference locality. Preference locality suggests users from
represented by theuser, rating, item) triple, thus are ill- a spatial region (e.g., neighborhood) prefer items (e.gvies,
equipped to produce location-aware recommendations.  destinations) that are manifestly different than itemdesred

by users from other, even adjacent, regions. Figure 1(&) lis
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§Work done while at the University of Minnesota the top genres from Florida differ vastly from the others.

Fig. 1. Preference locality in location-based ratings.

I. INTRODUCTION



Florida’s list contains three genres (“Fantasy”, “Aninaal, LARS produces recommendations usimgn-spatial ratings
“Musical”) not in the other lists. This difference impliesovie for spatial itemsi.e., the tuple ser, rating, item, ilocation),
preferences are unique to specific spatial regions, andromnfi by using travel penalty a technique that exploits travel lo-
previous work from the New York Times [8] that analyzedtality. This technique penalizes recommendation canegat
Netflix user queues across U.S. zip codes and found simithe further they are in travel distance to a querying usee Th
differences. Meanwhile, Figure 1(b) summarizes our olsserchallenge here is to avoid computing the travel distance for
tion of preference locality in Foursquare by depicting tiwtv all spatial items to produce the list @frecommendations, as
destinations for users from thremljacentMinnesota cities. this will greatly consume system resources. LARS addresses
Each sample exhibits diverse behavior: users from Falcthis challenge by employing an efficient query processing
Heights, MN favor venues in St. Paul, MN (17% of visitsframework capable of terminating early once it discovest th
Minneapolis (13%), and Roseville, MN (10%), while userthe list of £ answers cannot be altered by processing more
from Robbinsdale, MN prefer venues in Brooklyn Park, MNecommendation candidates. To produce recommendatiens us
(32%) and Robbinsdale (20%). Preference locality suggestg spatial ratings for spatial itemsi.e., the tuple (ser,
that recommendations should be influenced by locationebasdocation rating, item, ilocation) LARS employs both theser
ratingsspatially closeto the user. The intuition is that localiza-partitioning andtravel penaltytechniques to address the user
tion influences recommendation using the unique prefeeene@ad item locations associated with the ratings. This isiarsal
found within the spatial region containing the user. feature of LARS, as the two techniques can be used separately
Travel locality. Our second observation is that, when reconor in concert, depending on the location-based rating type
mended items are spatial, users tend to travel a limitedntist available in the system.

when visiting these venues. We refer to this property as€lra e experimentally evaluate LARS using real location-based
locality.” In our analysis of Foursquare data, we observergtmgS from Foursquare [4] and MovieLens [7], along with
that 45% of users travel 10 miles or less, while 75% travel generated user workload of bathapshotand continuous

50 miles or less. This observation suggests that spatiallsitequeries_ Our experiments show LARS is scalable to real
closer in travel distance to a user should be given precedefigge-scale recommendation scenarios. Since we havesacces
as recommendation candidates. In other words, a recommgnreg| data, we also evaluate recommendatiorality by
dation loses efficacy the further a querying user must travgliiding LARS with 80% of the spatial ratings and testing
to visit the destination. Existing recommendation teche&] recommendation accuracy with the remaining 20% of the
do not consider travel locality, thus may recommend usefgithheld) ratings. We find LARS produces recommendations
destinations with burdensome travel distances (e.g., RilS€that aretwice as accurate (i.e., able to better predict user
Chicago receiving restaurant recommendations in Seattle) preferences) compared to traditional collaborative filigrIn

B. Our Contribution: LARS - A Location-Aware Recommend&Fmmary. the contributions of this paper are as follows:

Like traditional recommender systems, LARS suggésts « We provide a novel classification of three types of

items personalized for a querying userHowever, LARS is location-based ratings not supported by existing recom-
distinct in its ability to produce location-aware recomrman mender systemsspatial ratings for non-spatial items
tions usingeach of the three types of location-based rating  non-spatial ratings for spatial itemsandspatial ratings
within a single framework. for spatial items

LARS produces recommendations ussjatial ratings for . We propose LARS, a novel location-aware recommender
non-spatial itemsi.e., the tuple ser, ulocation rating, item), system capable of using three classes of location-based
by employing auser partitioning technique that exploits ratings. Within LARS, we propose: (a) aser parti-
preference locality. This technique uses an adaptive pgram  tioning technique that exploits user locations in a way
structure to partition ratings by theirser locationattribute that maximizes system scalability while not sacrificing
into spatial regions of varying sizes at different hierdesh recommendation locality and (b) teavel penaltytech-
For a querying user located in a regidd, we apply an nique that exploits item locations and avoids exhaustively
existing collaborative filtering technique that utilizeslythe processing all spatial recommendation candidates.

ratings located inR. The challenge, however, is to determine
whether all regions in the pyramid must be maintained in orde
to balance two contradicting factorscalability and locality.
Maintaining a large number of regions increadesality
(i.e., recommendations unique to smaller spatial regjons) This paper is organized as follows: Section Il gives an
yet adversely affects systestalability because each regionoverview of LARS. Sections Ill, IV, and V cover LARS
requires storage and maintenance of a collaborative filerirecommendation techniques usirspatial ratings for non-
data structure necessary to produce recommendationglifee. spatial itemsnon-spatial ratings for spatial itemsndspatial
recommender model). The LARS pyramid dynamically adaptatings for spatial items respectively. Section VI provides
to find the right pyramid shape that balances scalability amstperimental analysis. Section VII covers related workilevh
recommendation locality. Section VIII concludes the paper.

« We provide experimental evidence that LARS scales to
large-scale recommendation scenarios and provides better
quality recommendations than traditional approaches.
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(a) Ratings matrix (b) Item-based CF model of r,;, a useru’s rating for a related itemi € £ weighted by

sim(i,l), the similarity ofl to candidate item, then normalized
by the sum of similarity scores betweénand . The user
II. LARS OVERVIEW receives as recommendations the topems ranked by?,, ;).
This section provides an overview of LARS by discussing Computing Similarity . To computesin(i,, i,), we repre-
the query model and the collaborative filtering method. sent each item as a vector in the user-rating space of timgyrati
matrix. For instance, Figure 3 depicts vectors for itemand
A. LARS Query Model iq from the matrix in Figure 2(a). Many similarity fuqu\ctions
Users (or applications) provide LARS with a userid have been proposed (e.g., Pearson Correlation, Cosine); we

numeric limit K, and locationL; LARS then returnsK yse the Cosine similarity ihARSdue to its popularity:
recommended items to the user. LARS supports bo#pshot

(i.e., one-time) queries arantinuousjueries, whereby a user sim(iy, iq) = ip - g @)
subscribes to LARS and receives recommendation updates as TP NTITEAT

her location changes. The technique LARS uses to produce . . , .
recommendations depends on the type of location-base ral,:ﬁms score is calculated using the vectors’ co-rated dinoess

available inthe system. Query processing supportfor g t 0% 78 R0 CERACRE SRR S O
of location-based rating is discussed in Sections lll to V. 7~ ) g ) )
distance is useful for numeric ratings (e.g., on a scal€])i1,5

B. Item-Based Collaborative Filtering For unary ratings, other similarity functions are used .(e.g

LARS uses item-based collaborative filtering (abbr. CRbsolute sum [10]).
as its primary recommendation technique, chosen due to itdVhile we opt to use item-based CF in this paper, no
popularity and widespread adoption in commercial systerfagtors disqualify us from employing other recommendation
(e.g., Amazon [1]). Collaborative filtering (CF) assumes #chniques. For instance, we could easily employ userebase
set of n usersd = {uy,..,u,} and a set ofm items CF [6], that uses correlations between users (instead rokite
Z = {i1,...,im }. Each usewn; expresses opinions about a set
of itemsZ,, C 7. Opinions can be a numeric rating (e.g., the
Netflix scale of one to five stars [2]), or unary (e.g., Facdboo
“check-ins” [5]). Conceptually, ratings are representsdaa  This section describes how LARS produces recommenda-
matrix with users and items as dimensions, as depictedtions using spatial ratings for non-spatial items represgby
Figure 2(a). Given a querying user CF produces a set of the tuple (iser, ulocation rating, item). The idea is to exploit
k recommended item&, C 7 thatu is predicted to like the preference locality i.e., the observation that user opinions
most. are spatially unique (based on analysis in Section I-A). We
Phase I: Model Building. This phase computes a similarityidentify three requirements for producing recommendation
scoresim(i,,iy) for each pair of objects, andi, that have using spatial ratings for non-spatial items: (i9cality: rec-
at least one common rating by the same user (i.e., co-ramdmendations should be influenced by those ratings with user
dimensions). Similarity computation is covered below.ngsi locations spatially close to the querying user locatioe. (in
these scores, a model is built that stores for each itenT, a a spatial neighborhood); (Jcalability the recommendation
list £ of similar items ordered by a similarity scosem(i,,i,), procedure and data structure should scale up to large number
as depicted in Figure 2(b). Building this model is @i£-) of users; (3)influence system users should have the ability to
process, wher&? andU are the number of ratings and userg;ontrol the size of the spatial neighborhood (e.g., cityckjo
respectively. It is common to truncate the model by storingip code, or county) that influences their recommendations.
for each listZ, only then most similar items with the highest LARS achieves its requirements by employingser parti-
similarity scores [9]. The value of is referred to as thmodel tioningtechnique that maintains an adaptive pyramid structure,
sizeand is usually much less thas. where the shape of the adaptive pyramid is driven by the
Phase Il: Recommendation GenerationGiven a querying three goals oflocality, scalability, and influence The idea
user u, recommendations are produced by computirly iS to adaptively partition the rating tuplesiser ulocation
predicted ratingP,, ;) for each itemi not rated byu [9]: rating, iterm) into spatial regions based on thdocation
S sim(i, 1) attribute. Then, LARS produces recommendations using any
leL L it (1) existing collaborative filtering method (we use item-based
2iec |sim(i, )] CF) over the remaining three attributessér, rating, item)
Before this computation, we reduce each similarity isto  of only the ratings within the spatial region containing the
contain only itemgated by useru. The prediction is the sum querying user. We note that ratings can come from users with

Fig. 2. Item-based CF model generation.
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I1l. SPATIAL USERRATINGS FOR
NON-SPATIAL ITEMS
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Model |CID Entire System Area (level 0)

earlier, the model irC is built usingonly the spatial ratings
associated with user locations within

In addition to traditional recommendation queries (i.e.,
shapshot queries), LARS also supports continuous quengks a
can account for thenfluencerequirement for each user as

2x2 Grid (level 1)

~4x4 Grid (level 2)

= follows.
7 = Continuous queries.LARS evaluates a continuous query
=== P in full once it is issued, and sends recommendations back

to a userU as an initial answer. LARS then monitors the
movement ofU using her location updates. As long &s
varying tastes, and that our method only forces collabagatidoes not cross the boundary of her current grid cell, LARS
filtering to produce personalized user recommendationscbasloes nothing as the initial answer is still valid. Oricerosses
only on ratings restricted to a specific spatial region. lis tha cell boundary, LARS reevaluates the recommendation query
section, we describe the pyramid structure in Section |II-Aor the new cell and only sends incremental updates [13]o th
query processing in Section 1lI-B, and finally data struetudast reported answer. Like snapshot queries, if a cell & lev

Fig. 4. Partial pyramid data structure.

maintenance in Section IlI-C. is not maintained, the query is temporarily transferrechaig
in the pyramid to the nearest maintained ancestor cell. Note
A. Data Structure that since higher-level cells maintain larger spatial oegj

LARS employs a partial pyramid structure [11] (equivalerthe continuous query will cross spatial boundaries lessnoft
to a partial quad-tree [12]) as depicted in Figure 4. The pyreeducing the amount of required recommendation updates.
mid decomposes the space irfolevels (i.e., pyramid height).  Influence level LARS addresses thiefluencerequirement
For a given leveh, the space is partitioned intd* equal area by allowing querying users to specify an optionafluence
grid cells. For example, at the pyramid root (level 0), onie grlevel (in addition to location. and limit K) that controls
cell represents the entire geographic area, level 1 marsti the size of the spatial neighborhood used to influence their
space into four equi-area cells, and so forth. We represeatommendations. An influence levélmaps to a pyramid
each cell with a unique identifierid. In each cell, we store level and acts much like a “zoom” level in Google or Bing
an item-based collaborative filtering model built usiogly maps (e.g., city block, neighborhood, entire city). TheeleV
the spatial ratings with user locations contained in thdiscelinstructs LARS to process the recommendation query startin
spatial region. A rating may contribute to upibcollaborative from the grid cell containing the querying user location at
filtering models: one per each pyramid level starting fronevel I, instead of the lowest maintained grid cell (the default).
the lowest maintained grid cell containing the embedded ugkn influence level of zero forces LARS to use the root cell
location up to the root level. Note that the root cell (leveb® of the pyramid, and thus act as a traditional (non-spatial)
the pyramid represents a “traditional” (i.e., non-spati@m- collaborative filtering recommender system.
based collaborative filtering model. Levels in the pyranad c _
be incomplete, as LARS will periodically merge or split gell C- Data Structure Maintenance
based on trade-offs of locality and scalability (discussed This section describes building and maintaining the pydami
Section 1II-C). For example, in Figure 4, the four cells irethdata structure. Initially, to build the pyramid, all loaati-based
upper right corner of level 3 are not maintained (depicted #&atings currently in the system are used to buildomplete
blank white squares). pyramid of height H, such that all cells in alld levels are

We chose to employ a pyramid as it is a “space-partitioningfresent and contain a collaborative filtering model. Thaahi
structure that is guaranteed to completely cover a giveaespaheight 1 is chosen according to the level lofcality desired,
For our purposes, “data-partitioning” structures (e.gtrées) where the cells in the lowest pyramid level represent thetmos
are less ideal, as they index data points and are not guarhniecalized regions. After this initial build, we invokeraerging

to completely cover a given space. step that scans all cells starting from the lowest léveind
. merges quadrants (i.e., four cells with a common parent) int
B. Query Processing their parent at leveh — 1 if it is determined that a tolerated

Given a recommendation query (as described in Semmount of locality will not be lost (merging is discussed
tion 11-A) with user locationZ and a limit K, LARS performs in Section 11I-C1). We note that while the original partial
two query processing steps: (1) The user locatiors used pyramid [11] was concerned with spatial queries over static
to find the lowest maintained cell' in the adaptive pyramid data, it did not address pyramid maintenance.
that containsL. This is done by hashing the user location to As time goes by, new users, ratings, and items will be added
retrieve the cell at the lowest level of the pyramid. If thedlc to the system. This new data will both increase the size of the
is not maintained, we return the nearest maintained ancestollaborative filtering models maintained in the pyramitisse
cell. (2) The topk recommended items are generated usiras well as alter recommendations produced from each cell.
the item-based collaborative filtering technique (coveied To account for these changes, LARS performs maintenance
Section 1I-B) using the model stored &. As mentioned on a cell-by-cell basis. Maintenance is triggered for a ¢ell



Algorithm 1 Pyramid maintenance algorithm tenance is performed only aftéf% new ratings are added to

1: 1 Called after cellC' receivesN % new ratings */ a pyramid cell, meaning maintenance will be amortized over
2. Function PyramidMaintenance(Cell C, Level h) .

3: /*Step I: Model Rebuild */ many operations.

4: Rebuild item-based collaborative filtering model for cell 1) Cell Merging; Merging entails discarding an entire
5: /*Step Il: Merge/Split Maintenance */ .

6: if (C has children quadrant maintained at leveh + 1) then quadrant_Of cells at leved V\_”_th a_Common parent at levelk-1.

7 if (All cells in ¢ have no maintained childrerhen Merging improves scalability (i.e., storage and computel

8 CheckDoMerge(q,C) /* Merge covered in Section IlI-C1 */ . . .

9 endif overhead) of LARS, as it reduces storage by discarding the
10: else _ _ _ _ item-based collaborative filtering (CF) models of the mdrge
11: CheckDoSplit(C) /* Split covered in Section 11I-C2 */ . . K

12: end if cells. Furthermore, merging improves computational osach

13: retum in two ways: (a)less maintenance computatijogince less

CF models are periodically rebuilt, and (Bss continuous
query processing computatipms merged cells represent a
once it receivesV% new ratings; the percentage is computeldrger spatial region, hence, users will cross cell bouedar
from the number of existing ratings ifi. We do this because less often triggering less recommendation updates. Mgrgin
an appealing quality of collaborative filtering is that as &urts locality, since merged cells capture community apisi
model matures (i.e., more data is used to build the modeffjom a wider spatial region, causing less unique (i.e.,&lt)c
more updates are needed to significantly change the:topecommendations than smaller cells.
recommendations produced from it [14]. Thus, maintenanceTo determine whether to merge a quadrantinto its
is needed less often. Algorithm 1 provides the pseudocoparent cellCr (i.e., function CheckDoMergeon line 8 in
for the LARS maintenance algorithm. The algorithm takes @dgorithm 1), we calculate two percentage values: Ifidal-
input a pyramid cellC' and levelh, and includes two main ity _loss the amount of locality lost by (potentially) merging,
steps:model rebuildand merge/split maintenance and (2)scalability gain, the amount of scalability gained by
Step |: Model Rebuild. The first step is to rebuild the (potentially) merging. Details of calculating these peteges
item-based collaborative filtering (CF) model for a c€ll as are covered next. When deciding to merge, we define a system
described in Section 1I-B (line 4). Rebuilding the CF modglarameterM, a real number in the range [0,1] that defines
is necessary to allow the model to “evolve” as new locatior: tradeoff between scalability gain and locality loss. LARS
based ratings enter the system (e.g., accounting for newsjte merges (i.e., discards quadraptif:
ratings, or users). Given the cost of building the CF model is
O(%-) (per Section II-I;)ié the cost of the model rebuild for a
cell C at levelh is (1?]//4@ :4’§—U, assuming ratings and usersA smaller M value implies gaining scalability is important
are uniformly distributeJ. and the system is willing to lose a large amount of locality
Step Il: Merging/Split Maintenance. After rebuilding the for small gains in scalability. Conversely, a largét value
CF model for cellC, LARS invokes a merge/split maintenancémplies scalability is not a concern, and the amount of libgal
step that may decide to merge or split cells based on trad@st must be small in order to merge. At the extremes, setting
offs in scalability and locality. The algorithm first checks if M=0 (i.e., always merge) implies LARS will function as
C has a child quadrant maintained at leveh + 1 (line 6), a traditional CF recommender system, while settifvg=1
and that none of the four cells iphave maintained children causes LARS to never merge, i.e., LARS will employ a
of their own (line 7). If both cases hold, LARS considersomplete pyramid structure maintaining all cells at allelksv
guadrantg as a candidate to merge into its parent @€ll  Calculating Locality Loss. We calculate locality loss
(calling functionCheckDoMerg®n line 8). We provide details by observing the loss of recommendation uniqueness when
of merging in Section 11I-C1. On the other hand,(f does discarding a cell quadrant and using its parent cellp
not have a child quadrant maintained at le¥ie}- 1 (line 10), to produce recommendations in its place. We perform this
LARS considers splitting”' into four child cells at leveh+1 calculation in three steps. (ample We take a sample of
(calling functionCheckDoSpliton line 11). The split opera- diverse system usets that have at least one rating withire
tion is covered in Section III-C2. Merging and splitting aréand by definition one of the more localized cellg € q).
performed completely in quadrants (i.e., four equi-ardés ceDue to space, we do not discuss user sampling in detail,
with the same parent). We made this decision for simplicity however, the intuition is to select a set of users wdibherse
maintaining the partial pyramid. However, we also discuss (tastes by comparing each user’s rating history. We measure
Section IlI-D) relaxing this constraint by merging and #pig  diversity using the Cosine distance between users in the sam
at a finer granularity than a quadrant. manner as Equation 2, except we employ user vectors in the
We note the following features of pyramid maintenancealculation (instead of item vectors). (Bompare For each
(1) Maintenance can be performed completely offline, i.auseru € U, we measure the potential loss of recommendation
LARS can continue to produce recommendations using thaiqueness by comparing the list of téprecommendations
"old” pyramid cells while part of the pyramid is being upddite Rp produced from the merged céllp (i.e., the parent) with
(2) maintenance does not entail rebuilding the whole pydamthe list of recommendationg,, that the user receives from the
at once, instead, only one cell is rebuilt at a time; (3) maimore localized cellC,, € ¢q. Formally, the loss of uniqueness

(1 = M) * scalability_gain > M * locality_loss  (3)




C"én.-l User “C“"“‘“‘e“"“‘ci"“ Ly creates more granular cells causing user locations to cedss
¢ o onnlnnnn] 2% boundaries more often, triggering recommendation updates
Jo | U L LnL L Lnn] 2% To determine whether to split a cell» into four child
o/ Voar S ‘ U | LLih | Lhhl| % cells (i.e., functionCheckDoSplibn line 11 of Algorithm 1),
l — ",‘ H?C’ Uy ol | I 10 1| 50% we perform aspeculative splithat creates a temporary child
J&us L Level b Average Locality Loss 25% quadrantg, for Cp. Using Cp and g, two percentages are

calculatediocality_gain andscalability loss These values are
the opposite of those calculated for the merge operatioR&A
splits C'p only if the following condition holds:

Fig. 5. Merge and split example.

can be computed as the raﬂg%RP', which indicates the
number of recommended items that appearinbut not in the M« locality_gain > (1 — M) * scalability_loss  (4)
parent recommendatiaRp, normalized to the total number of
recommended objects (3) Average We calculate the average

loss of uniqueness over all users &fito produce a single perform speculative splitting, followed by a descriptidrhow

percentage value, terméakcality_loss . ) o
lculati labili ) labil o dto calculatelocality gain andscalability loss
Calculating scalability gain. Scalability gain is measure Speculative splitting.In order to evaluatéocality gainand

in storage and computation savings. We measure scalabiliy japjity loss we must build, from scratch, the collaborative
gain by summing the model sizes for each of the merged (i-fiyering (CF) models of the four cells that potentially résu
child) cells (abbr.size,), and divide this value by the sumg 1he spiit, as they do not exist in the partial pyramid.
of size, and the size of the parent cell. We refer to thigg building CF models is non-trivial due to its high cost
percentage as thstorage gain. We also quantif}computation (Section 1I-B), we perform a cheapspeculative splitthat
savings using storage gain as a surrogate measurementy asic ooch ‘model using a random sample of only 50%
comp_utation is considered a direct function of the amount Bf the ratings from the spatial region of each potentially
data in the system. . , split cell. LARS uses these models to measloeality_gain
Cost The cost ofCheckDoMergés |U|(2.(nih‘)+k)’ where - and scalability loss If LARS decides to split, it builds the
[td] is the size of the user sampl¢f| is the number of completemodel for the newly split cells using all of the ratings.
items in the model stored within a cell is the model gpeculative splitting is sufficient for calculatigcality_gain
size (Section 1I-B), andk is the cost of comparing two and scalability loss using the item-based CF technique, as
recommend{;\tlon lists. We note that this cost is less than ‘@)@periments on real data and workloads have shown that using
model re-build step. 50% of the ratings for model-building results in loss of only
Example. Figure 5 depicts four merge candidate cells 3% of recommendation accuracy [9], assuming sufficiently
to C, at levelh merging into their parenCp at levelh — 1,  high number of ratings (i.e., order of thousands). Thus, we
along with four sampled usets to us. Each user location is only speculatively split if we have more than 1,000 ratings for
shown twice: once within one of the cell§, and then at the the potentially split cell, otherwise, the model for theldsl
parent cellCp. The recommendations produced for each uspgilt using all of R.
from cell C,, and Cp are provided in the table in Figure 5, Calculating locality gain. After speculatively splitting a
along with the locality loss for each user. For example, fafell at levelh into four child cells at leveh + 1, evaluating
useruy, cell C; produces recommendatiofs,, ={/1, I2, Is, locality gain is performed exactly the same as for merging,
Is}, while Cp produces recommendation®p={I1, I2, Is, where we compute the ratio of recommendations that will ap-
I7}. Thus, the loss of locality fou, is 25% as only one item pear inR,, but notinRp, whereR, andRp are the list of top-
out of four (s) will be lost if merging occurs. Given locality ;. recommendations generated by the speculatively splis cell
loss for the four users; to uy as 25%, 25%, 0%, and0%, ( to C,y and the existing parent céll, respectively. Like the
the finallocality lossvalue is the average 25%. To Ca|CU|at¢nerging case, we average locality gain over all sampledsuser
scalability gain, assume the sum of the model sizes for cetihe caveat here is thatahyof the speculatively split cells do
C; to Cy andCp is 4GB, and the sum of the model sizes fopot contain ratings for enough unique items (say less than te
cells C, to Cy is 2GB. Then, thescalability gainis $=50%. unique items), we immediately set the locality gain to 0, ki
AssumingM=0.7, then (0.3 * 50)< (0.7 * 25), meaning that disqualifies splitting. We do this to preverdcommendation
LARS will not merge cellsCy, Cs, C3, Cy into Cp. starvation i.e., not having enough diverse items to produce
2) Splitting: Splitting entails creating a new cell quadrant ateaningful recommendations.
pyramid levelh under a cell at levek — 1. Splitting improves  Calculating scalability loss. We calculatescalability loss
locality in LARS, as newly split cells represent more gramul by estimating the storage necessary to maintain the newty sp
spatial regions capable of producing recommendationsueniccells. Recall from Section II-B that the maximum size of an
to the smaller, more “local”, spatial regions. On the othemdh item-based CF model is approximatelyl|, wheren is the
splitting hurts scalability by requiring storage and mam@nce model size. We can multiply:|I| by the number of bytes
of more item-based collaborative filtering models. Spigti needed to store an item in a CF model to find an upper-bound
also negatively affects continuous query processing,esihc storage size of each potentially split cell. The sum of tHese

This equation represents the opposite criteria of thatemtes!
for merging in Equation 3. We will next describe how to




estimated sizes (abbsize) divided by the sum of the size V. NON-SPATIAL USERRATINGS FOR
of the existing parent cell angize, represents thecalability SPATIAL ITEMS

loss metric. . _ This section describes how LARS produces recommenda-
Cost The cost olCheckDoSplits the sum of two operations tions using non-spatial ratings for spatial items represin

(1) the cost of speculatively building four CF r‘godels 3by the tuple ¢ser rating, item, ilocation). The idea is to
level i + 1 using 50% of the rating, which i${0:>% (per exploit travel locality, i.e., the observation that users limit
Section 1I-B) and (2) the cost of calculating locality gainda their choice of spatial venues based on travel distances¢bas
scalability loss, which is the same cost@seckDoMerge  on analysis in Section I-A). Traditional (non-spatial) sec
Example. Consider the example used for merging in Figmendation techniques may produces recommendations with
ure 5, but now assume we havely a cellCp, and are trying burdensome travel distances (e.g., hundreds of miles away)
to determine whether to split'’» into four new cellsC; to |LARS produces recommendations within reasonable travel
Cy. Locality gainwill be computed as in the table in Figure Sdistances by usingravel penalty a technique that penalizes
to be 25%. Further, assume that we estimate the extra storggerecommendation rank of items the further in travel dista
overhead for splitting (i.estorage lospto be 50%. Assuming they are from a querying usefravel penaltymay incur ex-
M=0.7, then (0.7 * 25)> (0.3 * 50), meaning that LARS pensive computational overhead by calculating travehdise
will decide to split Cp into four cells aslocality gainis to each item. Thus, LARS employs an efficient query pro-
significantly higher tharscalability loss cessing technique capable exdrly terminationto produce the
recommendations without calculating the travel distaocallt

items. Section IV-A describes the query processing frannkewo

So far, we have assumed cells are merged and split in COjhjle Section IV-B describes travel distance computation.
plete quadrants. We now relax this constraint by discussing

the changes to LARS necessary to suppmattial merging A- Query Processing
and splitting of pyramid cells. Query processing for spatial items using thevel penalty

1) Partial Merging: It may be beneficial tgpartially merge technique employs a single system-wide item-based callabo
at a more granular level in order to sacrifiesslocality while rative filtering model to generate the téprecommendations
still gaining scalability. For example, in Figure 5 we mayy ranking each spatial iterfor a querying user. based on
only want to merge cell€’; and Cy while leaving cellsCs  RecScore(u,i), computed as:
andC} intact, meaning three child cells would be maintained . . .
under the example parettp. To support partial merging, all RecScore(u,i) = P(u,i) — Travel Penalty(u, i) (5)
techniques described in Section 11I-C1 remain the saméy wiP(u, ) is the standard item-based CF predicted rating of item
two exceptions: (1) The resulting merged candidate caj.(e.: for useru (see Section |I-B)Travel Penalty(u,1) is the
C, merged withCs, abbreviatedC;s) plays the role of the road network travel distance betweenand: normalized to
“parent” cell in evaluating locality loss; (2) When calctiley the same value range as the rating scale (e.g., [0, 5]).
storage gain, we must subtract the size of the resulting energ When processing recommendations, we aim to avoid cal-
candidate cell (e.g(12) from the sum of the sizes of cells thatculating Equation 5 forll candidate items to find the tdp-
will merge (e.g.,C; andCy), since we no longer discard therecommendations, which can become quite expensive given
merged cells completely, i.e., the resulting merged cell nahe need to compute travel distances. To avoid such computa-
replaces the individual cells. tion, we evaluate items in monotonically increasing order o

Partial merging involves extra overhead (compared to meigavel penalty (i.e., travel distance), enabling us to usdye
ing complete quadrants) since we must build, from scratdiermination principles from top-query processing [15], [16],
the CF model for the candidate merge result cell (€/g:) in [17]. We now present the main idea of our query processing
order to calculate locality loss. In order to perform theldbui algorithm and in the next section discuss how to compute
efficiently, we perform apeculative mergéhat builds the CF travel penalties in an increasing order of travel distance.
model using only 50% of the rating data. This is ts@me  Algorithm 2 provides the pseudo code of our query pro-
method used irspeculative splittingSection 111-C2), except cessing algorithm that takes a querying uset/ida location
applied to the case of merging. L, and a limit K as input, and returns the lig® of top-k

2) Partial Splitting: To supportpartial splitting, all tech- recommended items. The algorithm starts by running-a
nigues discussed in Section 111-C2 remain the same. There arearest-neighbor algorithm to populate the Iswith & items
however, two distinguishable cases of partial splittin): & with lowest travel penaltyR is sorted by the recommendation
“parent” at levelh splitting into less than four cells at levelscore computed using Equation 5. This initial part is codetl
h + 1. This case requires speculative splitting to be aware by setting the lowest recommendation score valumvestRec-
which “partial” child cells to create. (2) A cell at levél is Scorg as theRecScoreof the k' item in R (Lines 3 to 8).
split into two or three separate cells that remain at leyel Then, the algorithm starts to retrieve items one by one in
i.e., cells at leveh + 1 are not created. This case requires thalhe order of their penalty score. This can be done using an
a previous partial merge took place that originally reduaedincremental-nearest-neighbor algorithm, as will be described
cell quadrant to two or three cells. in the next section. For each iteipwe calculate thenaximum

D. Partial Merging and Splitting



Algorithm 2 Travel Penalty Algorithm for Spatial Items  ; to the ratings scale to get the travel penalty in Equation 5.

%- /EugctiolntLARl,Sipéttﬁ“temtS(Lﬁgtth Lglcaﬁon L, Limit K) Incremental KNN techniques exist for both Euclidean dis-

. opulate a lis with a set 0 items .

3 R<_p¢ tance [19] and (road) network distance [18], [20]. The ad-
4: for (K iterations)do _ vantage of using Incremental KNN techniques is that they
5: i < Retrieve the item with the next lowest travel penalty (SettiV-B) . . . )
6: Inserts into R ordered byRecScore(U, i) computed by Equation 5 prowde anexacttravel distances between a querying users
72 end for R location and each recommendation candidate item. The dis-
8. LowestRecScore < RecScore of the k'™ object in R . . .

9: /*Retrieve items one by one in order of their penalty value */ advantage is that distances must be computdnhe at query

10: while there are more items to process runtime, which can be expensive. For instance, the runtime

11: i < Retrieve the next item in order of penalty score (SectioB)V- . L. i . . .

12:  MazPossibleScore « MAX_RATING - i.penalty complexity of retrieving a single item using incremental KN

13: if MaxPossibleScore < LowestRecScore then in Euclidean space is [1%)(/€+ZOQN), whereN andk are the

14: return R /* early termination - end query processing */ . . . .

15 endif number of total items and items retrieved so far, respdgtive

161 RecScore(U, i) < P(U,4) - i.penalty /* Equation 5 */ 2) Penalty Grid: A Heuristic Offline MethodA more ef-

17: if RecScore(U,i) > LowestRecScore then - | hod . | It

18: Inserti into R ordered byRecScore(U, i) ficient, yet less accurate method to retrieve travel persalti

%gi dL_?westRecScore + RecScore of the k*" object in R incrementally is to use a pre-computeenalty grid The idea

: en . ™. . . .
21: end Whi'|e is to part|t|0n_ space using an x n grid. Each grid c_ellc
22: rewmn R is of equal size and contains all items whose location falls

within the spatial region defined by, Each cellc¢ contains
a penalty listthat stores the pre-computed penalty values for

possiblerecommendation score thatan have by subtracting traveling from anywhere within to all othern? —1 destination
the travel penalty ofi from MAX_RATING the maximum cells in the grid; this means all items within a destinatioiu g
possible rating value in the system, e.g., 5 (Line 12); If cell share thesamepenalty value. The penalty list for is
cannot make it into the list of top-recommended items with sorted by penalty value and always storg#self) as the first
this maximum possible score, we immediately terminate kthe &em with a penalty of zero. To retrieve items incrementaly
gorithm by returningR as the topk recommendations without items within the cell containing the querying user are el
computing the recommendation score (and travel distamece) 6ne-by-one (in any order) since they have no penalty. After
more items (Lines 13 to 15). The rationale here is that sintieese items are exhausted, items contained in the nextcell i
we are retrieving items in increasing order of their penaltyie penalty list are returned, and so forth until Algorithm 2
and calculating the maximum score that any remaining iteterminates early or processes all items.
can have, then there is no chance that any unprocessed iteffo populate the penalty grid, we must calculate the penalty
can beat the lowest recommendation scoreRinf the early value for traveling from each cell to every other cell in the
termination case does not arise, we continue to compute grid. We assume items and users are constrained to a road
score for each itemusing Equation 5, inseftinto R sorted by network, however, we can also use Euclidean space without
its score (removing thé'” item if necessary), and adjust theconsequence. To calculate the penalty from a single soette c
lowest recommendation value accordingly (Lines 16 to 20)¢ to a destination celll, we first find the average distance to

Travel penaltyrequires very little maintenance. The onlytravel from anywhere withim to all item destinations withid.
maintenance necessary is to occasionally rebuild the esingb do this, we generate aanchor pointp within ¢ that both
system-wide item-based collaborative filtering model idesr (1) lies on the road network segment withinand (2) lies
to account for new location-based ratings that enter thiesys as close as possible to the centercofith these criteriap
Following the reasoning discussed in Section IlI-C, we ilgbu serves as an approximate average “starting point” for lirye
the model after receivindi% new location-based ratings. from ¢ to d. We then calculate the shortest path distance
from p to all items contained inl on the road network (any
shortest path algorithm can be used). Finally, we average al

This section gives an overview of two methods we implezalculated shortest path distances frono d. As a final step,
mented in LARS to incrementally retrieve items one by one oiwve normalize the average distance frento d to fall within
dered by their travel penalty. The two methods exhibit agradthe rating value range. Normalization is necessary as tirgra
off between query processing efficiency and penalty acguradomain is usually small (e.g., zero to five), while distange i
(1) anonlinemethod that provides exact travel penalties but imeasured in miles or kilometers and can have large valués tha
expensive to compute, and (2) afiline heuristic method that heavily influence Equation 5. We repeat this entire process f
is less exact but efficient in penalty retrieval. Both methodkach cell to all other cells to populate the entire penalig.gr
can be employed interchangeably in Line 11 of Algorithm 2. When new items are added to the system, their presence in

1) Incremental KNN: An Exact Online Methodo calcu- a cell d can alter the average distance value used in penalty
late an exact travel penalty for a ugeto itemi, we employ an calculation for each source cell Thus, we recalculate penalty
incrementalk-nearest-neighbor (KNN) technique [18], [19],scores in the penalty grid aftéf new items enter the system.
[20]. Given a user locatiord, incremental KNN algorithms We assume spatial items are relatively static, e.g., remtis
return, on each invocation, the next itenmearest tou with do not change location often. Thus, it is unlikelyistingitems
regard to travel distancag In our case, we normalize distancewill change cell locations and in turn alter penalty scores.

B. Incremental Travel Penalty Computation
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V. SPATIAL USERRATINGS FOR

SPATIAL ITEMS

. . , nd MovielLens data. To test the effectiveness of our pro-
. This s_ecuon Qescr|pes how LARS_ produces recommencgao—sed techniques, we test the quality of LARS with only
tions using spaugl rat|n.gs fpr spgual |_tems repr_esen;edwb travel penalty enabled (abbr. LARS-T), LARS with only user
tuple (use_r, ulocation rating, item |I_o_cat_|on).AsaI|ent feature partitioning enabled (abbr. LARS-U), and LARS with both
of LARS is that both theiser partitioningandtravel penalty o niques enabled (abbr. LARS). To measure quality, wl bui
techniques can be used together with very little change dg ., vecommendation method using 80% of the ratings from
produce recommendations using spatial user ratings fa@spag oy gata set. Each rating in the withheld 20% represents a
items. The data structures and maintenance techniquesi;rren?g?)ursquare venue or MovieLens movie a user is known to
exactly the same as discussed in Sgctions_lll and I_V_; O_n\-‘rke (i.e., rated highly). For each ratingin this 20%, we
the query processing framework requires a slight modifieati o est 4 set o recommendation® by submitting theuser
Query processing uses Algorithm 2 to produce recommeliy 5cation associated with. The quality measure is the
dations. I—!owe_ver_, the on!y .dlﬁerence 'S, that thg |tem-Uas%ount of how many time® contains thétem associated with
collaborative filtering prediction scot(u, i) used in the rec- (the higher the better). The rationale for this metric isttha
ommendatlon_ score calculz_;ltlon (Line 16 In A'QO”Fhm 2) 'Rince each withheld rating represents a real visit to a venue
generated using the (localized) collaborative filteringdedo (or movie a user liked), the technique that produces a large

from the partial pyramid cell that contains the queryingrus&,,mper of answers that contain venues (or movies) a user is
instead of the system-wide collaborative filtering modelvas known to like is considered of higher quality

used in Section IV.
Figure 6(a) compares the quality of each technique for vary-

V1. EXPERIMENTS ing locality (i.e., different levels of the adaptive pyrathusing

This section provides experimental evaluation of LAR$he Foursquare data. Both CF and LARS-T do not use the
based on an actual system implementation. We compare LAR§aptive pyramid, thus have constant quality values. Tipe ga
with the standard item-based collaborative filtering teghe petween CF and LARS-T highlights the benefit of using the
along with several variations of LARS. Experiments are Hasgavel penaltytechnique that recommends items within a fea-
on three data sets: (Bpursquare a real data set consisting ofsjple distance. Meanwhile, the quality of LARS and LARS-U
spatial user ratings for spatial itemserived from Foursquare jncreases as more localized pyramid cells are used to pro-
user histories. (2MovieLens a real data set consisting ofduce recommendation, which verifies thaser partitioningis
spatial user ratings for non-spatial itemtaken from the indeed beneficial and necessary for location-based ratifigs
popular MovieLens recommender system [7]. The Foursquaji@ately, LARS has superior performance due to the addition
and MovieLens data are used to test recommendation qualif¥e oftravel penalty While travel penaltyproduces moderate
(3) Synthetic a synthetically generated data set consistinguality gain, it also enables more efficient query procegsin
spatial user ratings for spatial items for venues in theestht which we observe later in Section VI-E).

Minnesota, USA; we use this data to test scalability andyjuer )
efficiency. Details of all data sets are found in Appendix B. Figure 6(b) compares the quality of LARS-U and CF for

Unless mentioned otherwise, the default value\afis 0.3, Varying locality using the MovieLens data (LARS and LARS-
k is 10, the number of pyramid levels is 8, and the influenced0 not apply since movies are not spatial). While CF quality
level is the lowest pyramid level. The rest of this sectioaley IS constant, the quality of LARS-U increases when it produce
ates LARS recommendation quality (Section VI-A), tradésof movie recommendations from more localized pyramid cells.
between storage and locality (Section VI-C), scalabile¢- This behavior further verifies thatser partitioningis ben-

tion VI-D), and query processing efficiency (Section VI-E). €ficial in providing quality recommendations localized to a
guerying user location, even when items are not spatiall-Qua

A. Recommendation Quality for Varying Pyramid Levels iy decreases (or levels off for MovieLens) for both LARS-U

These experiments test the recommendation quality arfid/or LARS for lower levels of the adaptive pyramid. This
LARS against the standard (non-spatial) item-based amitab is due torecommendation starvatigme., not having enough
tive filtering method (denoted as CF) using both the Fourguamatings to produce meaningful recommendations.
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These experiments test recommendation quality of LARS, Figure 9 depicts the storage and aggregate maintenance over
LARS-U, LARS-T, and CF for different values df (i.e. head required for an increasing number of ratings. We again
recommendation answer sizes). We perform experimentg usfiot LARS-M=0 and LARS-M=1 to indicate the extreme cases
both the Foursquare and MovieLens data. Our quality metffy LARS. Figure 9(a) depicts the impact of increasing the
is exactly the same as presented previously in Section VI-Aumber of ratings from 10K to 500K on storage overhead.

Figure 7(a) depicts the effect of the recommendation Iig‘lfA‘RS"V'_:0 _require_s the lowest a_mou_nt (_)f storage since it
%lly maintains a single collaborative filtering model. LARS

size k on the quality of each technique using the Foursquare' . he hiah ¢ ) ) X
data set. We report quality numbers using the pyramid heith'1 requires the highest amount of storage since it requires

of four (i.e., the level exhibiting the best quality from gecStorage of a collaborative filtgring model for all ce_IIs (ih a
tion VI-A in Figure 6(a)). For all sizes of from one to ten, Ievels)_of a complete pyramid. The stprag(_e requirement of
LARS and LARS-U consistently exhibit better quality. In fac LARS is in betV\_/een the two e_xtremes since '.t Merges cell_s to
LARS is consistently twice as accurate as CF fokallARS- save storage. Figure 9(b) depicts the cumulative comjoukalti

T exhibits similar quality to CF for smallet values, but does overhead necessary to maintain the adaptive pyramidipitia
better fork values of three and larger populated with 100K ratings, then updated with 200K ratings

Figure 7(b) depicts the effect of the recommendation Iigtncrements of 50K reported). The trend is similar to the-sto

sizek on the quality of LARS-U and CF using the MovieLen age expe_rlment, where ITARS exhibits better p_erformanae tha
: : . ARS-M=1 due to merging. Though LARS-M=0 has the best
data (LARS and LARS-T do not apply in this experimen ) :
. . . . . performance in terms of maintenance and storage overhead,
since movies are not spatial). This experiment was run usi oUS experiments show that it has unaccentable dragbac
a pyramid hight of seven (i.e., the level exhibiting the be&€VIous experl W ! u P

quality in Figure 6(b)). Again, LARS-U consistently exhbi In quality/locality.
better quality than CF for sizes d@f from one to ten. In fact, g Query Processing Performance

the quality of CF increases by just a fraction /asncreases.

Meanwhile, the quality of LARS-U increases by a factor of Figure 10 depicts snapshot and continuous query process-
seven as: increases from one to ten. ing performance of LARS, LARS-U (LARS with onlyser

partitioning), LARS-T (LARS with only travel penalty, CF
(traditional collaborative filtering), and LARS-M=1 (LARS
with a complete pyramid).

Figure 8 depicts the impact of varying1 on both the Snapshot queries.Figure 10(a) gives the effect of various
storage and locality in LARS. We plot LARS-M=0 and LARS-humber of ratings (10K to 500K) on the average snapshot
M=1 as constants to delineate the extreme valuesffi.e., query performance averaged over 500 queries posed at random
M=0 mirrors traditional collaborative filtering, whild1=1 locations. LARS and LARS-M=1 consistently outperform all
forces LARS to employ a complete pyramid. Our metric foother techniques; LARS-M=1 is slightly better due to recom-
locality is locality loss(defined in Section I1I-C1) when com- mendations always being produced from the smallest (i.e.,
pared to a complete pyramid (i.6\{=1). LARS-M=0 requires most localized) CF models. The performance gap between
the lowest storage overhead, but exhibits the highestitgcalLARS and LARS-U (and CF and LARS-T) shows that em-
loss, while LARS-M=1 exhibits no locality loss but requireploying the travel penaltytechnique with early termination
the most storage. For LARS, increasifng results in increased leads to better query response time. Similarly, the peréoe
storage overhead since LARS favors splitting, requiring tlgap between LARS and LARS-T shows that employirsgr
maintenance of more pyramid cells each with its own copartitioning technique with its localized (i.e., smaller) collab-
laborative filtering model. Meanwhile, increasingl results orative filtering model also benefits query processing.
in smaller locality loss as LARS merges less and maintai@ontinuous queries. Figure 10(b) provides the continuous
more localized cells. The most drastic drop in locality losguery processing performance of the LARS variants by report
is between 0 and 0.3, which is why we chas¢=0.3 as a ing the aggregate response time of 500 continuous queries. A
default. continuous query is issued once by a ugdpo get an initial

C. Storage Vs. Locality
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Traditional recommenders. A wide array of techniques are
capable of producing recommendations using non-spatial ra
ings for non-spatial items represented as the tripke( rat-
ing, item) (see [6] for a comprehensive survey). We refer to
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O 50 100 200 500 06 3 62 93 124 155 186 these approaches come to considering location is by incor-
Number of Ratings (*1000) Travel Distance (miles) porating contextual attributes into statistical recomdagion
(a) Snapshot Queries (b) Continuous Queries models (e.g., weather, traffic to a destination) [26]. Hogvev
Fig. 10. Query Processing Performance. no traditional approach has studied explicit locationeolast-

answer, then the answer is continuously updated awves. INgs as done in LARS. Some existing commercial applications
We report the aggregate response time when varying the traake cursory use of Iocatlon_ when proposing interestimgste
distance ofu from 1 to 30 miles using a random walk overl© users. For instance, Netflix [2] displays a “local favesit

the spatial area covered by the pyramid. CF has a consth$fcontaining popular movies for a user's given city. Hoee
query response time for all travel distances, as it requices these movies areot personalized to each user (e.g., using
updates since only a single cell is present. However, sirfee €€commendation techniques); rather, this list is builngsi

is unaware of user location change, the consequence is pg@gregate rental data for a particular city [27]. LARS, on
recommendation quality (per experiments from Section w_Athe other hand,_ produces pe_rsonallzed recom_mendatlous |qu
LARS-M=1 exhibits the worse performance, as it maintaihs nced by location-based ratings and a querying user lacatio
cells on all levels and updates the continuous query whenel@cation-aware recommendersThe CityVoyager system [28]
the user crosses pyramid cell boundaries. LARS-U has a loWBin€S & user's personal GPS trajectory data to determine her
response time than LARS-M=1 due to merging: when a cell i§eferred shopping sites, and provides recommendaticgtbas
not present on a given influence level, the query is transfierOn Where the system predicts the user is likely to go in the
to its next highest ancestor in the pyramid. Since Ce”Séﬂghfuture. LARS conversely, does not attempt to predict future
in the pyramid cover larger spatial regions, query updatd§€r movement, as it produces recommendations influenced by
occur less often. LARS-T exhibits slightly higher query proUSer and/or item locations embedded in community ratings.
cessing overhead compared to LARS-U: even though LARS-The spatial activity recommendation system [29] mines GPS
T employs the early termination algorithm, it uses a larg&djectory data with embedded user-provided tags in ormler t
(system-wide) collaborative filtering model to (re)gererc- detect interesting activities located in a city (e.g., atftibits
ommendations once users cross boundaries in the penaity @d dining near downtown). It uses this data to answer two
LARS exhibits a better aggregate response time since it efflery types: (a) given an activity type, return where in tiy c
ploys the early termination algorithm using a localizea.(i. this activity is happening, and (b) given an explicit spatia
smaller) collaborative filtering model to produce resultsiles '€gion, provide the activities available in this region.isTh

also merging cells to reduce update frequency. is a vastly different problem than we study in this paper.
LARS does not mine activities from GPS data for use as
VII. RELATED WORK suggestions for a given spatial region. Rather, we apply 8AR

Location-based servicesCurrent location-based services emto a more traditional recommendation problem that uses com-
ploy two main methods to provide interesting destinatians munity opinion histories to produce recommendations.
users. (1) KNN techniques [19] and variants (e.g., aggeegat Geo-measured friend-based collaborative filtering [3@} pr
KNN [21]) simply retrieve thek objects nearest to a user andluces recommendations by using only ratings that are from
are completely removed from any notion of uparsonaliza- a querying user’s social-network friends that live in thenea
tion. (2) Preference methods such as skylines [22] (and spatd#ly. This technique only addresses user location embedded
variants [23]) and location-based tépmethods [24] require in ratings. LARS, on the other hand, addresses three pessibl
users to expresexplicit preference constraints. Converselytypes of location-based ratings. More importantly, LARSis
LARSis the first location-based service to consid®aplicit complete system (not just a recommendation technique) that
preferences by using location-based ratings to help useraploys efficiency and scalability techniques (e.g., nmygi
discover new and interesting items. splitting, early query termination) necessary for depleytrin
Recent research has proposed the problem of hyper-loaatual large-scale applications.
place ranking [25]. Given a user location and query string
(e.g., “French restaurant”), hyper-local ranking progidelist
of top-k points of interest influenced by previously logged LARS, our proposed location-aware recommender system,
directional queries (e.g., map direction searches fronmtpotackles a problem untouched by traditional recommender sys
A to point B). While similar in spirit to LARS, hyper-local tems by dealing with three types of location-based ratings:
ranking is fundamentally different from our work as it doespatial ratings for non-spatial itemsion-spatial ratings for
not personalizeanswers to the querying user, i.e., two usergpatial items andspatial ratings for spatial itemd ARS em-
issuing the same search term from the same location wiloys user partitioningandtravel penaltytechniques to sup-
receive exactly the same ranked answer set. port spatial ratings and spatial items, respectively. Betth-

VIIl. CONCLUSION



nigues can be applied separately or in concert to support the APPENDIX
various types of location-based ratings. Experimentalysi® A Foursquare Description
using real and synthetic data sets show that LARS is efficient Foursquare [4] is a mobile location-based social network

tsecfrlliki)Ii,egrsjdse%rci)r\wngrzzitti)(?rgtaelrrgs(?rlgfnéifg:?i?sgtslons tha?pplication. Users are associated with a home city, and aler
q y ' friends when visiting a venue (e.g., restaurant)'tlyecking-
in” on their mobile phones. During a “check-in", users can
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