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Abstract—This paper introduces HadoopViz; a MapReduce-
based framework for visualizing big spatial data. HadoopVk has
three unique features that distinguish it from other techniques.
(1) It exposes an extensible interface which allows users tie ne a
new visualization types, e.g., scatter plot, road networkpr heat
map, by de ning ve abstract functions, without delving int o
the implementation details of the MapReduce algorithms. At
is open source, HadoopViz allows algorithm designers to fos
on how the data should be visualized rather than performance
or scalability issues. (2) HadoopViz is capable of generatg
big images with giga-pixel resolution by employing a three-
phase technique partition-plot-merge (3) HadoopViz provides a
smoothing functionality which can fuse nearby records together
as the image is plotted. This makes it capable of generating one
types of images with high quality as compared to existing wd.
Experimental results on real datasets of up to 14 Billion paits
show the extensibility, scalability, and ef ciency of HadmpViz to
handle different visualization types of spatial big data.

I. INTRODUCTION

Figure 1(a) portrays an example of visualizing the heat map
of world temperature in one month, with a total of 14 billion
points. Traditional single-machine visualization techugs [7],
[19], [22], [28] have limited performance, thus they take
around 1 hour to visualize this data on a machine with 1TB of
memory. GPUs can signi cantly speed up the processing [20],
[23], yet they are still hindered by the limited memory re-
sources of a single machine. Meanwhile, there exist three
distributed algorithms for visualizing spatial data [926],
[33]. Two of them [26], [33] rely on gixel-level-partitioning
phase, which partitions and groups records by the pixel they
affect, and then combines these records to calculate tle col
of that pixel, which takes 25 minutes on a 40-core cluster.
The third technique [9], achieves better performance but it
relies on an expensive preprocessing phase which limits its
application. In general, these techniques suffer from ethre
limitations: (a) They do not support moothingfunction to
fuse nearby records together, which limits the image tybeg t
can generate. For example, Figure 1(a) contains white spots

In recent years, there has been an explosion in the amourdsd strips due to missing values that need tsimeothedut.
of spatial data produced by several devices such as smais) The performance degrades with giga-pixel images due to
phones, space telescopes, medical devices, among otlers. he excessive number of pixels. (c) Each algorithm is tador
example, space telescopes generate up to 150 GB weekly a speci ¢ image type, e.g., satellite images [9], [26] @ 3
spatial data [31], medical devices produce spatial ima¥es ( triangles [33], and it cannot be used to visualize other &«ind
rays) at a rate of 50 PB per year [12], a NASA archive ofof big spatial data, e.g., scattered points, or road netsvork
satellite earth images has more than 1 PB and increases daily

by 25 GB [17], while there are 10 Million geotagged tweets

This paper presents HadoopViz, an extensible MapReduce-

issued from Twitter every day as 2% of the whole Twitter based framework for visualizing big spatial data. HadoapVi
rehose [32]. Meanwhile, various applications and agescie overcomes the limitations of existing systems as: (a) l{iapp
need to process an unprecedented amount of spatial datasmoothingechnique which allows it to produce more image
For example, the Blue Brain Project [21] studies the brain'stypes that require fusing nearby records together. For pi@am

architectural and functional principles through modelbrgin

it produces the image in Figure 1(b) where missing values are

neurons as spatial data [30]. Meteorologists study andlabeu smoothed out by interpolating nearby points. (b) It employs

climate data through spatial analysis [13]. News reponises
geotagged tweets for event detection and analysis [27].

A major need for all these applications is the ability to
visualize big spatial data by generating an image that pgesvi

a bird's-eye data view. Visualization is a very common tdaitt
allows users to quickly spot interesting patterns whichvany
hard to detect otherwise. Examples of spatial data visataiz

include visualizing a world temperature heat map of NASA

satellite data, a scatter plot of billions of tweets worldei

a frequency heat map for Twitter data showing the hot spo
of generated tweets, a road network for the whole world, or
network of brain neurons. In all these visualization examspl

users should be able to zoom in and out in the generated image

to get different resolutions of the whole data set.

This research is capitally supported by NSF grants 11S-0932 IIS-
1218168, 11S-1525953, CNS-1512877 and by AWS in EducaticemGaward

a three-phase approacpartition-plot-merge where it auto-
matically chooses an approprigiartitioning scheme to scale
up to generate giga-pixel images. For example, it takes only
90 seconds to visualize the image in Figure 1(b). HadoopViz
uses this approach to generate bsitigle-levelimages with a
xed resolution, andmulti-level imagesvhere users can zoom

in and out. (c) It proposes a noveisualization abstraction
which allows the same ef cient core algorithms to be usedhwit
dozens of image types, such as scatter plot, road netwarks, o

tgrain neurons. This allows users to focus only on designing

ow the desired image should look like, while HadoopViz is
responsible of scaling it up to thousands of nodes.

Without HadoopViz, to equip a system with data visualiza-
tion, one needs to implement an algorithm for visualizinglsa
lite data [26], another algorithm for visualizing tweet®9]2a
third algorithm for heatmap visualization [9], and so onisTh



(a) Takes one hour on a machine with 1TB memory, and 25 minutes (b) Takes 90 seconds on HadoopViz running on a 40-core clasig
on a 40-core cluster. All without the ability of recoveringssing data recovers missing data

Fig. 1. Temperature Heat Map of 14 Billion Points of NASA Jléte Data (Best viewed in colors)

is not practical as each technique has its own data struattte The rest of this paper is organized as follows: Sec-
storage requirements. From a system point of view, thetimlis tion Il highlights related work. Sections Ill and IV descgib
and extensible approach of HadoopViz is very appealing antladoopViz algorithms for generating single and multilevel
industry-friendly. One needs to realize it once in the gyste images, respectively. Section V describes HadoopViz Wsua
then, a wide range of various forms of visualization types ar ization abstraction. Section VI shows six visualizatiorsea
immediately supported ef ciently. studies using that abstraction. Section VII provides aregxp

HadoopViz realizes this extensibility through \@bstract mental evaluation. Finally, Section VIII concludes the @ap

functions where all visualization algorithms in HadoopViz

are implemented using these functions, nameiyooth , Il.  RELATED WORK

create-canvas , plot , merge, andwrite . Once a user This section discusses related work to HadoopViz from the
de nes them, HadoopViz plugs these functions into its gener following three different angles:

visualization algorithms to scale image generation to saods
of nodes and terabytes of data. (1) The optiosalooth Big Spatial Data. The explosion in the amounts of spatial
function can be used to fuse nearby records together, e.glata has led to a plethora of research in big spatial data that
merge intersecting road segments or recover missing values either focus on specic problems (e.g., range query, spatia
satellite data. (2) Thereate-canvas function initializes join [37], and kNN join [18]), or on building full- edged

an empty drawing on which records are plotted, e.g., itSystems for processing big spatial data, e.g., Hadoop-GIS [
initializes an in-memory image for drawing road network or MD -HBase [24], SciDB [29], and SpatialHadoop [10]. Unfor-

a 2D histogram to create a heat map. (3) & function  tunately, none of these systems provide ef cient visudilza
does the actual drawing of input records, e.g., it draws & lintechniques for big spatial data.

segment ina r(_)ad network or updates the histpgram ac_cordir]gg Data Visualization. Many systems were designed to
to a point location. (4) Thenerge function combines multiple visualize non-spatial big data (e.g., [3], [16], [34]-[Baiy

Eant\)/IZi%?nto f?xrg égﬁ)rgﬂrprﬁgir%set.v% Ir:i ST: r?aeri;vxéo ';T%?ﬁ%ownsizing the data, using sampling or aggregation, ana the
y gp 9 9 y isualizing the downsized data on a single machine as a

up the values in each entry. (5) Theite function generates chart or histogram. For example, Ermac [36] suggests iject
thhe nal picture ?Ut cf>f a canvas, e.g., it generates a colorfu, g the visua?izatién algorithrr;s’in the databasgeg enginé SO
ir:’lSE;cg)grﬁ]TO C;u;tgn daarée\?:§2$¥mn;32’ f(())rrmc;tmpresses a vectéﬂat sar_np_llng and aggregation are done ez_;trly in _the query
' plan. Similarly, M4 [16] rewrites SQL queries taking into
This paper shows the extensibility of HadoopViz usingaccount the limited size of the generated image to perform
six examplesscatter plot road network frequency heat map aggregation inside the database and return a small result
satellite heat mapsrectorized mapandcountries bordersall  size. Bin-summarise-smootf85] downsizes the data blyin-
implemented using the ve abstract functions. As HadoopVizning (partitioning),summarizingaggregation), andmoothing
is open source [14], users can refer to these case studiés whivhile the downsized data is visualized on a single machine.
providing their own image types, e.g., brain neurons ordraf Unfortunately, all these techniques are designedéor-spatial
data. In addition, users can reuse existing code or thirtypar data and do not apply fapatial data visualization.

libraries in these abstract functions to scale them out. Fo . , o : . -
efpatlal Data Visualization. Major examples of visualizing

patial data include Google and Bing Maps, which allow users
to interactively navigate through pre-generated statiages.

To generate similar images for user-de ned data, existing
techniques can be broadly categorized into:Saygle-machine

0 techniqueg4], [7], [11], [19], [22], [28] that focus on de ning

w the generated image should look like per the application
eds, while the performance is out of scope. MapD [20], [23]
provides signi cant speedup to single machine algorithms b
LPlease refer to the generated video at http://youtu.beRBIVRBtDa0 employing GPU, but it is still limited to the capabilities of

example, we scale out the single-machine ImageMagick [15
package using HadoopViz which gives it a 48X performanc
boost. HadoopViz is extensively experimented with seveall
datasets including the world road network (165 million poly
lines), and NASA satellite data (14 billion points). Hadd@p
ef cient design allows it to visualize NASA dataset in 9
seconds. It also generates a video (composed of 72 framegg
out of 1 trillion points in three hours on a 10-node cluster n
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Fig. 2. Single level visualization algorithm 18
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a single machine. (bpistributed technique$9], [26], [33] 12:

w

that use a cluster of distributed machines for better sdijab

: function SINGLELEVELPLOT(InFile, INMBR, ImageSize)
. /I The input is already partitioned intm partitions Py to Py
: /I The Plotting Phase

for each partitionhP; ;BR ;i do
Create a 2D matrixG of sizelmageSize
UpdateG according to each poirf 2 P;
end for

. /I The Merging Phase

. Create a nal matrixG with the desired ImageSize

. For each reducsr, calculateG as the sum of all assigned matrices
: One machine computé&$ as the sum of al matrices

Generate an image by mapping each entrginto a color

13: Write the generated image as the nal output image

The pixel-level-partitioning technique [26], [33] is used
visualize 3D meshes and satellite data by partitioning neco
by the pixel they affect in the nal image. SHAHED [9] uses a
spatial partitioning technique which relies on an of inegsie
that indexes and cleans the data. Visualization in SHAHED

A. Default Hadoop Partitioning

has been revamped using HadoopViz so that it performs This section describes the single-level visualizatioroalg
both partitioning and cleaning on the y. Overall, there arerithm which uses thalefault-Hadooppartitioning. As shown
three main drawbacks to these distributed systems. (1) Nah Algorithm 1, the algorithm assumes that the input is alyea

ef cient for generating big images with giga-pixel resaart.

loaded in HDFS, which splits the input into equi-sized bkck

(2) Designed to support a specic image type and cannobf 128MB each. This means that tipartitioning phase has
directly apply to other image types. (3) They cannot produceéothing to do.

images in which nearby records are fused together as they do
not support asmoothingfunction.

The plotting phase in Lines 3-7 runs as a part of the

HadoopViz. HadoopViz lies in the intersection of the above map function where each mapper generates a partial image

three areas, by providing a framework fbig spatial data

G for each partitionP;, 1 i

m. In Line 5, it initializes

visualization HadoopViz distinguishes itself form distributed @ matrix G with the same size as the desiréuageSize

spatial data visualization systems [9], [26], [33] in threein pixels (idth

height), which acts as aanvasto plot

main issues: (1) HadoopViz is an order of magnitude fastefeécords inP;. Each entry contains two numbersym and

than existing techniques, which makes it more plausible foeount which, respectively, contain the summation and count
generating giga-pixel images over big data sets. (2) Hadiaop ©f all temperature values in the area covered by one pixel,
has an extensible design where users can plug in their ovv*hOt_h initialized to zeros. These two values are used_togethe
visualization logic by implementing ve abstract functmn t0 incrementally compute the average temperature in each
This allows HadoopViz to support new image types withoutPiXel. Line 6 scans the point in the assigned partitRnand
changing the core visualization algorithms. (3) HadoopVizUpdates the matri& according to its location and temperature.
supports a user-de nesimoothingfunction which expands the The point location (jetermmes the matrix entry to update, th
spectrum of supported image types to those which requiremperature value is added to tsementry, and thecount
nearby records to be fused together as the image is generate@ntry is incremented by one. Finally, the mapper writes the

IIl. SINGLE-LEVEL VISUALIZATION

matrix contents as an intermediate record to be processed
by the nextmerging phase. These intermediate matrices are
shuf ed across theR reducers so that each reducer machine
receives an average ai=R matrices.

This section explains how HadoopViz visualizes satellite
data as a single-level image, i.e., an image which shows all

the details in one level. Sections V and VI generalize the

described algorithms to other data types usingvibealization
abstraction The inputs to this algorithm are an input le to
visualize, the MBR of its contents, and the desitethgeSize
in pixels, while the output is an image of the desired sizecWwhi
contains a temperature heat map, as in Figure 1(b).

In the merging phase, Lines 8-13 merge all intermediate
matricesG, in parallel, into one nal matrixG and writes
it as an output image. This phase runs in three stpadijal
merge nal merge, andwrite image The partial mergestep
runs locally in each machine where each reducer sums ug all it
assigned matrices into one nal matr wherel j R.
In the nal merge step, a single machine reads back the

Figure 2 gives an architectural view of the single-levelR matrices and adds them up to a single nal mat@x.
visualization process in HadoopViz which follows a threeFigure 3(a) shows how this stepverlaysthe intermediate

phase approach where (1) thartitioning phase splits the input
into m partitions, (2) theplotting phase plots a partial image
for each partition, and (3) thenerging phase combines the
partial images into one nal image. This section descrilves t
algorithms that use this approadefault-Hadoop partitioning
(Section 111-A), andspatial partitioning(Section IlI-B). Sec-

matrices into one nal matrix. Finally, thevrite imagestep

in Line 13 computes the average temperature for each array
position and generates the nal image by coloring each pixel
according to the average temperature of the corresponding
array position. For example, the pixels can be colored with
shades that range from blue to red between the lowest and

tion 111-C describes how HadoopViz automatically chooses a highest temperatures, respectively. The image is nallittem

appropriate algorithm for a given visualization problem.

to disk as one le in a standard image format such as PNG.



> 21 C. Discussion
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b7 Gy If the user needs to generatesmoothimage, then only
the spatial partitioning algorithm is applicable. However, if
G no smoothing is required, both techniques are applicalbde an
HadoopViz has to decide which one to use. By contrasting the
G two techniques, we nd that there is a tradeoff between the
partitioningandmergingphases, where the rst algorithm uses
. a zero-overheagbartitioning phase, and an expensiveerlay
(a) Overlay (b) Stitch merging phase, while the second one pays an overhead in
Fig. 3. Merging intermediate images spatial partitioningbut saves with the more ef cierstitching
technique in themerging phase. By intuition, thedefault-
B. Spatial Partitioning Hadoop algorithm is useful as long as thglotting phase

can reduce the size of the input partitions by generating
smaller partial images. This condition holds if the desired
ImageSizein bytes is smaller than the size of one input
partition, which is equal to HDFS block capacity. Otherwise
if the ImageSizeis larger than an HDFS block, thgpatial
partitioning would be more ef cient as it partitions the input,
without signi cantly increasing its size, while ensuringat
each partition is visualized into a much smaller partial gea

This section describes the single-level visualizatiorpalg
rithm using spatial partitioning It differs from the previous
algorithm in two parts, thepartitioning phase uses a spatial
partitioning, and thenerging phasestitchesintermediate im-
ages rather thaonverlayingthem as shown in Figure 3(b). If
the user requestssamoothimage, as in Figure 1(b), then only
this algorithm is applicable. This algorithm is implemehtes
a single MapReduce job as described below.

The partitioning phase runs in the map function and uses 10 Prove the above condition analytically, we measure
the SpatialHadoop partitioner [8], [10] to break down theth® overhead of thepartitioning and merging phases. We
input space intodisjoint cells and assign each record to ignore the overhead of thplotting phase and writing the
all overlapping cells. Notice that thpixel-level partitioning Output since they are the same for both algorithms. In the
technique, employed in previous work [26], [33], is a spkcia default-Hadoopalgorithm, thepartitioning phase has a zero

case of this phase where it applies a uniform grid equal to th@verhead, and thmergingphase processes partial images,
desiredimageSize each with a size equal to the desiredageSizewhich makes

_ ) ) its total cost equal tan  ImageSize. In the spatial par-

The plotting phase runs in theeducefunction where all  titioning algorithm, the cost opartitioning phase is equal
records in each partition are grouped together and visaliz to the input size, as it scans the input once, and the cost
to generate ongartial image. First, it applies the 2D in- of the merging phase is equal to the size of the desired
terpolation techniques employed by SHAHED [9] to recoverimage because partial images are disjoint and they colidyti
missing values. Unlike SHAHED, this function is applied cover the desired image size. HadoopViz decides to use the
on-the-y which gives more exibility to apply different spatial partitioning when it produces a less estimated, cest
smoothing functions. Then, thplotting phase initializes a |nputSize + ImageSize<m ImageSize. By rearranging
matrix G, similar to the one described in tliefault-Hadoop terms and substitutingnputSize = m  BlockSize, the
algorithm. However, the size of this matrix is calculatedinequality become{m  1)ImageSize > m:BlockSize.
aswidth = ImageSize:width -2RIWI__ and height =  Gjven thatm 1 for large inputs, the condition becomes
ImageSize:Height%, wherelmageSize is the ImageSize > BlockSize as mentioned above.
desired image size in pixels aldMBR is the minimum
bounding rectangle (MBR) of the input space. Finally, the
reduce function scans all records in the given partition and V. MULTILEVEL VISUALIZATION
updates thesum and count of the array entries as described

in the default-Hadoogalgorithm. This section presents HadoopViz algorithm for generating

gigapixel multilevel images where users can zoom in/oueto s
The merging phase merges the intermediate matri€es more/less details in the generated image. Similar to Sediio
into one big matrix by stitching them together according towe focus on the case study of visualizing temperature data as
their locations in the nal image, as shown in Figure 3(b).a heat map while the next two sections show how HadoopViz
Similar to the default-Hadoopalgorithm, this phase runs in is generalized to a wider range of images. Figure 4(a) gives
three stepspartial merge nal merge, andwrite image The an example of a three-level image, also callegpyaamid
partial mergestep runs in theeduce-commifunction, where containing 1, 4, and 16nage tilesin three zoom levels, each
each reducej 2 [1;R] creates a matrixG equal to the of a xed default size 256 256 pixels. Google and Bing
desired image size and adds all intermediate matrices to iMaps use this type of images where the web interface allows
Each matrixG is added to a position irG according to users to navigate through of ine-generated image tilesisTh
the bounding rectangBR; of its corresponding partitioR;.  section shows how HadoopViz generates those tiles ef tjent
The nal merge step runs on a single machine in tf@h-  for custom datasets, while the same Google Maps APIs are
commitfunction, where it reads back tHe matrices written used to view them. In addition to the input dataset and its
the previous step and adds them up into one m&rixinally  MBR (InMBR), the user species a range of zoom levels to
the write imagestep converts the nal array to an image as generatgznmin ; Zmax ], Which actually decides the image size,
described earlier and writes the resulting image to thewutp by knowing the number of 256 256 pixels tiles in each
as the nal answer. level. The output isa setof images, one for each tile in the
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Fig. 4. Multilevel Image Visualization

(a) A sample three-level image

(c) Coarse-grained pyramid partitioning

desired range of zoom levels along with an HTML le that as intermediate key-value pairs, where the key is the tile ID
uses Google Maps APIs to navigate these tiles. and the value is the 2D array.

One way to generate such multilevel images is to use our Themergingphase runs in theeducefunction and merges
single-level visualization algorithm, described in Sewtill, to  intermediate tiles to produce the nal image for each tile.
generate each tile of 256256 pixels. However, this solution This step is necessary because the default Hadoop pagtition
is not practical even for a 10-level image as it containsiani ~ might assign overlapping records to different machines and
of tiles. Another way is to generate one big image at the ligghe each machine will generate a partial image for the same tile
resolution and chop it down into tiles but this is not praatic D, as shown in Figure 4(b). Theergingphase combines alll
either as the size of that single big image could be hundred#ose partial images by summing the corresponding entries i
of gigabytes which does not t on most commodity machines.one nal image, which is nally written to disk, as done in the
HadoopViz uses a smart algorithm which generates all tas til single-level visualization algorithm. The image is wrnittaith
ef ciently in one MapReduce job by taking into account the a standard naming conventiatiié-z-c-v.png ', wherez
structure of the pyramid. is the zoom level of the tile ant;r) is the position of the

The main idea of the multilevel visualization algorithm is tile in that zoom level.

to partition the data cross machines and plot each record to _ . o
all overlapping tiles in the pyramid. The tiles that are pagtial B. Coarse-grained Pyramid Partitioning
generated by multiple partitions are merged to produce one

nal image for that tile. Similar to the single-level visuzation The algorithm described above suffers from two main

\ . o : . drawbacks when the pyramid is very large. First, fhetting
algorithms, the choice of partitioning technique plays an im- phase incurs a huge memory footprint as it needs to keep all

portant role with multilevel visualization and affects tnerall 4\ ¢ ih e \Whole pyramid in main-memory until all records

performance. This section describes two algorithms whicr}ﬂe lotted. Second. theerdinaphase adds a huge processin
use default-Hadooppartitioning (Section IV-A) and a novel overF;lead for mergin,g all th%sgpt)iles. This sectior?dgssrﬁtmv ’

coarse-grained pyramidqrtitioning (Section IV-B). After_that, HadoopViz uses a noveloarse-grained pyramigartitioning
we show how HadoopViz combines these two algorithms tqg . hiniie to avoid the drawbacks of tHefault partitioning
generate a user-requested image ef ciently (Section Iv-C) algorithm. In this technique, the input is partitioned acko

ing to pyramid tiles [2], which ensures that each machine
generates a xed number of tiles while totally avoiding the
In this section, we describe how to generate a multilevemerging phase. While this can be done using a traditional
image with the default partitioning scheme of Hadoop. Thene-grained pyramid partitioning, which creates one partition
main idea is to allow each machine to plot a recordato  per-tile, HadoopViz uses thmarse-grainegartitioning which
overlapping pyramid tiles, and then to applyrergingphase reduces the partitioning overhead by creating a fewer numbe
which combines them to produce the nal image for each tile.of partitions while ensuring the correct generation of mage
Since this algorithm uses thaefaultpartitioning scheme, the tiles. This algorithm runs in two phases orngrtition andplot,

A. Default-Hadoop Partitioning

partitioning phase has a zero overhead. which are implemented in one MapReduce job.

The plotting phase runs in thenapfunction and plots each The partitioning phase runs in thmapfunction and it uses
record in the assigned partitid® to all overlapping tiles in the coarse-grained pyramigartitioning which assigns each
the pyramid. As shown in Figure 4(a), for a recpd P;, recordp to selecttiles. This technique reduces the partitioning

it nds all overlapping tiles in the pyramid in all zoom lewel overhead by creating partitions for tiles only in levelsttha
[zmin ;Zmax ], @s at least one tile per zoom level. For eachare multiples of a system parameter which controls the
overlapping tile, it initializes a two-dimensional array the  partitioning granularity At one extreme, settingg = 1 is
xed tile size, e.g., 256 256, updates the corresponding entriessimilar to using a ne-grained partitioning where it creates
in the array, and caches that tile in memory in case otheone partition per tile. On the other extreme, setting z max
records inP; overlap the same tile again. Once all recordsgenerates only one partition at the top of the pyramid which
are plotted, all tiles, which are cached in memory, are amitt contains all input records. Figure 4(c) shows an examplh wit



k = 2 where it assigns a recona to only two partitions at Algorithm 2 The abstract single-level algorithm
levelsz = 0 andz = 2. The machine that processes each 1: // The Partitioning Phase N
partition will be responsible of generating the tile images  2: Use spatial partitioning to create partitions

- i it ; 3: // The Plotting Phase
up-tok levels rooted at the assigned partition tile. . for each paritiont®, : BR, i do

Apply smooth (P;)
G create-canvas __ (ImageSize

The plotting phase runs in theeducefunction and it takes
all the records in one patrtition, which corresponds to attile _ _
and plots these records to all pyramid tiles under thet tiléth : endf‘igf““ P2 Pi, plot (p.G)
at mostk levels. For example, in Figure 4(c), the partition at 9: // The Merging Phase
tile t = MD; 0; Oi generates the ve tiles at zoom levels 0 and 1. 10: G create-canvas _ (ImageSize)
Once all records are plotted, an image is generated for eacht: for each intermediate canva&;, merge (G , G)
tile and all images are written to the output. N@rgingphase  wite (G, outFile)
is required for this algorithm since each tile is generatgatb
most one machine.

BR; )
TNMBR

oNo Gk

namely, smooth , create-canvas , plot , merge, and
write . The goal is to make the designers of visualiza-
tion algorithms worry free from the scalability and detdile
The default-Hadoop partitioning and pyramid-partitiqnin implementation of their algorithms. So, algorithm designe
algorithms complement each other in generating a multileveonly think about the visualization logic, while HadoopVi i
image of an arbitrary range of zoom levels, where the defaultresponsible on scaling up that logic by employing thousands
Hadoop partitioning is used to generate the top levels,ethi#¢  of computing nodes within a MapReduce environment. For
pyramid partitioning is used to generate the remaining deep example, ScatterDice [11] is a well known visualizationtsys
levels. For the top levels, thdefault-Hadooglgorithm avoids  that is used to visualize multidimensional data using ecatt
the overhead of partitioning while the overheads of i@t  plot. As HadoopViz supports scatter plot, among others, it
and mergephases are minimal due to the small pyramid sizecan complement ScatterDice by scaling out its techniques to
On the other hand, theyramid partitioningalgorithm would  generate giga-pixel images of petabytes of data. HadoopViz
perform poorly in top levels as each tile will contain a hugecan similarly scale out other visualization packages sweh a
number of records, e.g., the top tile overlaps all inputrdsas  Vislt [6] or ImageMagick [15].
it covers the whole input space. In deeper levels, the dlyos
change roles as thdefault-Hadooplgorithm suffers from the
overhead of theplot and merge phases, while thgyramid
partitioning algorithm overcomes those limitations. Téfere,
HadoopViz de nes a threshold level , where levelsz < z
are generated using default-partitioning, while otheelex
z are generated using pyramid-partitioning.

C. Discussion

Algorithm 2 gives the pseudo-code of thbstractspatial-
partitioning single-level visualization algorithm whetee ve
abstract functions are used as building blocks. Any user-
de ned implementations for these functions can be directly
plugged into this algorithm to generate a single-level imag
using HadoopViz. In theartitioning phase, Line 2 partitions
the input spatially intan partitions, each partitionis de ned

To nd the value of z analytically, we compare the by a bounding rectanglBR; and a set of recordB;. In the
estimated cost of the two algorithms for a speci ¢ zoom levelplotting phase, Line 5 applies th&mooth abstract function
z in the pyramid and nd the threshold level at whiplgramid ~ on each partition to smooth its records. Line 6 in Algorithm 2
partitioning starts to give a lower cost. For ttiefault-Hadoop calls the create-canvas function to initialize a partial
partitioning algorithm, the cost of thpartitioning phase is imageG, for each partition. Line 7 calls theplot  function to
zero, while the cost of thenergingphase ism:4%:TileSize,  ploteach recorg 2 P; on that partial imag€& . In themerging
where m is the number of partitions4® is the number of phase, Line 10 callsreate-canvas to initialize the nal
tiles at levelz, and TileSizeis the xed size of one tile. image canvas; . After that, Line 11 callsnerge successively
For the pyramid partitioning algorithm, the amortized cost of on partial canvases to merge them into the nal canvas. At
the partitioning phase for one level isnputSize=k, because the end of Algorithm 2, Line 12 uses therite  function to
the whole input is replicated once for each consecukive write the nal canvasG to the output as an image. We omit
levels, while there is a zero overhead of timergingphase. the abstract pseudo code of other algorithms due to limfted t
To nd z, we nd the range of zoom levels where pyramid space, while interested readers can refer to the sourceafode
partitioning gives a less estimated cost, thdhisutSize=k < HadoopViz [14]. In the rest of this section, we describe the
m:4?:TileSize. By rearranging the terms and separatingt ~ abstract functions and show how they can differ according to
becomesz 1 19(ride): €42 = 310(riesms) - the visualization type. The next section gives six caseistud

of how these functions are implemented in real scenarios.
V. VISUALIZATION ABSTRACTION

HadoopViz is an extensible framework that supports awidéA' The Smooth abstract function

range of visualization procedures for various image types. This is an optional preparatory function, where the input
In this section, we show how the single-level and multilevelis the set of records that need to be visualized. The output is
visualization algorithms described in Sections Ill and Ik¢ a another set of records that represent a smoothed (or clganed
generalized to handle a wide range of image types, e.gversion of the input by fusing nearby records together to
scatter plot, road network, frequency heat map, and veetdri produce a better looking image. HadoopViz tests for the
map. To support one more image type within HadoopVizexistence of this function to decide whether to go $patial
framework, the user needs to de ne ve abstract functions,or defaultpartitioning. In addition, the plotting phase calls this
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G DO can call any third party visualization package, e.g., Vi8It
[ or ImageMagick [15], which allows HadoopViz to easily reuse
OHE
< and scale out existing visualization packages.
~ K=

QADON
(a) Not smoothed (b) Smoothed D. The Merge abstract function

Fig. 5. Smoothing of road segments The input to themerge function is two partial canvases,
while the output is one nal canvas that is composed by
combining the two input partial layers. Theergingphase calls

function to smooth records in each partition before they arehis function successively on a set of layers to merge thém in

visualized. In the example of satellite data describediezarl one. If the partial layers are disjoint, i.e., each one ceer
the smooth function applies an interpolation technique to different part of the image, merging them is straightfordvas
estimate missing temperatures as shown in Figure 1. Figure &ach pixel in the nal image has only one value in one canvas.
gives another example of smoothing the visualization ofelro In case the partial layers cover overlapping areas, the same
network, where themooth function merges intersecting road pixel in the nal image may have more than one value. In this
segments. If no smoothing is applied, road segments will bease, thenerge function needs to decide how these values are
crossed, giving a not so accurate visualization (Figurg)5(a combined together to determine the nal value of that pixel.

Having this logic in a user-de ned abstract function allows For example, if the canvases are raster images, two pixels ar

users to easily inject a more sophisticated logic. For exemp merged by taking the average of each color component in the

if more attributes are available, th@mooth function can two pixels. In case of generating a heat map, two entriesdn th
correctly overlap (not merge) road segments at differerelfe  histogram are merged together by adding up the correspgndin
such as roads and bridges. It is important to note that thealues as each one represents a partial count.

smooth function has to be applied on the input data rather

than the generated image because it can process all inpgt The Write abstract function

attributes that probably disappear in the nal image. One

limitation in the current design is that it cannot smoothorels Thewrite  function writes the nal canvas (i.e., image),

across different partitions which we can support in theritu  computed by thenerge function, to the output in a standard
image format (e.g., PNG or SVG). This abstract function al-

B. The Create-Canvas abstract function lows developers to use any custom representation for casvas
which might contain additional metadata, and generate the
This function creates an_d initializes an appropriate in-image as a nal step using therite  function. For example,
memory data structure that will be used to create the regdest while generating a heat map, the canvas stores the freqsenci
image. The input to thereate-canvas  abstract function  as integers while thevrite  function transforms them into
is the required image resolution in termswafith andheight  colors and writes a PNG image. In the case of generating
(e.g., in pixels). The output is an initialized canvas of¢iieen  vector images, the canvas contains geometric represemtati
resolution. If the desired image israsterimage, the canvas of shapes and therite  function encodes them in a standard

typically consists of a two-dimensional matrix as one pgepi  Scalable Vector Graphics (SVG) format.
If the desired image is aectorimage, it contains a vector-

ized .repr.esentati(_)n of objects slhapes. Ehmt_e-canvas VI. CASE STUDIES

function is used in both thelotting and merging phases. In

the plotting phase, HadoopViz calls this function to initialize This section describes six case studies of how to de ne a
the partial images used to plot each partition. In therging  Vvisualization type by implementing the ve abstract fuicts
phase, it is used to prepare the nal image on which all partiadescribed in Section V. These case studies are carefully
images will be merged. For example, when visualizing a roadelected to cover different aspects of the visualizatiatess.
network, it returns an in-memoblankimage of the given size, Notice that all case studies described using the abstract fu
while for a heat map, it returns a frequency map representetions can be used to generate both single and multilevelésiag

as a 2D array of numbers initialized to zeros. Case studies | and Il give an example of non-aggregate visu-
alization, where records are directly plotted, with andheiit
C. The Plot abstract function a smoothing function. Case studies Il and IV give examples

o ) i of aggregate-based visualization, where records are gaipe
The plot  function is called for each record in the input pefore plotted, with and without a smoothing function. Case
data set. It takes as input a canvas, previously created usirtydy V gives an example of generating a vector image with a
create-canvas , and a record. Then, it plots the input smoothing function. Finally, case study VI shows how to eeus

record on the canvas. Thelotting phase calls this function ang scale out an existing visualization package which isl use
for each record in the partition to draw the partial imagesas a black box.

The plot function uses a suitable algorithm to draw the
record on the canvas. For example, when visualizing a roa .
network, the Bresenham mid-poﬁn algorithm [5] is Ssed toﬂ' Case Study I: Scatter Plot

draw a line on the image. When visualizing a heat map, this In scatterplot, the input is a set of points, e.g., geotagged
function updates the two-dimensional histogram (creatgd btweets, and each point is plotted as a pixel in the nal image
the create-canvas function) based on the point location. as shown in Figure 6(a). To make HadoopViz support such
To generate a vector image, it simpli es the record shape an@mages for both single and multi-level images, we need to
represents its geometry as a vector. In general, this fumcti de ne its ve abstract functions as follows: (1) Th&nooth
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(a) 1. Scatter plot (b) IIl. Road network (c) lll. Heat map

Fig. 6. Six case studies all implemented in HadoopViz via tleeabstract functions
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Fig. 7. Road network visualization Fig. 8. Steps of frequency heat map (Best viewed in colors)

function is not required for scatter plot, as there are nomgx Figure 7(a). Each replica is merged with a different set of
that need to be smoothed together. (2) Theate-canvas 454 segments and is plotted to two different partial images
function takes an image size in pixels and returns a blank ingygyever, it is automatically clipped at partition boundsri
memory image with the given size initialized with a trangpar yhen piotted (denoted by dotted lines). (4) Fhergefunction
background. (3) Thelot function takes an in-memory image g exactly the same as in the scatter plot where one image is
and an input record, and it projects the input point on the ainted on the other according to its location. Notice thahis
image and colors the corresponding pixel in black. (4) Theage it will alwaysstitch partial images together because they
mergefunction takes two in-memory images and merges themy, .o 4 disjoint. As in Figure 7(a), the two images are clippe
together. To merge two images, the top-left corner of thé TS e siitch line, hence, putting them side-by-side genertite
image is projected to a pixel in the other one as done in theqrect picture without worrying about any overlaps. (5ETh

plotfunction. _Then, the rst ima_ge is paint_ed on t_he_ S.Gf‘cqndwrite function is exactly the same as in tBeatter plot
one at the projected location. Since each image is inigdliz

with a transparent background, empty spaces in one image wil  To justify the use of a smoothing function, Figure 7(b)
reveal the contents of the other image. (5) Tiréte function ~ shows how the visualization process would work ifsmooth
encodes the in-memory image in a standard image format (e.gunction is provided. First, HadoopViz would use the defaul

PNG) and writes it to disk. Hadoop partitioning which causes overlapping records tmbe
two different partitions. Thelot function can still apply the
B. Case Study II: Road Network buffer operation to each segment but not thergeoperation

. L ) . because overlapping records are in two different machires.
In road network visualization, the input is a set of road nerge function would overlay partitions instead of stitching
segments, each represented as a line, and the desired outgift, Depending on which image goes on top, there are two

is an image similar to the one illustrated in Figure 6(b). Topossible nal images which are both incorrect.
support such images in HadoopViz, we need to de ne its ve

abstract functions as follows: (1) Themooth function takes
a set of road segments, appliebufer operation to each line
segment to give it some thickness, and then appliesian In this case study, the input is a set of points, e.g.,
operation to all resulting polygons to merge intersectiogdr  geotagged tweets, and the output is a colored map, e.g.,
segments. Specifying smooth function enforces HadoopViz Figure 6(c), where dense areas are colored in red and sparse
to use a spatial partitioning as shown in Figure 7(a). (2) Thereas are colored in blue. To support such kind of visuétinat
create-canvas function is exactly the same as statter in HadoopViz, we need to de ne the ve abstract functions
plot, which returns an in-memory image of the provided size.as follows: (1) Thesmooth function is not needed for such

(3) Theplot function reads the result of the union operationimage type. (2) Thereate-canvas function creates a two-
returned by thesmooth function, and draws each polygon dimensional array of integers (calleflequency ma)p where

in the dataset onto the image. The polygon is rst projectedhe value in each entry represents the number of recordadrou
from input space to image space, then, the interior of thét; all initialized with zeros. (3) Theplot function, takes one
polygon is lled with yellow while the boundaries are strake point, projects it to the frequency map, and increments all
in black. As spatial partitioning is used, some records Inighentries within a prede ned radius to denote that the point is

be replicated to two overlapping partitions such gsin  within the range of those pixels. As more points are plotted,

C. Case Study lll: Frequency Heat Map



entries in the frequency map will denote the density of moimt  (2) Thecreate-canvas abstract function initializes an empty
each pixel, as shown in Figure 8. (4) Thergefunction takes list of polygons. (3) Theplot function adds the polygon
two frequency maps, and merges them together by adding ugpresentation of the lake geometry to the list of polygons
corresponding entries in both. (5) Theite function takes in the canvas. (4) Theergefunction, simply, merges the two
one frequency map and converts it to an image by coloringjsts of polygons in the two canvases into one list in the atitp
corresponding pixels in the image according to the densitganvas. (5) Thevrite function encodes the canvas contents
in the frequency map. First, it normalizes densities to theas a standard SVG image and writes it to the output.
range[0; 1], and then it calculates the color of each pixel by
making a linear combination between the two colors, blue an

red. Finally, the created image is written to the output ia th ('1: Case Study VI: Parallel ImageMagick

standard PNG format. ImageMagick [15] is a popular open source package that
can produce and edit images. However, it is single-machide a
D. Case Study IV: Satellite Data does not support any multi-node parallelization functlima

_ _ _ ~ This case study shows how to use the binaries of ImageMagick

In this case study, the input is a set of temperature readinggs a blackbox and utilize the extensibility of HadoopViz
each associated with a geolocation, and the output is a tenfg seamlessly parallelize it. This allows users to visealiz
perature heat map, like the one in Figure 6(d), where thercolaextremely large datasets using ImageMagick that it cannot
represents the average temeprature of the underlyingmelgio  handle otherwise. For example, this technique speeds up the
addition, some regions do not contain any values due to sloudjisualization of a 130GB le from four hours on a single
or satellite mis-alignment leaving some blind spots [9]eTh machine, to ve minutes using HadoopViz. In this case study,
values in those uncovered areas need to be estimated Usifie input is a set of straight line segments that represent th
a two-dimensional interpolation technique. To supporthsuc administrative borders in the whole world (e.g., countses
image type in HadoopViz, we need to de ne the ve abstractcities) which need to be visualized as shown in Figure 6@). T
functions as follows: (1) Themooth function takes a set of visualize the input as lines in the nal image, we de ne the
points in a region andecoversmissing points using a two- ve functions as follows: (1) Nosmooth function is needed.
dimensional interpolation function in a way similar to SHA- (2) The create-canvas function spawns an ImageMagick
HED [9]. Although HadoopViz uses the same technique as itfprocess in the background and sends itiewbox ' command
SHAHED, it applies thesmooth function on-the-y allowing o initialize an image with the desired size. (3) Tpeot
users to easily inject a better smoothing function. (2) Theunction projects a line from the input to the image space,
create-canvas function initializes a two-dimensional array and send the ImageMagick processieaw line ' command
of the input size where each entry contains two numt®ns)  with the projected boundaries. As HadoopViz needs to teansf
and count used together to compute the average temperatuiganvases frommappersto reducers it cannot simply move
incrementally. (3) Theplot function projects a point onto a running process. So, to transfer a canvas, we close the
the 2D array, and updates bosamand countin the array  |mageMagick instance and transfer the generated imagssacro
according to the temperature value of the point. (4) ife#ge  network. (4) Themergefunction uses thedraw image ' Im-
function is very similar to that of the frequency heat map butageMagick command to draw one image onto the other image.
it adds up bottsumand countin the merged layers. (5) The (5) Thewrite function closes the ImageMagick process of the

write function starts by calculating the average temperaturenal canvas, retrieves the image created by that instarce, a
in each entry asvg = sum=count. Then, we use the same rites it to the output as a le.

write function of the frequency heat maps.

. VII. EXPERIMENTS
E. Case Study V: Vectorized Map

hi dv sh h . h This section provides an experimental evaluation for
This case study shows how to create a vector image thalaqoopviz to show its extensibility and scalability. Al

represents a map, such as Google Maps or Bing Maps. Many,qq0pviz experiments are conducted on a cluster of 20

recent applications on smart phones and on the web prefejoqeq of Apache Hadoop running on Ubuntu 10.04.4 machines

vector images over raster images due to their smaller side any it java 1.7. Each machine has an Intel(R) Xeon E5472

nice rendering. For simplicity, this case study explainsvho . .assor with 4 cores @3 GHz, 8GB of memory and a
to plot a map of lakes as shown in Figure 6(e), however, the5nGp hard disk. The HDFS block size is 128 MB. Al

through more sophisticated implementations oflet  func-
tion. To generate a vector image for lakes in HadoopViz, w
de ne the abstract functions as follows: (1) In tisenooth
abstraction function, we use map simpli cation algorithm
which reduces the amounts of details in the polygons acagrdi For the input data, we use three real datasets extracted from
to the resolution of the nal image. The goal of this function OpenStreetMap [25], namelgodes , ways, andlakes , in

is to reduce the generated image size by removing very neddition to one satellite dataset from NASA callegsa . The
details that will be hardly noticed by users according to thenodes dataset (1.7 billion points) is used for case studies | and
image size. If a multilevel image is generated, $mmooth  1ll, the ways dataset (165 million polylines) for case studies
function will be called once for each zoom level so that itll and VI, thelakes dataset (8.4 million polygons) for case
keeps more details in deeper levels. This function also vesio study V, and theasa dataset (14 billion points) for case study
very small lakes which are too small to plot in the image.IV. For experiments repeatability, OpenStreetMap and NASA

of Intel(R) Haswell E5-2680v3 CPU @ 2.50GHz and 1TB
emory. In all experiments, we use total execution time as
the main performance metric of our experiments.
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Fig. 9. Single Level Image Performance

datasets are made available at the two following links, retechniques in HadoopViz scale very well with the generated
spectively. http://spatialhadoop.cs.umn.edu/datdgetffosm image size making it useful for generating both small and
- http://e4ftl01.cr.usgs.gov/MOLA/MYD11A1.005/. big images. As described in Section lll, the default Hadoop
partitioning performs better with small images while sphti
R+-tree partitioning performs better with big images. This
experimentally justi es the decision made in the partitizm

For single-level image visualization, we consider severphase where it switches from default Hadoop partitioning to
different algorithms where each is applied in suitable eixpe spatial partitioning when image size grows larger than alblo
ments. (1) Asingle-machinalgorithm which loads the whole size. Although this condition holds at the points at 50 and 72
dataset into main-memory, smooths records in memory, scamsega-pixels, while the performance crossover happens at 80
records and plots them to an in-memory image, and nallymega-pixels, the difference is very small and both techesqu
writes that image to the output. (2) Distributgikel-level-  perform very similar. This experiment also employs the in-
partitioning [26], [33] which is implemented in HadoopViz dexed R+-tree technique which skips the spatial partitigni
using a uniform grid partitioning with a grid size equal to phase by utilizing an existing R+-tree index constructedais
image size. (3, 4, 5) HadoopViz with default Hadoop parti-SpatialHadoop [10]. As shown, this technique outperforins a
tioning, grid, and R+-tree partitioning. (6, 7) HadoopViithv  other techniques as it gets the good performance of R+-tree
grid-based and R+-tree-based indexes which utilize ariegis partitioning without having to pay the overhead of partititg.
index to avoid the spatial partitioning phase.

A. Single-Level Visualization

Figure 9(d) shows how HadoopViz scales out with cluster

Figure 9(a) compares the performance of HadoopViz withsize when visualizing a heat map as compared to a single
R+-tree partitioning to the single-machine algorithm, lasyt machine algorithm. This gure also shows that HadoopViz
are both applied to the six case studies described in Se¢tion scales out very nicely with cluster size as it parallelizés a
to visualize a 32 mega-pixels image. This experiment showsf the three phases of the algorithm. Even with ve machine,
an order of magnitude speedup of HadoopViz as compared i outperforms the single-machine algorithm.

traditional single machine algorithms. It also shows th&- e Fi 10 . he off £ tuni ber of .
ibility and ef ciency of HadoopViz when used with different igure 10(a) gives the eflect of tuning number of partitions
m on HadoopViz running with grid and R+-tree partition-

image types using the single level algorithm. For example, i. ; L
visualizes 14 Billion points of NASA data in a 90 seconds.!"d: We cannot compare with default Hadoop partitioning as

Case study V runs relatively faster as it operates on the mucrplumbe_r of partition_s is automatically calculat.ed by HDFS
smallerlakes dataset. The gure also shows the power of according to input size and HDFS block capacity. We change

HadoopViz as it provides a 48X speedup of the single-machinBUmPer of partitions from 60 to 6 Million to cover the
ImageMagick visualization package. spectrum of all values which are all shown on a log scale. Grid

partitioning performs poorly on both extremes where it ersf

In Figure 9(b), we change the input size of the roadfrom load imbalance ah = 60 and 600, and huge processing
network, by sampling at 25%, 50% and 75%, while xing the overhead aim = 6 Million. On the other hand, R+-tree-based
image size at 32 mega-pixels. HadoopViz outperforms botlpartitioning is very stable whem changes from 60 to 600K,
single machine and pixel-level-partitioning algorithns &ll  then the performance suddenly dropsvat= 6 Million. The
input sizes. The performance of pixel-level-partitioniagery  reason of this huge drop is that the partitioning phase has to
poor as it has to process 32 Million partitions, as one peglpix search 6M rectangles for each input record to nd overlagpin
At this image size, pixel-level-partitioning is even slaviean  partitions. This incurs a huge overhead even with an opéchiz
a single machine which relies on a huge main memory of 1TBin-memory R+-tree index witthogn search time, as opposed

Figure 9(c) gives the effect of changing the desired imagetO constant time in uniform grid partitioning.

size from 2 to 160 mega-pixels. This experiment runs on Figure 10(b) breaks down the time of single-level plot
the scatter plot case study as it does not contagmaoth in HadoopViz into the three phases. In this experiment, we
function which allows for the use of default Hadoop partiio  skip thesmooth function to be able to apply default Hadoop
ing. This gure shows clearly that pixel-level partitiogns  partitioning. The indexed R+-tree and indexed grid techeg
only useful with a small image sizes of less than 20 megaare denoted X-G and X-R, respectively. At the small image
pixels. The single-machine algorithm is slightly affected size generated in this experiment (4 MegaPixels), the dtefau
the image size as it performs all processing in main-memoryHadoop partitioning performs very well where the plotting
after the le is loaded from disk. On the other hand, all phase accounts for most of the time. On the other hand, both
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spatial partitioning techniques, grid and R+-tree, are Imuc perging is still low. On the other hand, pyramid partitiogin

slower due to the overhead of the partitioning phase. Afiou herforms poorly due to the load imbalance as the top levels
the grid partitions very quickly, it performs poorly in the contain only a few tiles. At deeper levels, the performance
plotting phase due to load imbalance. Existing indexes savgy gefault partitioning drops due to the huge number of tiles
the partitioning time of both techniques making R+-tree MUC hat need to be shufed over network and then merged. In
better than grid. To conclude, we recommend the use of R+mis experiment, it failed at levels six and higher with art-ou

tree if thesmooth andplot fu_nct|ons are co_njplgx to achieve of-memory exception due to the huge pyramid size that has
a better load balance. Otherwise, a grid partitioning candeel {5 pe stored in each machine. On the other hand, pyramid
when these functions are simple as it saves in the partiioni partitioning performs better as it partitions the inputoint

time. If no smooth function is required, default partitiogiis  {housands of tiles improving the load balance. The running

good enough. time increases again at deeper levels due to the exponential
_ o increase in the size of the output which cannot be avoided.
B. Multilevel Visualization According to the system con guration and the analysis made i

In multilevel visualization, we compare the performance of>€ction IV-C, HadoopViz should use pyramid-partitionirog f
three techniques. (1) A single-level machine algorithmakhi €Vels ve and higher. Although default-Hadoop partitiogi
builds the whole pyramid in main-memory and then dumpsalgonthm perfo_rms better at level ve, the difference ight
it to disk as one image per tile. (2) HadoopViz with default-and both algorithms perform well.

Hadoop partitioning. (3) HadoopViz with pyramid partitiog. Figure 12(b) shows the scalability of HadoopViz with

Figure 11(a) compares the performance of a traditionafluster size where we increase the clustgr size.from 5 to 20
single-machine algorithm to HadoopViz for visualizing almu and measure the performance of generating an image with 11
tilevel image. In this experiment, we generate a pyramidiof 1 levels withz = 4. This experiment shows a near perfect scale
levels, which resembles a 70 giga-pixel image at the highegtut for b_oth algorlthms due to the parallelization of all bét
level. The experiment shows up-to two orders of magnitudéhases in both algorithms. It also shows a huge speedup over
speedup of HadoopViz as compared to a single machine baseline of single-machine performance. Deeper I¢Gels
algorithm. The speedup is much higher compared to singlel® 10) take much more time due to the exponential increase in
level experiments, in Figure 9(a), due to the huge outpu sizhumber of tiles.

which is written to a single disk in single-machine experiye In Figure 12(c), we change the grouping granularity o

as opposed to the HDFS in HadoopViz. This experiment alsq, it it effect on the performance of the pyramid partititg

shovys the.great power and eX|b|I!ty of HadoopViz as these Igorithm. This parameter was introduced in Section 1V-B to

multilevel images are created using the same ve abstracl,nirg| the trade-off between load balance and partitignin

functions that were used to implement the smgle—l_e_vel €339 | arhead by grouping multiple pyramid levels in one pantiti

In other words, users do not need to do any additional efforty g expected, a smaller value bfprovides a poor performance

pther than de ning the ve functions, to generate multiléve as it produces too many partitions. On the other extremagusi

Images. a large value ok produces a few partitions hurting the load
Figure 11(b) gives the performance of generating a pyramid¢alance. Both values of 3 and 4 provide good performance

of six levels using default partitioning and single-maehin as they achieve a good balance between load balance and

algorithms. As the input size increases from 41M polygons tgoartitioning overhead.

165M polygons, the performance of the single machine drops .

as it ngedysgto read ared parse the whole inpgt le. On the othper Figure 12(d) shows the percentage breakdown of the pro-

hand, HadoopViz scales very well as the scanning of the inpuS>on9 _t|me| of _I-r|]adoopV|§ Into thef three ph_asis. Defauit-
is done in parallel using the MapReduce framework. partitioning algorithm spends most of its time in the plagi
phase while the merging phase takes less time. The reason

Figure 12(a) gives the performance of batkfaultand is that the plotting phase processes the whole input and
pyramid partitioning algorithms in HadoopViz while gener- produces partial pyramids of small sizes while the merging
ating each level in the pyramid. This experiment con rms phase processes these partial pyramids in parallel to peodu
our earlier discussion that default-partitioning perferbretter  the nal answer. On the other hand, the pyramid-partitignin
at top levels while pyramid-partitioning performs bettdr a algorithm nishes the partitioning phase quickly while nhos
deeper levels. At top-levels, default partitioning penfistbetter  of the time is spent in the plotting phase which draws the nal
as it avoids the overhead of partitioning while the cost oftiles directly and writes them to the output.



o
=)

Pyramid-partitioning —&— Partitioning ———
Rasterize &2

Merging s

Time (%)
B
B (=2} © o N
o o o o o

N}
o ©

Flat-Partitioning —ll— 200 Flat Partitioning Level 0-4 ———1 60
Pyramid-Partitioning —&— Pyramid Partitioning Level 5-10 mmm—
40
= = 150 Single Machine = iz
EX £ £
g2 g g%
= F = o
50 !
10 10
0 0 0
0 1 2 3 4 5 6 7 8 9 5 10 1! 20 1
Level Number of Machines
(a) Number of levels (b) Cluster size
Fig. 12. Multilevel image performance tuning with case gtiid
VIIl. CONCLUSION [12]

In this paper, we presented HadoopViz; a MapReducerp 3
based framework for visualizing big spatial data. HadoapVi
can ef ciently produce giga-pixel images for billions ofgat
records. There are three main features in HadoopViz whicli4]
make it unique to other visualization systems. (1) HadoapVi
uses asmoothingtechnique to produce better looking images[1®]
by fusing nearby records together. (2) HadoopViz can ef -[16]
ciently produce giga-pixel images by employing a threesgha
technique,partition-plot-merge This technique is applied to
generate both single level and multilevel images. (3) It is
extensible as it allows users to plug-in their own visudia
logic by only implementing ve abstract functions. HadoapV
takes these functions and plugs them in ready-made algwith
which allow the user-de ned algorithms to automaticallynru (o
on thousands of nodes. We use the de ned abstraction tg
implement six visualization types, scatter plot, road roeky
frequency heat map, satellite heat map, vectorized map, angh)
countries borders. We experimentally evaluate Hadoop%iz u
ing real datasets on a cluster of 20 machines and show upe3]
to two orders of magnitude speedup over existing techniques
with an excellent scalability as it visualizes 14 Billionipts

[17]
(18]

[19]

in 90 seconds. (24]
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