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Abstract—Searching microblogs, e.g., tweets and comments, is
practically supported through main-memory indexing for scalable
data digestion and efficient query evaluation. With continuity
and excessive numbers of microblogs, it is infeasible to keep
data in main-memory for long periods. Thus, once allocated
memory budget is filled, a portion of data is flushed from
memory to disk to continuously accommodate newly incoming
data. Existing techniques come with either low memory hit ratio
due to flushing items regardless of their relevance to incoming
queries or significant overhead of tracking individual data items,
which limit scalability of microblogs systems in either cases. In
this paper, we proposekFlushing policy that exploits popularity
of top-k queries in microblogs to smartly select a subset of
microblogs to flush. kFlushing is mainly designed to increase
memory hit ratio. To this end, it identifies and flushes in-memory
data that does not contribute to incoming queries. The freed
memory space is utilized to accumulate more useful data that is
used to answer more queries from memory contents. When all
memory is utilized for useful data, kFlushing flushes data that is
less likely to degrade memory hit ratio. In addition, kFlushing
comes with a little overhead that keeps high system scalability
in terms of high digestion rates of incoming fast data. Extensive
experimental evaluation shows the effectiveness and scalability of
kFlushing to improve main-memory hit by 26-330% while coping
up with fast microblog streams of up to 100K microblog/second.

I. I NTRODUCTION

Microblogs, e.g., tweets, reviews, news comments, Face-
book comments, and Foursquare check ins, have become
incredibly popular among web users, where several billions
microblogs are posted everyday [10, 27]. Microblogs come
with rich contents and time-sensitive information that include
textual contents, locations, and user information. The rich
contents of microblogs have motivated several practical appli-
cations like news dissemination [3], rescue services [7], and
tracking health-related issues [25]. Such important usageof
microblogs has motivated researchers to spend major efforts
to efficiently support search queries for large numbers of
microblogs. Search queries on microblogs include keyword
search queries “Find microblogs that contain certain key-
word(s)” [5, 6, 16], location search queries “Find microblogs
that are posted within a certain location” [19, 24], and user
timeline search queries “Find microblogs that are posted by a
certain user” [28]. Due to the large number of returned results
for any of these search queries, all proposed techniques agree
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to put a limit k on the number of returned results. Hence, all
search queries on microblogs turned out to betop-k queries,
where thek results are selected based on a certain ranking
criterion.

Existing work for (top-k) search queries on microblogs [5,
16, 19, 28] mainly focus on building scalable indexing tech-
niques in main-memoryto digest incoming microblogs with
their high arrival rates. Existing index structures along with
their query processing techniques either explicitly or implicitly
assume the following two assumptions: (1) Memory is so large
that almost all queries of interest will be answered from in-
memory contents. In case that the answer is not found in-
memory, the search will continue in another disk-based index
structure. However, onlyin-memory query response timeis
reported for performance evaluation, ignoring the disk access.
(2) Once the memory is filled up, a chunk ofoldestin-memory
microblogs is flushed to disk, leaving their valuable memory
space for new incoming microblogs.

Unfortunately, the implications of these two implicit as-
sumptions are way underestimated in all prior work. Such as-
sumptions are only geared towardsin-memory query response
time, while ignoring another critical performance measure,
which is memory hit ratio, i.e., the ratio of queries that are
completely answered from in-memory contents. With such
two implicit assumptions, existing techniques may have a
bad performance due to a lowmemory hit ratioas many of
the incoming queries may not be answered from in-memory
contents. Such queries are answered from disk with a very high
cost. For example, the query “Find most recent k tweets that
has the keyword Obama” would most likely be answered from
in-memory contents becauseObama is a popular (i.e., high-
frequency) keyword. However, if the same query asks for the
keyword “concurrency”, which is not common in tweets, it is
unlikely to find the answer in memory, and hence a visit to
in-disk index has to be paid resulting in poor query latency.

The rational of existing techniques is that most queries
ask for popular keywords and will be answered from memory.
Hence, it is reasonable to support such queries efficiently,and
kind of ignore other queries that does not ask about popular
words. However, such rational is not always favorable in
practical scenarios. For example, web search engines optimize
their performance to serve 95% of their search queries within
a certain threshold, e.g., 50-100ms. So, it is important to
optimize for worst case scenario, i.e., we need to ensure that
95% of our queries are answered below a certain threshold,



which is favorable than optimizing for the average query
response time. Considering thememory hit ratioas a major
query performance in searching microblogs ensures that more
queries are answered efficiently from memory, which matches
the same optimization goal of major web search engines.

To illustrate the memory management problem in mi-
croblogs data management systems, Figure 1(a) depicts a
typical snapshot of the memory contents. The figure shows
nine keywordskw1 to kw9, on the horizontal axis, along with
the number of microblogs containing each keyword on the
vertical axis. The figure also has a horizontal line corresponds
to the numberk, wherek is the default value used in any top-
k query. Only three keywords,kw1, kw2, and kw3 appear
more thank times, while the rest of keywords have appeared
less thank times. Existing index structures and their query
processors for search queries on microblogs work with such
memory contents as is to retrieve their answers. Therefore,
for any incoming query on any of the nine keywords in
Figure 1(a), only the ones asking about the first three keywords
can be answered form memory very efficiently as there are in-
memory k keywords for each of them. However, any query
asking about other keywords will have to encounter a disk
access to retrievek items, resulting in a very poor performance.
Unfortunately, existing techniques have all their focus onhow
to query and index the first three keywords very efficiently
while ignoring queries coming on the rest of keywords. The
implicit assumption is that there is a background process that
regularly evicts old memory contents to give room for new
incoming ones. However, such process would still maintain
the memory contents to be similar to Figure 1(a).

In this paper, we presentkFlushing; a new flushing policy
that is triggered once memory is full. The goal is to evict
part of the in-memory contents to the disk storage, allowing
new incoming microblogs to be digested in memory.kFlushing
spots the problem in Figure 1(a), where a major part of the
memory is consumed by useless microblogs that will not
help in answering any top-k query. For example, consider
the set of microblogs that include the first three keywords in
Figure 1(a), but they are ranked above thek level according to
the underlying ranking function. Such microblogs would never
show up in a query answer for any top-k query with the same
ranking function. Our observations on real Twitter data show
that fork=20 and a temporal ranking function based on tweet
arrival time, more than 75% of memory contents are consumed
by tweets that will never show up in a query answer for a top-k
keyword search query.

The goal of our proposedkFlushing policy is to ensure
that all memory contents are useful. This is done by getting
rid of the useless microblogs and use their space for the
keywords that have less thank microblogs. Ultimately, with
kFlushing, the memory contents should look like Figure 1(b),
where each keyword has exactlyk microblogs in memory. In
that case, a query coming to any of the nine keywordskw1 to
kw9 will be fully answered from in-memory contents, which
significantly increases the system memory hit ratio.kFlushing
enables existing algorithms for top-k microblog search queries
(e.g., [5, 6, 16, 24, 19, 28]) to reach to their full potentialand
significantly increasing their memory hit ratio.

The concept of adjusting memory contents to increase
memory hit ratio has been studied in different contexts under
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different terminologies, e.g.,buffer managementin database
management systems (DBMSs) [9],anti-caching in main-
memory databases [8, 15, 30], andload sheddingin data
stream management systems (DSMSs) [1, 12, 13]. However,
neither buffer management nor anti-caching techniques exploit
top-k queries as they decide on flushing an item based on its
latest access time regardless of other items. When optimizing
for top-k queries, the decision to evict or keep an item in main-
memory depends on the presence/absence of other items that
satisfy the query. Meanwhile, the main focus ofload shedding
techniques is to drop a portion of incoming data to optimize
memory contents for a set of registered continuous queries.
This is different from the case of microblogs that removes
from existing indexed data to optimize for any query that may
come later on.

kFlushingemploys a parameterB (default=10%) that rep-
resents the ratio of memory contents that need to be flushed.
Then, the main idea of ourkFlushingpolicy is to employ a
three-phase strategy. In the first phase, we try to get theB%
from those microblogs with keywords that have more than
k microblogs. However, repeatedly doing so will result in a
memory saturation, where we cannot getB% out. In that case,
we employ the second phase that aims to get rid of keywords
that have less thank microblogs, as they would require disk
access in all cases. Again, another repetitive execution would
result in another memory saturation case. In that case, we
employ our third and final stage that checks on the query
access pattern with the aim of having the memory contents as
in Figure 1(b). We show that thekFlushingpolicy is extensible
for: (a) various search attributes beyond the keyword search
query, (b) various ranking functions, and (c) multiple keyword
search queries. Extensive experimental evaluation using real
Twitter data and various realistic query workloads shows that
kFlushingimproves the memory hit ratio for up to 330%, while
keeping the in-memory query performance intact.

The rest of this paper is organized as follows. Section II for-
mulates the problem. Sections III presents thekFlushingpolicy
for keyword search queries and temporal ranking function. The
extensibility of kFlushing to other query types and ranking
functions is discussed in Section IV. Section V provides
experimental evaluation. Section VI highlights related work.
Finally, Section VII concludes the paper.

II. PRELIMINARIES

This section gives important preliminaries for our proposed
flushing policy that includes the underlying environment (Sec-
tion II-A), the queries of interest (Section II-B), and problem
formulation (Section II-C).
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A. Environment

Figure 2 gives the underlying environment of indexing and
querying microblogs, in which our proposed flushing policy
will be applied. The data input to this environment is a stream
of microblogs, with high arrival rates, that is directly digested
into an in-memory data structure. Once the memory becomes
full, the flushing policy is triggered to select parts of the
memory contents and flush it to the disk storage. All existing
work in querying microblogs assume that such flushing works
in a temporal way where the oldest in-memory contents are
flushed to disk. This is in contrast to our proposedkFlushing
policy, where we tune this flushing module to go beyond
temporal flushing and smartly selects the flushing victims in
a way that increases thememory hit ratiofor incoming top-k
queries. Meanwhile, incoming top-k search queries are posed
to the query engine module, which first tries to get the answer
from in-memory contents. If the answer could not be found in
memory, e.g., less thank items are found, then this query is
considered amissand needs to check on disk contents to decide
on its final answer. Going to the disk storage is an expensive
process. Hence, the objective of our proposed flushing policy
is to increase thememory hit ratio, which means reducing the
ratio of queries that need to access the disk.

Figure 3 gives typical data structures for either in-memory
or disk contents. The data structure includes a raw data store,
which is basically a container for complete microblogs records
as a raw data received from the input stream. The data structure
also includes an attribute (e.g., keyword) index, which is
basically a hash inverted table where each keyword entry has
a list of microblog IDs of those microblogs that contain this
keyword. Microblogs IDs are pointers to the raw data store
where complete microblog records reside.

B. Queries

Our focus is supporting basic search queries on mi-
croblogs [5, 16, 19, 28]. Such queries retrieve individual
microblogs that are associated with certain key value(s), e.g.,
keywords or user IDs. With excessive numbers of microblogs
that could satisfy any query predicate, basic search queries
are always considered as top-k queries that return onlyk
microblogs, ranked based on certain ranking functionF , where
k is a reasonable number for human users to navigate, e.g.,
k=20. Formally, a basic search query is defined as follows:

Basic Search Query:Given a search criteriaA, integer k,
and a ranking functionF , a microblog basic search query
findsk individual microblogs such that: (1) Thek microblogs
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satisfy the search criteriaA. (2) Thek microblogs are the top
ranked ones according to the ranking functionF .

The above query definition can be translated to a query
on keyword ”Find k microblogs that contain certain key-
word(s)” [5], a query on locations “Find k microblogs that are
posted at a certain location” [19], or a query on a user timeline
“Find k microblogs that are posted by a certain user” [28].
Such basic search queries are most common for end users
and supported in major commercial microblogging platforms.
For example, Twitter supports retrieving microblogs of an
individual useru timeline where the search criteriaA is the ID
of useru, k=20, and the ranking functionF is temporal (i.e.,
most recent). Also, Twitter supports having the search criteria
A as a set of search keyword(s),k=20, andF as one of two
ranking functions, denoted asAll (ranking by time) andTop
(ranking over some popularity function). Finally, basic search
queries on microblogs represent the basic building blocks for
a wide spectrum of applications, e.g., event detection, user
recommendation, or geo-targeted advertising.

C. Problem Formulation

Our problem in this paper can be defined as follows:

Problem Formulation: Given a setS of in-memory mi-
croblogs and a flushing budgetB, find a subset of microblogss
⊆ S to flush to disk storage such that: (1)s consumes at least
B of main-memory, and (2) flushings maximizes the memory
hit ratio for incoming basic top-k search queries.

The problem formulation imposes a minimum memory
amount B to flush. If the amount of flushed data is not
constrained, it may happen that few microblogs are flushed to
disk. This means that the flushing procedure will be triggered
more frequently as the memory will be filled faster. Performing
a flushing operation every few seconds is not acceptable
from a system efficiency and scalability point of view. This
would involve expensive disk access that possibly causes
system slowdown and limit its scalability. Thus, guaranteeing
a minimum amount of flushed memory prevents filling the
main-memory every few seconds and reduce the total number
of flushing operations to sustain system scalability.

III. kFlushingPOLICY

This section introduces our proposedkFlushing policy.
kFlushingis triggered once the main-memory is full to decide
on which microblogs to flush from memory to disk.kFlushing
flushes a specifiedB percentage of memory contents to ensure
a minimum amount of free memory, and hence continuity
of digesting incoming data without re-invoking the flushing
process frequently.kFlushingis composed of three consecutive
phases, namely,regular flushing (Section III-A), aggressive
flushing (Section III-B), andforced flushing(Section III-C).
Each phase is invoked only if its preceding phase(s) cannot
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flush enough memory to meet the budgetB. For ease of
illustration and without loss of generality, we describe our pro-
posed flushing policy considering basic search queries where
the search criteriaA is on keywords and the ranking function
F is temporal (i.e., we return most recentk microblogs). In
Section IV, we discuss the implications of changing the search
criteria and/or the ranking function.

A. Phase 1: Regular Flushing

Motivation . Regular flushingis motivated by the large
amounts of under utilized memory under temporal flushing
scheme, that is currently used in microblogs systems [5].
As described in Figure 1(a), the frequency distribution of
keywords in microblogs is very skewed. Thus, few keywords
have very high frequency, much more thank, while the rest
of keywords have low frequency, belowk. For incoming top-
k queries, microblogs that are beyondk in any keyword are
useless microblogs as they would not contribute to any query
answer. Such useless microblogs are observed to be 75% of the
memory contents, fork=20, in real Twitter data. This means
that only one quarter of the available memory is utilized.

Main idea. The main idea of theregular flushingphase is
to trim extra useless microblogs that are above thek threshold
line in Figure 1(a). For a trimmed microblogM , if M has
only a single keyword, thenM is removed from both index
and raw data store and flushed to disk right away. In caseM
has more than one keyword, then Phase 1 removes it only
from keyword index entries in whichM is not among top-k
microblogs. Yet,M data record might remain in the raw data
store if it is still referenced by other index entry. This case
would mean thatM is still among top-k microblogs in other
in-memory index entries. WheneverM is not referenced by
any in-memory index entry, its record is removed from the
raw data store and it is flushed to disk right away.

By removing useless microblogs, we clear significant mem-
ory space that can be utilized in a better way for low-frequency
keywords to increase the memory hit ratio for incoming top-
k search queries. Optimally, we aim to reach a memory
snapshot that looks like Figure 1(b), where all keywords have
appeared in exactlyk microblogs, i.e., there are no extra
useless microblogs and no shortage to retrieve from disk.

Example. Figure 4 gives an example of a simple hash
index that contains five entries. Each entry has: (1) a keyword,
(2) the latest arrival time for any microblog that includes the
keyword (to be used in Phase 2), and (3) a list of microblog
IDs that include the keyword, ordered by their arrival time.
Two keywords (obama and nba) are considered popular as

they has more thank=5 microblogs. In this case, theregular
flushingphase removes from the index all microblogs that are
beyond the most recentk in obamaand nba. If a removed
microblog is not referenced in other index entries, it is removed
from the raw data store as well and flushed to disk right
away. Otherwise, it remains in the raw data store until all its
references are removed from the index.

Algorithm . Incoming data is continuously digested in the
main-memory data store and index described in Section II. On
arrival of a new microblogM , it is stored in the data store
with an auxiliary attributeM.pcount initialized to the number
of M ’s keywords. Then,M is inserted in the keyword index
in each entry that corresponds to any of its keywords. If any of
M ’s keywordskw has more thank microblogs, a pointer tokw
index entry is added to a listL. The listL maintains pointers
to keyword index entries that have more thank microblogs,
i.e., have useless data. Practically speaking, due to the high
skewness in keyword distribution in microblogs,L is a very
short list as few keywords manipulate the memory contents.
Maintaining L saves significant efforts of iterating over all
keywords when Phase 1 is invoked.

On full memory, Phase 1 is invoked. For each keyword in-
dex entryW in the listL, W contains more thank microblogs.
Then, Phase 1 shrinksW to contain onlyk microblog ids and
trims the rest of its microblogs from the index. A trimmed
microblogM would be removed from the index entryW all
together and itsM.pcount would be decreased by one. In
caseM.pcount > 0, this means thatM is still referenced by
other index entries. Hence, in that caseM ’s id is removed
from list of microblog ids inW , while it is still kept in the
main-memory data store as other index entries may need to
retrieve it. This means thatM data record is still physically
in-memory, however,M id is not associated withW anymore.
WheneverM.pcount reaches zero, this means thatM is no
longer referenced by any index entry, and henceM entry in
the data store is flushed as well. All flushed data are collected
in a temporary main-memory buffer before writing them to
disk. This is mainly to reduce the number of I/O operations.
The listL is wiped out after the completion of Phase 1.

It is important to note that shrinking an index entry
does not disturb continuous digestion of incoming microblogs
within the same index entry. This is mainly because incoming
microblog IDs are added to the list head while the trimmed
IDs are removed from the list tail. The separation between
insertion and deletion positions allows Phase 1 to be invoked in
a separate thread without causing contention on index entries.
This ensures continuous digestion of incoming microblogs in
real time with high rates as shown in our experiments.

B. Phase 2: Aggressive Flushing

Motivation . Figure 5(a) shows the effect of employing only
Phase 1 (regular flushing) on memory consumption over time.
The horizontal axis is a time line while the vertical axis is
the percentage of memory consumption. In the beginning, it
takes about 10 time units to fill 100%of the memory. The
first execution of Phase 1 flushes 60% of memory contents,
leaving only 40% of memory consumed. It then takes only
six time units to fill the memory again. Then, on a second
call to Phase 1, there are less microblogs beyond top-k, and
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hence only 45% of memory contents are flushed. As time goes
by, memory is filled much faster, and the amount of flushed
memory becomes much less. This is because Phase 1 tunes
the memory contents to make more keywords have exactly
k items, and hence, there is not much microblogs to flush.
Continuing like this will reach to a saturation point, where
there are only few microblogs each time, which would be very
costly to invoke a flushing process very frequently.

Overall, Figure 5(a) shows that we cannot rely solely on
Phase 1 for flushing in-memory contents. Ultimately, we would
like to have a memory behavior similar to Figure 5(b), where
in a steady state, a fixed percentage, e.g., 20%, of the memory
is flushed. This ensures that the flushing will be invoked in
regular intervals, and will end up in flushing a reasonable part
of the memory every time, which eliminates the overhead of
running the flushing process very frequently. To achieve this
goal, if Phase 1 fails to flushB percent of memory contents,
we employ Phase 2 (aggressive flushing).

Main idea. Triggering the execution of Phase 2 means
that all in-memory microblogs are useful as we have already
trimmed all microblogs that do not participate in any top-k
list in Phase 1. In this case, keyword entries in the in-memory
keyword index fall in one of these two categories: (1) keywords
that have exactlyk microblogs, and (2) keywords that have less
thank microblogs. Phase 2 only focuses on the keywords of
the second category. The rationale is that queries that come
on a keyword in the second category would not find their
answers in memory anyway and would encounter expensive
disk access. Thus, flushing these microblogs would not cause
additional disk access, and will not degrade the memory hit
ratio. Phase 2 flushes microblogs with keywords of the second
category till we reach our target memory budgetB. Since,
there may be many keywords in this category, we select a
subset of them that barely achieves the targetB. Keywords
are flushed in the order of theirleast recently arrived. So,
keywords that did not receive any microblogs for the longest
time are flushed to disk first. These keywords are less likely
to accumulatek microblogs soon, and hence would have the
least effect on memory hit ratio. This flushing order comes
with a little overhead of assigning a single timestamp with
each keyword rather than a timestamp per each data item as
in traditional DBMS policies, e.g., LRU. This reduces both
memory and CPU overheads of tracking flushing candidates
as the experimental evaluation shows.

For each flushed keyword in Phase 2, we remove its entry
all together from the in-memory index. This includes trimming
all its microblog ids from the index. For each trimmed mi-
croblogM , its reference countM.pcount is decreased by one.

WheneverM.pcount reaches zero,M data record is removed
from the raw data store and flushed to the disk right away.
This repeats until we flush total of the requested budgetB.

Example. Following on the example in Figure 4, after
Phase 1, keywordsobama and nba have k=5 microblogs,
coly and prinky have two microblogs each, andlocia has
one microblog. Since the first two keywords have exactlyk
microblogs, they are not considered by Phase 2. Assuming
that Phase 2 needs to flush three more microblogs to reachB,
we select the three microblogs that are associated withlocia
andprinky as they have the least arrival timestamps.

Algorithm . A straight forward implementation of Phase 2
is to sort the list of in-memory keywords based on their last
arrival time. Then, we flush keywords from the top of the list
till we reach our targetB. That takesO(nlogn), wheren is
the number of in-memory keywords. That is still expensive
given the large number of keyword entries in memory, which
is in terms of millions. Hence, we employ a smarter algorithm
that is onlyO(n). The main idea is to traverse all keywords
that have less thank microblogs while maintaining on-the-go
buffer of keywords so that: (1) Total memory consumption of
buffered keywords at least equals the targetB. (2) The buffer
contains keywords with least arrival time. We maintain a max
heapH of keywords and their memory consumption, sorted on
keyword’s arrival time. First, we add toH the first traversed
keywords whose memory consumption adds up to at least the
requested memory budget. Then, for each remaining keyword
kw, if kw is less recent thanH ’s most recent keyword, thenkw
replaces the most recent keyword inH. This is repeated until
all keywords are exhausted. With each keyword replacement,
H keywords total memory consumption must equal or exceed
the requested budget, otherwise, the new keyword is inserted
without removingH ’s most recent keyword. At the end,H
contains the final set of keywords to be flushed, along with
their microblogs.

For each keywordW in H, W ’s entry is removed all
together from in-memory index. This includes removingW
and trimmingall its associated microblog ids from the index.
For each trimmed microblogM , M.pcount is decreased by
one. If M.pcount = 0, thenM record is removed from the
raw data store and flushed to disk. IfM.pcount > 0, M record
remains in the raw data store untilM.pcount falls to zero. This
repeats for all trimmed microblogs and keywords.

Phase 2 is executed in a separate thread so that it does
not noticeably interrupt the continuous digestion of incoming
data. In particular, on selecting its victims, Phase 2 is a reader-
only for data structures that digest new data and does all its
changes to temporary data structures, e.g., heapH. In addition,
during flushing its victims, Phase 2 does the minimal possible
interruption to the index. To illustrate, a new insertion may
come on a keyword that is being removed at the same time.
To avoid data inconsistency, each keyword’s entry is moved
from the index to a temporary buffer in a single atomic step,
i.e., the entry is locked so that no microblogs can be inserted
at the same time. The entries are locked once at a time so that
atomicity overhead is negligible, especially with least recent
entries that are less likely to receive new data at the time
of flushing. Thus, data integrity is preserved with minimal
overhead on data digestion.



C. Phase 3: Forced Flushing

Main idea. Triggering the execution of Phase 3 means that:
(a) Both Phases 1 and 2 failed to flush at leastB percentage of
memory contents, and hence it is the goal of Phase 3 to flush
more microblogs to reach to the goal of flushing memory bud-
getB. (b) All keywords in memory have exactlyk microblogs,
where a snapshot of the in-memory keyword frequency looks
like Figure 1(b). As a result, Phase 3 has no option other than
removing keywords with exactlyk microblogs. Consequently,
any flushed data could reduce the memory hit ratio. To limit
such reduction, we flush those microblogs that are less likely
to be queried. This is accomplished by flushingleast recently
queried microblogs, i.e., microblogs that are associated with
least recently queried keywords. With this preference order,
Phase 3 keeps recently popular keywords in main-memory.
This preference order is based on a previous study [17]
that shows that real-time distribution of microblogs queries
exhibits a strong temporal locality. So, recent queries behavior
predicts the near future effectively. Similar to its preceding
phases, trimmed microblogs in this phase are removed from
the index, and their reference countspcount’s are decreased.
A microblog M is removed from the data store and flushed
to disk whenever itsM.pcount falls to zero. Like Phase 2,
the flushing order in Phase 3 comes with a little overhead
that assigns a single timestamp to all microblogs that are
associated with each keyword. This reduces both memory and
CPU overhead of tracking flushing candidates.

Algorithm . The algorithm of Phase 3 is similar to that of
Phase 2 single pass algorithm except that: (a) flushed entries
are selected based on last querying time instead of arrival time,
and (2) all keywords are candidates for flushing instead of
only the low-frequency keywords. It is worth mentioning that
although the newly attached timestamp can be updated from
multiple querying threads simultaneously, it does not need
any concurrency control overhead. The reason is that if two
queries try to update this timestamp simultaneously, both of
them would be trying to assign it to the same value, which is
NOW . Thus, any race happens would not cause problems.

IV. EXTENSIBILITY OF kFlushing

We have discussed thekFlushingpolicy assumingkeyword
search queries that retrievemost recentk microblogs. How-
ever, kFlushing is a generic flushing policy and is designed
to work for top-k queries in general, regardless their search
attributes, ranking function, and/or value ofk. Also, kFlushing
could support single-keyword and multiple keyword queries. In
this section, we discuss the extensibility ofkFlushingfor other
search attributes beyond thekeywordattribute (Section IV-A)
and other ranking functions beyond themost recentone (Sec-
tion IV-B). In addition, we discuss the possibility of changing
the value ofk during run time (Section IV-C). Finally, we dis-
cuss supporting multiple-keyword queries throughkFlushing
(Section IV-D).

A. Supporting Different Attributes

kFlushingis a generic concept that can be applied for any
search attribute other than keyword attribute. Similar to the
case of keyword index, we assume the existence of an index
structure for the search attribute in our top-k queries. This is a

practical assumption as current platforms already includehash
index structures on users’ IDs to support user time line search
queries on the form: “Find k microblogs that are posted by
a certain user” [28]. Meanwhile, recent research suggest to
add spatial index structures to microblogging platforms asa
means of supporting spatial search queries on the form: “Find
k microblogs that are posted in certain location” [19]. For the
case of user IDs,kFlushing aims to flush those microblogs
that are not among the most recentk posts from any user.
Similarly, for the case of locations,kFlushing aims to flush
those microblogs that are not among the most recentk posts
from each indexed area.

ThekFlushingalgorithm can actually be applied regardless
of the underlying index structure. In particular, Phase 1 mainly
keeps track of pointers to index entries that contain data
beyond top-k answers. Such tracking can actually be used as is
within the insertion procedure of any index structure. So, when
inserting new items in any index cellC, e.g., a spatial index
cell or a user index cell,C is checked for having useless data.
In Phases 2 and 3, the algorithm mainly iterates over all index
entries to select their victims. This also has nothing specific to
do with our hash index and can be used in any index structure.

B. Supporting Different Ranking Functions

Throughout the paper,kFlushing was discussed in the
context of a temporal ranking function, i.e., queries are looking
for the most recentk microblogs that satisfy the query pred-
icates. Though temporal ranking is the most widely used in
microblogs [5], microblogs queries can still use other ranking
functions. For example, a query may ask about tweets that are
recent and posted by most popular users, where popularity is
measured by number of followers on Twitter. Other ranking
functions include ranking functions that combine timestamp
with spatial attributes [19], combine timestamp with microblog
popularity and textual relevance [28], or combine timestamp
with user social graph and textual relevance [16].

kFlushing can accommodate any ranking function either
based on one single attribute or multiple attributes, giventhat
the ranking score can be all computed upon the microblog
arrival. In this case, we already know the top-k items in
each index entry upon their arrival before any query comes.
Thus, we can order data inside each index cell, e.g., the list
of microblogs IDs in the index structure of Figure 3, so that
top-k items are quickly accessible. Hence, Phase 1 would still
keep only top-k microblogs and trims the rest that are beyond
top-k. Phases 2 and 3 have nothing to do with the underlying
ranking function, as they work only with the last arrival time
and last query time, respectively.

C. Supporting Dynamick Values

kFlushingpolicy can easily adapt itself dynamically with
changing the value ofk in the middle of the system operations.
The only constraint is that thek should be fixed along all
phases of each single execution ofkFlushing. This means that
if k is changed during the flushing operation, the change will
actually take place in the next time the flushing procedure will
be triggered. In casek is decreased,kFlushingcan instantly
adapt to the newk as existing in-memory data can still
fulfill new queries answers as they ask for less data. Existing
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microblogs that are beyond newk and below oldk are marked
to be flushed in the next flushing cycle. In casek is increased,
kFlushing adaptation to the newk will be lagged a bit. In
particular, as the newk is greater than the old one, existing
in-memory data would not instantly fulfill incoming queries
with the new value ofk. However, as microblogs are arriving
with high rates, missed data will be caught up quickly.

D. Supporting Multiple-keyword Queries

Our discussion up to this point considers queries that
search for a single keyword. In this section, we introduce an
extension for the proposedkFlushing to effectively support
queries that search for any number of keywords. This shows
the applicability ofkFlushing for all practical scenarios with
minor tweaks. In our discussion, we consider both types of
multiple-keywords queries that are supported in the major web
services: (i) OR queries that return a microblog if it has anyof
the keywords (”Find most recent k microblogs that containany
of the keywordsW1 ORW2 OR...Wn” ), and (ii) AND queries
that return a microblog only if it has all the keywords (”Find
most recent k microblogs that containall the keywordsW1

AND W2 AND...Wn” ). Both queries use the ranking function
F asmost recent. For the rest of this section, we refer to them
asOR queriesandAND queries.

OR queries. kFlushingwork perfectly fine with OR queries
without any modifications. The reason is that in-memory
contents underkFlushingwould be enough to find all answers
that could exist in memory for OR queries. To illustrate, in
order to answer an OR query with two keywordsW1 andW2,
we retrieve the two index entries ofW1 andW2, get the union
of their microblogs, in a chronological ordered listLm. If both
keywords havek microblogs, soLm is guaranteed to contain
thek answer microblogs and causes memory hit. If any of the
keywords has less thank microblogs, there is a possibility that
Lm may not contain the final answer. This is mainly caused by
the low-frequency keywords that have less thank microblogs.
As kFlushinggoal is maintaink microblogs in each keyword,
thenkFlushingachieves maximum hit ratio for OR queries.

AND queries. The describedkFlushingpolicy has a lim-
itation to achieve the maximum possible memory hit ratio
for AND queries. The policy keeps with each index entry a
maximum ofk microblog ids. This leads many AND queries
answers to have less thank microblogs from in-memory
contents, and hence obligates to visit disk contents and causes

memory misses. To illustrate, when an AND query comes
on two keywordsW1 and W2, an answer microblog must
exist in bothW1 andW2. Thus, we retrieve in-memory index
entries ofW1 andW2, scan their microblog ids list, and any
microblog that is associated with bothW1 andW2 is added
to a chronological ordered listLm. In most cases,Lm will be
shorter than either lists, asLm is represents the intersection
of the two lists. AskFlushingkeeps each list with maximum
length of k, then, in most cases,Lm contains less thank
microblogs and causes memory miss.

To overcome this limitation and increase memory hit in
AND queries, we slightly extendkFlushingso that it allows (in
certain cases) to have more thank microblog ids in each index
entry. The main idea here is that microblogs that are allowedto
be indexed while they are beyond the top-k microblogs must
be potential candidatesto increase memory hit ratio of AND
queries. The candidate microblog would be the one that is still
ranked among the top-k in other index entries. So, the extended
kFlushingkeeps a microblog in all index entries as long as it
is among top-k microblogs in any of its keywords.

An illustration example is given in Figure 6. The example
shows a microblogM1 with two keywords W1 and W2

in Figure 6(a).M1 is outside top-k microblogs inW1 and
among top-k microblogs inW2, andM1.pcount = 2. If the
original Phase 1 (Section III-A) is executed, thenM1 id would
be trimmed from index entry ofW1 and kept inW2, and
M1.pcount becomes 1. Now, assume an AND query comes
on W1 andW2. The intersection ofW1 andW2 microblogs
would not findM1 in memory, because its id is not associated
with W1 anymore. So, we have to visit in-disk entry ofW1

to getM1 in the answer, while actuallyM1 is still physically
in the main-memory data store as it is still referenced by at
least one in-memory keyword, i.e.,M1.pcount > 0. On the
contrary, if we keepM1 id associated withW1 entry, M1

would satisfy the AND condition and appear in the answer
list without a need to access disk contents. This causesW1

entry to have more thank microblogs. Yet,M1 would lead
to increase memory hit ratio, without significantly degrading
memory utilization because it is a memory resident as long
asM1.pcount > 0. This extension affects the three phases of
kFlushingas follows.

In Phase 1, the flushing rule is extended so that a microblog
id M is trimmed from an index entryW if it satisfies two
conditions: (1)M is beyond top-k microblogs inW , and (2)M
is not among top-k microblogs in any other index entry. The
second condition is added to preventM to be trimmed from
any index entry as long as it would remain in the in-memory
data store. This means thatM.pcount would not decrease
until M is outside top-k microblogs in all its keywords. Once
this happen,M.pcount would fall to zero in the following
execution of Phase 1 and would be trimmed from all index
entries and from the in-memory data store. Continuing to the
example in Figure 6(a), when the extended Phase 1 is executed,
it keepsM1 in W1 as is, and thenM1.pcount = 2 remain
intact. WhenM1 becomes outside top-k for both keywords as
in Figure 6(b), it is trimmed from all keywords, itsM1.pcount
falls to zero, and it is flushed from the memory contents.

In Phase 2, the flushing rule is extended so that a microblog
M is trimmed from an index entryW if it satisfies three
conditions: (1)W has less thank microblogs, (2)W is selected



based onleast recently arrivedorder, and (3)M does not exist
in any index entry that has≥ k microblogs. The reason to add
the third condition is that trimmingM in that case may cause
a memory miss and causes an additional disk access, violating
the assumption of the original Phase 2 (Section III-B) that
flushing all microblogs of low-frequent keywords would not
cause additional disk access. Elaborating onM1 in Figure 6(a),
assume that the extended Phase 2 is invoked andW2 is selected
for flushing. Then, allW2 microblogs are trimmed exceptM1

as it exists in the frequent keywordW1. So, when AND query
comes onW1 and W2, M1 would appear in the in-memory
answer list. This Phase 2 extension prevents low-frequency
keywords to hurt memory hit ratio of frequent keywords if
they are involved in the same AND query.

Phase 3 is kept intact as described in Section III-C. The
reason is that the original assumption of Phase 3 is still valid.
In specific, Phase 3 is executed while reaching a saturation
point in which all in-memory microblogs could cause memory
hit. Thus, Phase 3 already flushes microblogs that may hurt the
hit ratio, however, with minimal probability. This assumption
is still valid with the extended Phase 1 and Phase 2. The
difference here is that when Phase 3 is executed, not all in-
memory keywords would have exactlyk microblogs. Instead,
it might find keywords that has either more thank microblogs
(left by extended Phase 1) or less thank microblogs (left by
extended Phase 2). However, this does not affect Phase 3 as all
these microblogs still could cause memory hit. Thus, Phase 3
would remain intact and consider all in-memory keywords for
flushing in least recently queriedorder.

Although the proposed modifications do not guarantee
that all multiple-keyword queries would be answered entirely
from memory contents, they improve the memory hit ratio
and utilization as shown in our experimental evaluation with
various realistic query workloads. Also, applying this extension
slightly degrade the efficiency ofkFlushingphases as they are
invoked in separate threads that keep minimal interaction with
real-time digestion thread, as described in Section III.

V. EXPERIMENTAL EVALUATION

This section provides experimental evaluation ofkFlush-
ing policy and its multi-key queries extension, denoted as
kFlushing-MK, that is described in Section IV-D to show their
effect in increasing the memory hit ratio without sacrificing
the performance of the underlying index. We compare our
proposed policy with two policies: (1) The default temporal
flushing policy (denoted asFIFO) used implicitly or explicitly
in all existing techniques for microblogs [5, 16, 28].FIFO
always flushes the oldest data and is implemented based on
a temporally-segmented hash index that consists of multiple
temporally disjoint segments. On full memory, the oldest
index segments are completely flushed out from memory.
(2) The popularleast recently usedpolicy (denoted asLRU),
implemented as H-Store anti-cache [8], where a global doubly-
linked list is maintained to order microblogs inleast recently
usedorder. To reduce memory overhead, pointers of LRU list
are embedded in the index entry of each microblog. H-Store
is selected as it is designed for fast data environments, similar
to microblogs environments.

Experimental setup. We comparekFlushing, kFlushing-MK,
FIFO, and LRU for different values ofk, different main-

memory budgets, and different flushing budgets. Unless men-
tioned otherwise, we use a defaultk value of 20, main-
memory budget of 30 GB, and flushing budget of 10% of
the memory budget. We have collected 2+ Billion tweets
from public Twitter Streaming APIs over the course of more
than a year. We run these real tweets with an arrival rate of
6,000 tweets/second, which matches the current Twitter rate.
By default, the presented experiments are performed using
keywordattribute andmost recentranking function, where we
use hashtags, if available, as keywords. All results are collected
only in the steady state, i.e., after filling the main-memorybud-
get and have multiple data flushes. Our performance measures
include memory hit ratio for incoming queries and flushing
overhead in terms of memory overhead and effect on digestion
rate of incoming data. All experiments are based on Java 7
implementations for evaluated flushing policies and using an
Intel Core i7 machine with CPU 2.40GHz and 64GB RAM that
run Ubuntu 12.04. Synchronization between threads is handled
through Java synchronization features.

Query workloads. In lack of standard query workload for
microblogs keyword queries, we generate the following two
workloads out of our real Twitter dataset:

1. Correlated Query Load: a query workload where key-
word queries are selected at random from all keywords as-
sociated with our tweets without removing duplicates. Hence,
the probability of a certain keyword to be queried equals its
occurrence probability in the dataset. This query workload
favors frequent keywords, which is a realistic assumption as
active topics are likely to be the ones being queried.

2. Uniform Query Load: a query workload where keyword
queries are selected from the whole pool of possible keywords
with equal probability regardless of their frequency in thein-
coming data. Although such query workload does not simulate
the actual behavior of real users, yet it is practically used
for testing the quality of performance for major systems, e.g.,
Twitter, and major search engines, e.g., Google and Bing. The
rationale here is that such systems measure their performance
for extreme cases to guarantee a minimum level of quality of
service. In other words, the objective of such systems is not
only to make the query search faster on the average, but also
to guarantee that 99% of their queries are answered within
reasonable latency [5].

Each of the two workloads consists of ten million queries.
Each workload has one third of single-keyword queries, 2-
keyword AND queries, and 2-keyword OR queries. Queries
are posted as a stream of high rate of 25,000 query/second,
similar to Twitter high query rates [26]. For extensibility
experiments, similar query workloads are generated for spatial
and user attributes replacingkeywordwith latitude/longitude
coordinatesand userid, respectively. Yet, all queries onuser
attribute are single-key queries as they are in practice.

In the rest of this section, Section V-A analyzes a snapshot
of memory contents. Sections V-B and V-C evaluates the
memory hit ratio and the flushing overhead, respectively.
Section V-D evaluateskFlushingextensibility.

A. Snapshot of In-Memory Contents

As was indicated earlier in Figure 1, the optimal scenario
is to remove useless microblogs in a way that allows other
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Fig. 8. Hit Ratio on Correlated Query Load

keywords to accumulatek microblogs, and hence they would
not need a disk access if queried. Figure 7 gives the effect
of runningFIFO, kFlushing, kFlushing-MK, andLRU policies
on the number of keywords that have accumulated at leastk
microblogs, in a steady state point. Queries on these keywords
cause memory hit, and hence, the more of these keywords the
much better the flushing policy. Figure 7(a) gives the number
of k-filled keywords when varyingk from 5 to 100. With
increasingk, the number ofk-filled keywords is noticeably
decreasing for all policies as less keywords can accumulate
k microblogs with largerk. However, for allk values, both
kFlushing and kFlushing-MK outperforms bothFIFO and
LRU. In specific,kFlushing accumulatesat least 7 timesk-
filled keywords more thanFIFO and up to 3 times more
than LRU. kFlushing-MK always accumulates slightly lower
thankFlushingdue to intentionally overlooking potential posts
and keeping them in memory, which reduces the amount of
memory available for low-frequent keywords to accumulatek.
Yet, kFlushing-MKstill outperforms the other two competitors.
This experiment can be translated that up to 700K queries that
could cause a memory hit withkFlushing variations, would
miss their answers withLRU, and similarly 1800K queries with
FIFO, which is a significant improvement over both policies.

Figure 7(b) gives the number ofk-filled keywords when
varying the flushing budget from 20 to 100% of allocated
memory. With increasing flushing budget, number ofk-filled
keywords is decreasing as memory looses more content. Only
LRU shows a kind of unexpected behavior with varying
flushing budget, as it depends on incoming queries in real time
and does really follows a certain pattern. However, different
flushing budgets give 8 to 10 times morek-filled keywords
in kFlushing variations compared toFIFO and 2 to 9 times
compared toLRU, so at least it doubles the number ofk-

filled keywords in its worst cases, which shows superiority
over both policies. Finally, Figure 7(c) gives the number of
k-filled keywords when varying memory size from 10GB to
50GB. For 10GB memory, bothkFlushing variations accu-
mulate ∼13 times morek-filled keywords thanFIFO and
∼50 times more thanLRU. This ratio decreases with increasing
memory budget, asFIFO and LRU accumulate morek-filled
keywords with having more memory space, whilekFlushing
gives consistent superior performance for different memory
budgets. This shows the robustness ofkFlushingto give high
performance in tight memory environments.LRU still shows
a kind of unpredictable pattern as a result for depending on
query distribution in real time, which is arbitrary.

B. Memory Hit Ratio

In this section, we evaluate the effectiveness ofkFlushing
in improving memory hit ratio, i.e., the ratio of queries that
find their k microblogs in memory contents. Asmemory hit
ratio is heavily dependent on the incoming query workload,
we perform our experiments twice, once for the correlated
query workload (Figure 8) and another for the uniform query
workload (Figure 9).

Figure 8 gives memory hit ratio for correlated query
workload. For all parameters,kFlushingvariations consistently
achieves 12 to 20% higher hit ratio overFIFO which repre-
sents 20 to 44% improvement, and 2 to 18% higher hit ratio
overLRU which represents 3 to 35% improvement. Thus, with
10 millions queries in our query load,kFlushingvariations hit
1.2 to 2 million queries in main-memory that are not hit using
FIFO, and 200 thousands to 1.8 million queries that are not
hit usingLRU, which is a significant improvement. In addition,
kFlushing-MK is always superior tokFlushingwith 7 to 9%
increase in hit ratio which represents 9 to 15% improvement.
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Fig. 9. Hit Ratio on Uniform Query Load

This clearly shows the effectiveness of the proposed multiple-
key extension in answering more hundreds of thousands of
queries (average of 800 thousands) from in-memory contents.
Figure 8(a) gives memory hit ratio when varyingk from 5
to 100. With increasingk, hit ratio of all policies decrease as
queries ask about more data. Yet,kFlushing-MKanswers 68
to 84% of all queries from in-memory contents, which is
higher than all other alternatives significantly, wherekFlushing
achieves 61 to 77%,LRU achieves 50 to 74%, andFIFO
achieves 46 to 60%. The superiority ofkFlushing variations
with large values ofk shows the positive effect of accumulating
much morek-filled keywords that is shown in the previous
experiment. Figure 8(b) shows that with increasing flushing
budget, hit ratio of all policies are also decreasing as memory
loses more data. StillkFlushing-MKhas up to 20% increase in
hit ratio overFIFO andLRU. Finally, Figure 8(c) confirms the
superior performance ofkFlushing-MKandkFlushingover all
alternatives especially with tight memory budgets.kFlushing-
MK always achieves∼10% improvement overkFlushing. For
10 GB memory,kFlushinggives 18% increase in hit ratio over
FIFO, where we go up from only 52% to 70%.

Figure 9 evaluates memory hit ratio on uniform query
workload. It is noticeable that the hit ratio of uniform workload
is consistently low, below 9%, due to the low percentage of
frequent keywords in Twitter data. BothkFlushing-MK and
kFlushinggive almost similar performance for different param-
eters. However, for all parameters values,kFlushingvariations
are superior and provide significantrelative improvementin
memory hit ratio, which ranges from 100% to 330% compared
to FIFO and 26 to 240% compared toLRU. In specific,
Figure 9(a), atk=40, shows 0.42% hit ratio forFIFO and
1.41% for kFlushing, which means 3.3 times more queries
answered from memory. Even with such low hit ratio, this
1% improvement, for 10 millions queries workload, gives
100,000 more queries answered from memory, which is a
significant improvement. Similar to the results on correlated
workload, Figure 9(a) and Figure 9(b) show decreasing hit
ratio with increasingk and flushing budget, respectively, while
Figure 9(c) shows increasing hit ratio with increasing memory
budget. This experiment also confirms efficientkFlushing
performance in tight memory environments (10GB).

C. Flushing Overhead

In this section, we evaluate the overhead encountered by the
flushing policy along with its effect on the system scalability
to digest incoming tweets with high rates. To do so, we do not
limit the arrival rate, instead we stress our system and let the
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tweets arrive to the system as fast as it tolerates.

Figure 10 gives the flushing process overhead in terms of
indexing memory overhead (Figure 10(a)) and the effect on the
underlying index digestion rate (Figure 10(b)), when varyingk.
Figure 10(a) shows that different policies give stable memory
overhead fork ranges from 5 to 100.kFlushing overhead
decreases very slowly with increasingk due to decrease
in total number of keyword entries in the index. Yet,LRU
gives the highest overhead, 4.9GB, which is around 2 times
kFlushing-MKand 2.5 timeskFlushingoverhead, whileFIFO
gives the lowest overhead,∼0.75GB for all k values. This
is interpreted by the big overhead of LRU list that tracks
individual microblogs, whilekFlushingvariations do not track
individual items. Instead, it uses the natural index grouping,
based on keyword, to track usage of microblogs in groups
that significantly reduce the tracking overhead. Yet, during
the flushing process, a large amount of temporary buffering
memory,∼2GB, is needed to collect the scattered victim items
to flush to disk. InFIFO, this temporary buffer is not even
needed as the index is segmented based on arrival timestamp
and hence the oldest index segment is used as the buffer.

Figure 10(b) shows the effect of the flushing policies
on the digestion rate of incoming microblogs to underlying
index. For all values ofk, FIFO allows its underlying index
to digest ∼120K tweets/second. Due to its insertion and
book keeping overhead, the two variations of ourkFlushing
policy perform worse thanFIFO. This is mainly because of
accessing the index from two threads simultaneously, which
includes a minimum level of concurrency control. However,
kFlushingcan still digest∼100K tweets/second andkFlushing-
MK digest ∼80K tweets/second, for allk values. This is
13 to 17 times higher arrival rates than Twitter firehose; a
stream that contains all Twitter data. This shows thatkFlsuhing
policy could efficiently isolate its CPU overhead from the
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Fig. 12. kFlushingPerformance on User Attribute

underlying index and keeps its high performance.kFlushing-
MK consumes more efforts in the flushing threads and so it
causes more contention and less digestion rate. On the contrary,
LRU encounters significant contention on the global LRU list,
which limits the digestion rate to only 29K tweets/second.
This list is accessed by querying threads, so that recently used
tweets are moved to the head of the list, and insertion thread
where new tweets are also inserted to the list head. In real-time
operation, both insertions and querying are running most of
the time, and hence a significant contention is introduced and
limits index scalability. This shows the superiority ofkFlushing
that significantly improves memory hit overLRU, and also
sustains high digestion scalability.

D. kFlushingExtensibility

This section shows the extensibility and effectiveness of
kFlushingpolicy when employed with different attributes. To
evaluatekFlushing extensibility, we use the commonly used
microblogs attributes: spatial and user attributes. Thesetwo
attributes are used to support queries “Find most recentk
microblogs that are posted in a certain location” [19] and
“Find most recentk microblogs that are posted by a certain
user” [28], respectively. For spatial attribute, we use a spatial
grid index that is composed of equal-area spatial tiles, each
of 4 mile2. For user attribute, we use a hash index that
has a similar structure to our keyword index (Figure 3),
however, it indexes user ids instead of keywords. In this
section,kFlushing-MKis omitted because all user queries are
single-key queries and spatial queries have no AND queries,
as they are semantically invalid in the spatial context. This
is because AND queries look for a microblog that exits in
two spatial regions at the same time and each of our tweets
associated with only one point location. Therefore,kFlushing-
MK performs exactly askFlushingin all queries of this section.

Figure 11 evaluates memory hit on spatial attribute with
different memory budgets. Figure 11(a) shows the number
of keys, i.e., spatial tiles, that cause memory hit.kFlushing

outperforms bothFIFO and LRU with 2 to 5 times higher
number of memory-hit keys. In addition,kFlushinggives high
performance even in tight memory budgets (10GB), which
confirms the superiority in tight memory environments that are
shown in previous experiments. Figure 11(b) shows memory
hit ratio for both uniform and correlated query workload.
Both query workloads show a stable superior performance
for kFlushingover the other policies even with low memory
budgets. The hit ratio in other policies starts relatively low with
tight memory budgets (≤ 30GB) and then improves noticeably
with memory > 30GB. At memory ≤ 30GB, kFlushing
improves 15 to 100% overFIFO and 30 to 138% overLRU
for uniform queries, while improves 10 to 20% overFIFO
and 8 to 33% overLRU for correlated queries. This is still
significant improvement that cause over two millions queries
to hit memory withkFlushingand miss with its competitors.
We omit the flushing overhead and digestion rate scalability
results for space limitations, however, the results are exactly
the same as shown with keyword attribute.

Figure 12 evaluates memory hit on user attribute with
different memory budgets. The figure shows pretty similar
performance improvements like the drawn conclusions from
both keyword and spatial attributes. However, it is noticeable
that kFlushinggives much better improvement for correlated
query workload in user attribute compared to keyword and
spatial attribute. This reflects the more skewness of data
according to the user attribute. In other words, highly active
users, who tweet frequently, cause higher percentage of useless
microblogs than popular keywords and popular spatial regions.
Otherwise, the improvement patterns and conclusions are
pretty much the same.kFlushingstill gives scalable digestion
rate of 100K microblog/second.

In nutshell, extensibility experiments show the superiority
of kFlushingon the three attributes, keyword, spatial, and user,
for different parameters and performance measures. This shows
the generality and effectiveness ofkFlushing.

VI. RELATED WORK

In this section, we highlight three areas related to our work:
DBMS buffer management and anti-caching, real-time mi-
croblogs data managementandload shedding in data streams.

DBMS buffer management and anti-caching. Evicting
data from main-memory has been studied in both buffer
management in database systems [9] and anti-caching in main-
memory databases [8, 15, 30]. Our problem can be considered
a variation of the anti-caching problem, applied in microblogs
platforms rather than relational main-memory databases. How-
ever, existing techniques [8, 15, 30] have limitation to solve our
problem. First, none of them addresses top-k queries, which
is a major component of microblogs systems [5, 19, 28]. In
addition, they suffer from significant overhead that limitsthe
scalability of microblogs systems. Specifically, Hekaton [15]
depends on offline processing which cannot scale for high
velocity data like microblogs. On the contrary, H-Store [8]
anti-cache is optimized for fast data environments. Though, it
still uses a traditional policy (LRU) that requires tracking usage
of individual data items. This pose a significant overhead to
maintain LRU-ordered list for all data items in the system [30].
Unlike this work, kFlushing uses top-k queries as a guide



to smartly select flushing victims with minimal overhead that
does not limit system scalability.

Real-time microblogs data management. Due to its
popularity and high application needs, managing real-time
microblogs has attracted several research efforts in industry
and academia. However, the main focus was on either indexing
(e.g., [28, 29]), querying (e.g., keyword search [5, 6, 16, 28]
or location-based search [4, 19, 24]), analysis (e.g., event
and trend detection [11, 22], news and topic extraction [14,
23], or semantic and sentiment analysis [2]), or query lan-
guages [18, 21]. In all this work, it is assumed that queries
are all answered from in-memory contents. Thus, the main
performance measure is the query response time from in-
memory contents. Only our prior work [19, 20] have studied
the effect of having a flushing policy, in terms of the memory
consumption. However, this work was tailored to a specific
spatio-temporal queries and has nothing to do with any other
attributes, ranking functions, or index structures. Therefor, this
cannot fit in our vision to build a generic system [18]. Our
work in this paper is the first to propose a generic flushing
policy for microblogs. In addition, it is the first to address
increasing the memory hit ratio of incoming queries, and hence
significantly increase the overall system quality.

Load shedding in data streams. Selecting flushing victims
is similar in spirit to the idea of load shedding that was
extensively studied in data stream management systems (e.g.,
see [1, 12, 13]), where upon high system load, a portion of data
is dropped from memory so that queries quality is minimally
affected. However, these techniques cannot be applied to
flushing microblogs for two main reasons: (1) Selected victims
are chosen to optimize the performance for a set of continuous
queries that are already registered in the system. This is not the
case for microblogs where the focus is not continuous queries.
So, we are adjusting the memory contents so that any query
may arrive later. (2) Streaming load shedding is optimized for
query accuracy as the removed data is just thrown away and
not moved to disk. On the contrary, in microblogs, flushed data
is moved to disk, and hence the answers are always accurate.
Instead, we optimize for increasing the memory hit ratio, which
is not considered at all in load shedding techniques.

VII. C ONCLUSION

This paper has studied the problem of main-memory flush-
ing in microblogs data management systems. Our study is
motivated by existence of many useless data that is stored
in main-memory under existing flushing schemes. This data
does not contribute to incoming queries, which mostly ask for
only top-k microblogs, wherek is typically a small number.
Thus, we exploit these characteristics to design effectiveflush-
ing rules for microblogging environments. In particular, we
have proposedkFlushing: an effective and scalable flushing
policy that works for top-k search queries on microblogs.
kFlushing policy frees the unutilized memory that are used
to store useless data. The freed memory is used to accumulate
more useful data so that much more queries can find their
answers in memory. When all memory is utilized,kFlushing
flushes microblogs that are less likely to degrade memory hit
ratio. Using the same memory budget,kFlushing is able to
significantly boost memory hit ratio by 26-330% compared to
existing flushing schemes. In addition, it can work efficiently

in tight memory environments and saves up to 75% of memory
resources.kFlushing is shown to be efficient and scalable in
digesting up to 100K microblog/second, which is an order of
magnitude higher rate than current Twitter firehose rate.
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